Biodegradation of BTEX: Optimization through Response Surface Methodology
- 1 United Arab Emirates University, United Arab Emirates
- 2 College of Engineering, Qatar
Abstract
Response Surface Methodology (RSM) was used to optimize the biodegradation of Benzene, Toluene, Ethyl benzene and m-, o-, p-Xylene (BTEX) by Pseudomonas putida immobilized in PVA matrices in a specially-designed novel Spouted Bed Bioreactor System (SBBS). A mixture of 60 mg L-1 of BTEX compounds in air was contacted with the immobilized bacteria in three spouted bed bioreactors in series. The parameters investigated include the contaminated air flow rate, operating temperature, PVA volume and water pH. Maximum biodegradation efficiency was predicted to occur at an air flow rate of 500 mL min-1, an operating temperature of 33°C, a PVA volume fraction of 30% and a pH of 8.3. Among the evaluated variables, air flow rate had the most significant effect on the efficiency of BTEX biodegradation. At optimum conditions, the novel bioreactor system was able to achieve maximum removal efficiency of 94, 98, 95 and 98% for Benzene, Toluene, Ethylbenzene and Xylene, respectively.
DOI: https://doi.org/10.3844/ajeassp.2017.20.31
Copyright: © 2017 Ayat E. El Telib, Muftah H. El-Naas and Janice A. Acio. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 4,065 Views
- 2,509 Downloads
- 12 Citations
Download
Keywords
- Biodegradation
- BTEX
- Response Surface Methodology
- Spouted Bed Bioreactor
- Pseudomonas putida