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Abstract: This research utilizes machine learning models ANN, Random
Forest, and Decision Tree to predict material properties of Ti-based
biomaterials, including Young's modulus, density, thermal conductivity, and
specific heat at various temperatures. Data was sourced using web scraping
and Plot Digitizer, validated against literature, and analyzed in Excel. The
ANN model achieved strong performance, with R² = 0.980874 for TiAl and
R² = 0.997607 for TiCu, effectively predicting density and Young's modulus
but showing deviations in band gap. For TiO2, the ANN model
demonstrated solid predictions but struggled with band gap and specific heat
accuracy. Random Forest yielded high accuracy for TiAl (R² = 0.998168)
and TiO2 (R² = 0.9994) and its ability to generalize well and capture
complex relationships in the data makes it the most reliable method for this
study. The Decision Tree model accurately predicted specific heat and
Young's modulus for TiAl (R² = 0.993841) and captured trends in TiCu but
showed deviations in band gap and thermal conductivity. These results
underline the predictive potential of these models while highlighting areas
for refinement.
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Introduction
Biomaterials are a distinct class of materials

engineered to interact effectively with biological
systems, supporting advancements in diverse industries
such as healthcare, automotive, agriculture, and
consumer goods. These materials—spanning metals,
polymers, ceramics, and composites—are developed
with precise attributes to serve roles such as structural
reinforcement, drug delivery, and tissue repair. The
design of biomaterials involves careful consideration of
factors such as biocompatibility, mechanical integrity,
durability, and environmental sustainability. These
features drive innovation across multiple applications
while addressing critical global challenges and fostering
collaboration across scientific disciplines (Baranwal et
al., 2022); (Prodanović & Milutinović, 2017). Titanium
was chosen for this research due to its exceptional
combination of physical, chemical, mechanical, and
electronic properties that make it ideal for developing
composite materials like Ti-Al, Ti-Cu, and TiO₂. Its high
melting point (1,668°C) ensures stability under extreme
conditions, while its low density provides an excellent
strength-to-weight ratio. Titanium's outstanding

corrosion resistance enhances its durability and its ability
to form stable compounds with non-metals at high
temperatures further extends its applicability.
Additionally, Titanium's mechanical properties, including
high tensile strength, hardness, and ductility, contribute
to its reliability in demanding environments. While pure
Titanium is metallic with no band gap, TiO₂ serves as a
semiconductor with a band gap of approximately 3.2 eV,
making it valuable in applications such as solar cells and
photocatalysis. These unique attributes make Titanium a
key material for accurately predicting thermal and
mechanical properties using machine learning models.

Titanium Aluminide (TiAl) alloys offer high strength,
oxidation resistance, and thermal stability, making them
ideal for aerospace and automotive applications.
Understanding their thermal and structural behaviour
across temperatures is key to optimizing performance
and reliability (Ghorbanpour & Lotfiman, 2016; Low et
al., 2008).

Equally significant are Titanium Copper (TiCu)
alloys, which combine the corrosion resistance and
strength of Titanium with the thermal and electrical
conductivity of copper. These alloys are widely utilized
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in electronics, power generation and precision
engineering, where materials must demonstrate
exceptional thermal and electrical efficiency.
Investigating the thermal behaviour, mechanical
properties and structural stability of TiCu alloys under
various conditions is essential for extending their
applicability in high-performance and sustainable
technologies. Titanium Dioxide (TiO2), on the other
hand, is a widely studied material renowned for its
multifunctional characteristics, including high chemical
stability, excellent photocatalytic activity and versatile
optical properties. TiO2 is pivotal in applications such as
photovoltaic systems, environmental remediation and
biomedical technologies.

Titanium-based alloys, particularly Titanium
Aluminide (TiAl) and Titanium Copper (TiCu) alloys,
have garnered significant attention due to their
exceptional properties, making them suitable for various
high-performance applications. TiAl alloys are
recognized for their low density, high strength and
excellent oxidation resistance at elevated temperatures,
rendering them ideal for the aerospace and automotive
industries. For instance, a study published in Metals
demonstrated that copper alloying in TiAl, combined
with multiple laser scans during SLM, enhances the
formation of the α₂-Ti₃Al phase, refines the
microstructure and improves mechanical properties,
thereby broadening the applicability of TiAl intermetallic
alloys in high-temperature environments (Polozov et al.,
2023). Additionally, research has focused on the
development of TiAl–Si alloys, where silicon
incorporation influences the manufacturing process,
structure, phase composition and selected properties of
titanium aluminide alloys (Knaislová et al., 2021). A
study published in Metals examined the microstructure
and mechanical properties of TiAl matrix composites
reinforced with Ti₂AlC particles. The research
demonstrated that the addition of Ti₂AlC enhances the
mechanical properties of TiAl alloys, improving their
potential for high-temperature structural applications
(Yang et al., 2022).

TiCu alloys combine the advantageous properties of
Titanium and copper, offering high strength, good
biocompatibility and acceptable corrosion resistance. A
study in Bioactive Materials investigated the anti-
infection ability of TiCu dental implants, revealing that
the alloy exhibits significant antibacterial properties
against oral microbiota, which are associated with the
release of Cu ions. This effect, coupled with good
biocompatibility, suggests that TiCu alloys could
effectively reduce implant-associated infections (Liu et
al., 2022). Furthermore, the mechanical properties and
microstructures of Ti–Cu alloys have been explored,
indicating that varying copper content influences the
alloy's hardness and microstructural characteristics.
Research published in Materials Transactions
demonstrated that increasing copper content leads to the

formation of Ti₂Cu intermetallic compounds, which
contribute to enhanced hardness and wear resistance,
making these alloys suitable for applications requiring
high mechanical performance (Luangvaranunt &
Pripanapong, 2012). TiCu alloys combine the beneficial
properties of Titanium and copper, offering high strength
and good corrosion resistance. Érkhim et al. investigated
the mechanical properties of TiNi–TiCu alloys, revealing
that the addition of copper to TiNi alloys influences their
mechanical behaviour, which is crucial for applications
requiring specific mechanical characteristics (Érkhim et
al., 1978).

TiO₂ is a versatile material with applications ranging
from photocatalysis to biomedical devices. Ali et al.
discussed recent advances in the synthesis, properties
and applications of TiO₂, highlighting its significance in
various fields due to its remarkable catalytic and
semiconducting properties (Ali et al., 2018). Research
by Arumugam et al. explored the functional properties of
TiO₂-based nanocomposites. Their findings emphasized
the potential of these composites in enhancing the
performance of conducting polymers for applications in
sensors and energy storage devices (Arumugam et al.,
2023). Ndibewu et al. explored the influence of titanium
dioxide (TiO₂) on the physico-chemical properties of
polymer composites. The research highlighted the critical
role of TiO₂ as a reinforcing agent, particularly in
enhancing the thermal stability, mechanical strength and
durability of polymer matrices. By incorporating TiO₂
nanoparticles, the composite materials demonstrated
improved resistance to heat and wear, making them ideal
for advanced industrial applications, including
automotive, construction and biomedical sectors
(Ndibewu et al., 2024).

Machine learning techniques such as Artificial Neural
Networks (ANNs), Random Forests and Decision Trees
have emerged as powerful tools for predicting material
properties, offering significant advantages over
traditional modelling approaches. These methods enable
the identification of complex, nonlinear relationships
between material features and their properties, even
when dealing with large and diverse datasets. ANNs are
particularly effective in capturing intricate patterns in
data, making them well-suited for predicting
temperature-dependent behaviours. Random Forests
combine the outputs of multiple decision trees to
improve accuracy and robustness while also providing
insights into feature importance, aiding in understanding
the key factors influencing material properties. Decision
Trees offer a high degree of interpretability, making it
easier to visualize and understand the interactions
between variables. Together, these methods contribute to
accelerating material discovery and optimization,
providing reliable and efficient approaches to analyze
and predict critical properties such as thermal
conductivity, density and specific heat across varying
conditions (Agrawal and Choudhary, 2016; Agrawal et
al., 2019; 2023; Zhao et al., 2023-2024).
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Butler et al. (2018) conducted an extensive review on
the role of machine learning in materials science. The
study explored how models such as random forests,
support vector machines and neural networks are
transforming the way material properties are predicted.
The researchers highlighted the integration of
experimental and computational datasets to develop
accurate models for predicting properties like thermal
conductivity, elasticity and electronic band structures.
They emphasized that these methods accelerate materials
discovery by enabling rapid screening of potential
candidates for energy storage, catalysis and structural
applications. Jha et al. (2018) investigated the use of
ANNs for predicting complex material properties,
focusing on high-entropy alloys. The study demonstrated
how ANNs can model nonlinear relationships between
input variables like composition and output properties
such as phase stability and mechanical strength.

Pilania et al. (2013) conducted a study to explore the
use of random forest algorithms for predicting material
properties. The researchers applied random forest models
to predict the formation energies of perovskite oxides
based on compositional features. By leveraging the
ensemble approach of random forests, the study
demonstrated high accuracy in capturing complex,
nonlinear relationships between input features and
material properties.

Mansouri Tehrani et al. (2018) investigated the
application of decision tree models in predicting the
mechanical properties of high-entropy alloys, as reported
in Computational Materials Science. The study
employed decision trees to evaluate the influence of
elemental composition and processing conditions on
hardness and tensile strength. Their work highlighted the
efficiency of decision trees in materials research,
providing a systematic approach to optimizing material
design and performance.

In this research, extensive literature review and
analysis of numerous research articles and papers reveal
a strong foundation for the use of Ti due to its unique and
valuable characteristics in various applications.
Researchers have explored Ti in combination with other
materials, such as Al, Cu and O₂, to form Ti-Al, Ti-Cu
and Ti-O₂ composites, each showing promise for specific
applications and temperature ranges. Despite this focus,
the data across these studies is inconsistent, particularly
with respect to the temperature-dependent properties.
This inconsistency highlights the need for a more
systematic approach to predicting material properties
under defined conditions.

In recent years, machine learning has emerged as a
powerful tool in material science, accelerating the
discovery of new biomaterials, optimizing material
properties and enhancing sustainability. The application
of machine learning in this research allows for
predictions of material properties based on specific

conditions and tailored parameters. This approach also
helps to uncover hidden relationships in material data,
optimize predictions and enable enhanced maintenance
and durability assessments.

However, significant challenges remain. While AI
and machine learning can drive advancements in
biomaterials, limitations include a lack of accessible,
high-quality datasets, inconsistent open-access
frameworks and the absence of a comprehensive
composite material database. Additionally, predictions
across different methods often yield varied outcomes,
making it challenging to determine optimized results
consistently. Few studies provide comparative analyses
across similar temperatures, which limits understanding
of the conditions that optimize material behavior in new
biomaterial applications.

Given these gaps, this research applies machine-
learning models to the temperature-dependent property
prediction of composite materials, specifically Ti-Al, Ti-
Cu and Ti-O₂. By comparing model outputs across
various methods, this study aims to establish a
comprehensive prediction framework and address the
need for reliable, temperature-specific data in biomaterial
research, setting a foundation for optimized material use
across applications.

The main objective of this study is to develop a
robust machine-learning model that accurately predicts
the thermal and mechanical properties of biomaterials,
specifically Ti-based materials such as Ti-Al, Ti-Cu and
TiO₂ composites, across different temperature ranges.
This contributes to various fields such as Aerospace
Engineering, implants, prosthetics and other medical
devices, predicting thermal conductivity and heat
resistance aids in designing materials for heat
exchangers, power plants and energy storage systems,
circuit boards, sensors and other electronic devices,
improved engine components and heat-resistant parts for
vehicles. Biomaterials research using AI faces several
challenges, including limited accessible datasets,
unreliable open-access data sources and the need for
comprehensive composite material data. Additionally,
temperature-dependent outcomes, varied prediction
methods and identifying optimized prediction techniques
further complicate achieving accurate and reliable
results.

Machine learning enhances the prediction of material
properties by efficiently analyzing complex datasets,
identifying patterns and developing predictive models
that account for various influencing factors. By
leveraging algorithms such as Artificial Neural Networks
(ANN), random forests and decision trees, machine
learning can process extensive experimental data to
predict material behavior across different conditions,
including temperature variations. This enables accurate
estimations of properties like thermal conductivity,
density and Young’s modulus without extensive physical
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testing. Additionally, machine learning models can
optimize material design by identifying key features that
contribute to improved performance, accelerating
research and innovation in material science.

The ANN, Random Forest and Decision Tree models
were chosen for this study due to their distinct strengths
in handling complex datasets and predicting material
properties. The ANN model was selected for its ability to
capture nonlinear relationships and complex patterns
within the data, making it suitable for modeling intricate
material behaviors across varying temperatures. The
Random Forest model was employed for its robustness
against overfitting and its capability to handle large
datasets with diverse features, ensuring stable and
reliable predictions. Meanwhile, the Decision Tree model
was chosen for its interpretability and ability to generate
clear decision rules, making it useful for understanding
key factors influencing material properties. By utilizing
these three models, a comprehensive evaluation of
prediction accuracy and performance was achieved.

Materials
The selection of appropriate materials and the

comprehensive analysis of their thermophysical and
mechanical properties form the foundation of predictive
modeling in materials science plays a vital role. In this
study, the focus was placed on both elemental and
composite systems that are widely recognized for their
industrial relevance and structural applications. Titanium
(Ti), Aluminum (Al), Copper (Cu) and Oxygen (O₂)
were investigated alongside their combinations TiAl,
TiCu and TiO₂ to understand how the interaction of
constituent elements influences overall material
behavior. The goal was to analyze how these materials
respond to changes in temperature and to develop
predictive insights using machine learning techniques.

The properties of several material systems, including
Ti, Al, Cu and O2, as well as their combinations such as
TiAl, TiCu and TiO2, were investigated across a range of
temperatures. The parameters of interest included Band
Gap (eV), Young's Modulus (GPa), Density (g/cm³),
Thermal Conductivity (W/m.K) and Specific Heat
(J/g.C). The temperature range for the experiments
spanned from 298.15 to 498.15 K, with measurements
taken at specific intervals of 4 K within this range.

To predict the material properties at these varying
temperatures, three different machine learning models
were employed: Artificial Neural Networks (ANN),
Random Forests and Decision Trees. These models were
selected due to their ability to handle complex, non-
linear relationships between input parameters and
material properties, which is particularly important when
dealing with the combined elements like TiAl, TiCu and
TiO2.

In this analysis, several critical properties of Titanium
were examined, including Band Gap, Young’s Modulus,

Density, Thermal Conductivity and Specific Heat. These
properties provide insights into how Titanium behaves
under different conditions, which is vital for designing
components that must perform reliably in demanding
environments.

As discussed in the manuscript, Titanium (Ti),
Aluminum (Al), Copper (Cu), Oxygen (O₂) and their
composite forms, including Ti-Al, Ti-Cu and TiO₂, were
selected for this study. These materials were chosen due
to their distinct thermal, mechanical and chemical
characteristics, which are essential for developing
accurate predictive models. Properties such as modulus
of elasticity, density, thermal conductivity and specific
heat were considered, as they play a fundamental role in
determining structural performance, heat transfer
efficiency and energy storage capacity. The selection of
these materials and properties aims to enhance the
reliability and accuracy of machine learning predictions
for biomaterial behavior across varying conditions.

This research addresses the challenge of dataset
collection in machine learning, particularly in material
science. To efficiently gather relevant data, a Python-
based web scraping tool was developed to search for
specific keywords and download journal articles. This
automated process streamlined the identification of
valuable research materials for data extraction.

Following article retrieval, the Plot Digitizer tool was
employed to extract precise material property data from
graphs and diagrams. This method ensured accurate
collection of key properties for Ti, Al, Cu and O₂ across
temperatures ranging from 298.15 to 498.15 K. Here is
the detailed explanation of data collection procedures.

Methods
One of the most challenging aspects of machine

learning is collecting datasets. The data sets can be
collected from different resources. In the realm of
material science research, the efficient identification and
retrieval of relevant academic articles is essential for
staying abreast of current developments and
advancements. To facilitate this process, automation
tools such as web scraping scripts can be employed. This
approach leverages programming techniques to
systematically search for and extract pertinent
information from online sources. The following code
snippet exemplifies a Python-based web scraping
solution designed to locate articles that contain specific
keywords of interest, thereby optimizing the literature
review process.

The Python script automates web scraping to locate
and retrieve research articles based on specific keywords.
It leverages the requests library to send HTTP GET
requests to a specified base_url, fetching the HTML
content of the target webpage. The script uses
BeautifulSoup to parse HTML, allowing easy navigation
and data extraction.
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It begins by defining a list of relevant keywords such
as 'nanomaterials', 'band gap' and 'density', which serve
as filters to identify articles of interest. The script then
searches the parsed HTML for all anchor (<a>) tags, as
these typically contain hyperlinks to individual articles
or research papers. To ensure proper navigation, relative
URLs found in the href attributes are converted into
absolute URLs using urljoin, ensuring all extracted links
are accessible.

The script performs a case-insensitive search within
the anchor tag text, checking whether any defined
keywords appear. If a match is found, the corresponding
article link is added to the matching_links list. To prevent
errors, the script includes response. raise_for_status (),
which ensures that HTTP response errors (e.g., 404 Not
Found) are detected and handled appropriately.

Finally, the script prints all URLs stored in
matching_links, providing users with a filtered list of
articles relevant to their research. This automation
streamlines the literature review process, eliminating the
need for manual searching and ensuring that relevant
materials are efficiently identified.

This script automates the search for academic articles
by filtering based on specific keywords. It first retrieves
and parses the HTML content from a target website,
extracts article links and checks these links for relevance
based on the provided keywords. The result is a list of
URLs pointing to articles that match the search criteria.
This method significantly enhances the efficiency of
gathering relevant research materials and ensures that
important articles are not overlooked.

In should be noted that the dataset was composed of
measurements taken at 50 different temperatures,
increasing incrementally by 4 K from 298.15 to 498.15
K.

In this research, data collection was systematically
conducted through a targeted web scraping approach to
identify and gather the most relevant articles and data
sources pertaining to the thermal and mechanical
properties of Ti-Al, Ti-Cu and Ti-O₂ composite
materials. A list of specific keywords was employed to
filter and collect publications highly relevant to the topic.
The data was compiled for a defined temperature range
of 298.15 to 498.15 K, covering crucial properties
required for machine learning model training and
prediction.

To ensure the completeness and consistency of the
dataset, values were extracted from diagrams within each
publication using Plot Digitizer toolbox. The use of web
scraping was essential, as many established online
databases were found to be unreliable for this research.
Challenges in these databases included missing values,
entries with negative temperature values, inconsistent
units and unstructured data, which compromised data

integrity. Additionally, most existing databases contained
limited data entries, often fewer than 20 rows, which did
not provide sufficient data for meaningful analysis and
machine learning application. To overcome these
limitations, plot digitizer software was used to capture
accurate data points from graphs in these sources,
allowing the extraction of coordinates that corresponded
to material properties at specified temperatures.

Once extracted, the data underwent a rigorous
validation process to ensure accuracy and consistency.
Cross-referencing was conducted with additional journal
articles to confirm the reliability of the extracted values
and only data that aligned across multiple sources was
included in the final dataset. After validation, the dataset
was organized and transferred into an Excel spreadsheet,
creating a well-structured dataframe for further analysis.
This meticulously curated and validated dataset served as
the foundation for building machine learning models,
enabling accurate and reliable prediction of material
properties across the temperature range studied.

Per extracted data for Titanium (Ti), Aluminum (Al)
and Copper (Cu) that are metallic elements with a band
gap of 0 eV, meaning they exhibit high electrical
conductivity. Titanium's Young’s modulus decreases
from 106.155 to 93.198 GPa as temperature increases,
indicating reduced stiffness due to thermal expansion. Its
density also declines from 4.42 to 4.15 g/cm³, while
thermal conductivity drops from 15.6 to 14.82 W/m.K
because of increased phonon scattering. Aluminum
follows a similar trend, with Young’s modulus reducing
from 68.18 to 55.51 GPa, density decreasing slightly
from 2.69 to 2.65 g/cm³ and thermal conductivity
remaining high (156.04 to 157.28 W/m.K) despite minor
reductions due to phonon interactions. Copper exhibits
greater stiffness initially, but its Young’s modulus
declines from 127.18 to 97.49 GPa with temperature. Its
density drops from 8.701 to 8.373 g/cm³, while thermal
conductivity decreases slightly from 390 to 385 W/m.K.
Oxygen (O₂), in contrast, behaves as a gas and has a
highly temperature-dependent density, decreasing from
0.00126 to 0.000173 g/cm³ due to molecular expansion.
Unlike metals, their thermal conductivity increases from
26.301 to 41.183 W/m.K with rising temperature,
improving heat transfer efficiency. The energy absorption
capacity of all materials declines with temperature,
impacting their ability to withstand mechanical stress.

Machine learning has revolutionized the way
researchers and engineers approach complex problems,
particularly in the field of material science. By
leveraging advanced algorithms, machine learning
models can uncover intricate patterns and relationships
within data that might not be evident through traditional
analysis methods. In this dissertation, we employ three
machine learning technique ANN, Random Forest and
Decision Tree algorithm to predict the properties of
materials based on a variety of input parameters, such as
temperature, composition and structural characteristics.
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ANNs are highly adaptable, capable of learning from
vast amounts of data and are known for their ability to
generalize well new, unseen data. Random Forest, on the
other hand, is an ensemble learning method that operates
by constructing multiple decision trees during training
and outputting the mode of the classes (classification) or
mean prediction (regression) of the individual trees. The
Decision Tree algorithm is a more interpretable model
that breaks down a dataset into smaller and smaller
subsets while at the same time developing an associated
decision tree incrementally. The result is a tree with
decision nodes and leaf nodes. While it may not always
perform as well as ensemble methods like Random
Forest, the simplicity and transparency of Decision Trees
make them a valuable tool for understanding the
decision-making process and the underlying data
structure.

Incorporating these machine learning models into the
prediction of material properties allows us to develop
accurate, reliable and interpretable models that can
significantly enhance our understanding of the complex
relationships governing material behavior. The
integration of these models into our research framework
represents a critical step towards more advanced and
efficient materials design and optimization.

ANN are a powerful tool in computational material
science for predicting complex material properties based
on input data. In the context of predicting the properties
of alloys and compounds such as TiAl, TiCu and TiO2,
ANNs offer the ability to model nonlinear relationships
between various physical and chemical parameters.

ANNs can be trained on experimental data to learn
the intricate relationships between input variables like
temperature, composition and processing conditions and
output properties such as band gaps, thermal
conductivity, density and other mechanical and electronic
properties.

ANNs have emerged as an invaluable tool for
predicting the temperature-dependent properties of
complex materials such as TiAl, TiCu and TiO2. The
inherent ability of ANNs to model nonlinear
relationships allows them to effectively capture the
intricate dependencies of material properties on
temperature, which are often too complex for traditional
methods to accurately represent. By leveraging a multi-
layered architecture, ANNs can process and learn from
large, multidimensional datasets, extracting subtle
patterns that influence properties like density, thermal
conductivity and band gap energy. This capability is
particularly crucial for materials, additionally, the
adaptability of ANNs to various data types enables
comprehensive analysis without the need for extensive
feature engineering.

The neural network model code was executed to
predict material properties based on input data. Various
steps were undertaken to ensure effective modeling. The

data included properties such as temperature, band gap,
Young's modules, density, thermal conductivity and
specific heat for aluminum and Titanium.

These properties were extracted from multiple sheets
within an Excel file stored at a specified path
(xlsx_path). The data from two sheets (material1_sheet
and material2_sheet) were combined to create a
comprehensive dataset (combined_data). Upon loading
the material data, a training dataset was prepared by
combining the properties of each material pair. The data
were scaled using StandardScaler to normalize them for
training. The dataset was split into training
(X_train_scaled, y_train_scaled) and testing
(X_test_scaled, y_test_scaled) sets using train_test_split
from sklearn.model_selection, facilitating model training
and evaluation.

Subsequently, a Multi-Layer Perceptron (MLP)
regressor model was employed for training the neural
network. The model comprised two hidden layers, each
with 50 neurons and was trained to over 1000 iterations.
A function was defined to predict material properties for
a given combination of materials. This function took
inputs for two materials, concatenated their properties,
scaled the combined data and predicted the scaled output
using the trained model. To approach this, the neural
network model was trained on the scaled training data
(X_train_scaled, y_train_scaled), learning to predict
material properties based on temperature variations.
Predictions were made for a user-input temperature
(temperature_input) and these scaled predictions were
inverse-transformed (scaler_y.inverse_transform) to
provide interpretable material property estimates.

The predicted values were then inverse transformed
to obtain the actual material properties. User inputs were
solicited for the materials of interest, following which
the function was invoked to predict their properties.
Finally, the predicted material properties were displayed,
encompassing temperature, band gap, Young's modulus,
density, energy absorption, thermal conductivity and
specific heat. This neural network-based approach
facilitates accurate predictions of material properties,
thereby offering valuable insights for various
engineering applications.

Random Forest is an ensemble learning method that
builds upon the foundation of decision trees, offering
significant improvements in predictive accuracy and
robustness. This method is particularly well-suited for
modeling complex datasets, such as those involving the
temperature-dependent properties of materials like TiAl,
TiCu and TiO2. In material science, where relationships
between variables can be highly nonlinear and
interactions between different material properties are
intricate, Random Forest provides a powerful approach
to prediction.

Random Forest constructs multiple decision trees
using bootstrapped subsets and random feature selection
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to reduce overfitting. It averages predictions for
regression or takes a majority vote for classification. The
provided code applies Random Forest regression to
predict material properties from two datasets, forecasting
combined material properties at a user-specified
temperature.

Initially, the necessary libraries—os, numpy, pandas
and components from sklearn—are imported. File paths
and names for the Excel file containing the material data
are defined.

For model training, the combined material properties
serve as the input features (X), while the target output (y)
includes both temperature and material properties. The
data is split into training and testing sets, with 80%
allocated for training and 20% for testing. This division
allows for the evaluation of the model’s performance on
unseen data.

The features and target variables are scaled using
StandardScaler to ensure they are on a comparable scale,
which is essential for effective model training. A
RandomForestRegressor with 100 decision trees is
trained on the scaled training data.

The trained model is then used to predict properties at
the specified temperature. The input data is scaled and
transformed according to the model’s requirements and
predictions are converted back to their original scale.

Finally, the predicted properties for the combined
material are displayed. If the predicted value for the
'Band Gap (eV)' is zero, it is excluded from the output, as
such values may not be meaningful in this context.

This implementation demonstrates the application of
Random Forest regression for predicting material
properties, emphasizing the significance of data
preparation, feature scaling and model evaluation in
predictive analytics.

Decision Tree regression is a powerful method used
for predicting continuous outcomes by splitting the data
into subsets based on the values of input features. This
method builds a model in the form of a tree structure,
where each node represents a decision based on a single
feature and branches represent possible outcomes of that
decision.

Decision Trees are particularly effective for capturing
complex relationships between features and target
variables, making them suitable for tasks where the
relationship is not linear or is influenced by multiple
factors. A Decision Tree regression model is
implemented to predict material properties using data
extracted from two distinct material sheets. The model
aims to forecast properties of a combined material at a
specified temperature.

Initially, the necessary libraries—os, numpy, pandas
and components from sklearn—are imported. os is
employed for file handling, while numpy and pandas

facilitate data manipulation. Tools from sklearn are
utilized for model training and scaling. Data from the
specified sheets is loaded into a dictionary. Temperature
data is extracted from the first material’s sheet to serve as
a reference for predictions.

The user is requested to input a specific temperature
in Kelvin. The code identifies the closest available
temperature in the dataset and retrieves the associated
properties. If the 'Band Gap (eV)' property at the
specified temperature is zero, it is noted and excluded
from model training. If the 'Band Gap (eV)' is non-zero,
the Decision Tree model is trained. The Decision Tree
Regressor is employed for modeling and the data is
divided into training and testing sets using an 80-20 split.
Feature and target variables are scaled using
StandardScaler to ensure uniformity in scale, which is
crucial for effective model performance. The Decision
Tree model is trained on the scaled training data.
Predictions are generated for the specified temperature
by scaling the input data and using the trained model to
forecast properties. The predictions are converted back to
their original scale through inverse transformation.
Finally, the predicted properties are displayed. The 'Band
Gap (eV)' is excluded from the output if its value is zero,
as it may not be relevant. If the 'Band Gap (eV)' has a
non-zero predicted value, it is displayed alongside other
material properties.

In this chapter, the methodologies for predicting
material properties of TiAl, TiCu and TiO2 have been
thoroughly explored using three distinct machine
learning approaches: Artificial Neural Networks (ANN),
Random Forest and Decision Tree regression models.
Each method offers unique strengths and is suited to
different aspects of predictive modeling.

The ANN methodology leverages complex network
architectures to model nonlinear relationships and
capture intricate patterns within the data. Random Forest,
an ensemble learning method, was employed to improve
prediction accuracy and robustness by aggregating
multiple decision trees. This approach mitigates
overfitting issues commonly associated with single
decision trees and provides a more stable prediction by
averaging the outputs of numerous trees.

The Decision Tree model, on the other hand, offers a
transparent and interpretable approach to regression. By
splitting the data into subsets based on feature values, it
provides a clear structure for understanding how
different features influence predictions. While less robust
to overfitting compared to Random Forest, the Decision
Tree model can offer valuable insights into the
relationships between features and predicted properties.

The development of advanced materials with tailored
properties is a critical focus in modern materials science
and engineering. Composite materials and alloys play a
vital role in various industries, including aerospace,
automotive and biomedical applications, due to their
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(1)

ability to combine desirable properties from different
elements. By carefully selecting and combining
constituent materials, engineers can design materials
with enhanced mechanical strength, thermal stability and
electrical conductivity. However, accurately predicting
the properties of these materials before fabrication
remains a challenge, making theoretical estimation
methods essential in the design and optimization process.

One of the fundamental approaches to predicting the
properties of these materials is the Rule of Mixtures,
which provides an estimation based on the properties and
proportions of the individual components. This method is
widely used in material science to approximate
characteristics such as density, thermal conductivity,
specific heat and Young’s modulus of composite
materials.

Composite materials are engineered by combining
two or more distinct constituents to achieve enhanced
mechanical, thermal, or electrical properties. One of the
fundamental approaches to predicting the properties of
these materials is the Rule of Mixtures, which provides
an estimation based on the properties and proportions of
the individual components. This method is widely used
in material science to approximate characteristics such as
density, thermal conductivity, specific heat and Young’s
modulus of composite materials.

The Rule of Mixtures offers a first-order
approximation for these properties by considering the
volume fractions and intrinsic properties of the
individual components. By applying this rule,
researchers and engineers can predict material behavior
before conducting experimental tests, providing an
essential foundation for designing new materials and
validating computational models, including machine
learning-based predictions. To apply the Rule of
Mixtures for predicting the properties of TiAl and TiCu,
mathematical formulations are required. The key
equations account for the volume fractions of Titanium
and aluminum (or copper) and their respective material
properties. In the following section, the mathematical
expressions used to estimate the density, thermal
conductivity and Young's modulus of TiAl and TiCu
alloys will be presented. These equations form the basis
for comparing theoretical predictions with machine
learning-based estimations. For instance, the modulus of
elasticity (E) for a composite material, as TiAl, can be
estimated using the linear Rule of Mixtures using Eq.
(1):

In this equation,  Young’s modulus of the
TiAl alloy,  Young's modulus of Titanium, 
Volume fraction of Titanium,  Young’s modulus of
aluminum,  Volume fraction of aluminum are
presented. The TiAl alloy is a two-phase intermetallic

compound consisting of Titanium (Ti) and aluminum
(Al) in a 1:1 atomic ratio. When estimating its modulus
of elasticity (Young's modulus, E) using the Rule of
Mixtures, it's considered that each element contributes
equally (50%) to the total modulus. This consideration is
based on the idea that the overall stiffness of the alloy is
influenced proportionally by the stiffness of its
constituent elements. Since Ti and Al are present in equal
amounts in the TiAl alloy, their contributions to elasticity
are equally weighted. Therefore, the modulus of
elasticity for TiAl is  (Wang et al.,
2018).

Similarly, the density of TiAl alloy can be estimated
using each element (Ti and Al) contributes 50% to the
overall density. This estimation is based on the volume
fraction of each element in the alloy. Therefore,
calculating the TiAl properties by the rule of mixture
method, is considered (Lopis et al.,
2010). The thermal conductivity of TiAl alloy is
calculated using  (Zhang et al., 2001).
The specific heat of TiAl alloy is calculated using

 (Song et al., 2019).

Moreover, the modulus of elasticity (E) for composite
materials like TiCu can be estimated using the linear
Rule of Mixtures per 
(Uścinowicz, 2022).The density of TiCu ( ) is
calculated by the rule of mixture method, 

is considered (Akbarpour et al., 2024; Yang et al.,
2017). For the TiCu alloy, with a composition of 95.5%
titanium (Ti) and 4.5% copper (Cu), the thermal
conductivity can be estimated using 

 (Nagarjuna, 2004). The specific heat of TiCu
alloy is calculated using  is considered
(Xu et al., 2022).

Results and Discussion
In this chapter, the results of the evaluation of TiAl,

TiCu and TiO₂ under varying temperature conditions,
ranging from 298 to 498 Kelvin, are presented and
discussed. The focus is on predicting key material
properties, including Band Gap (eV), Young's Modulus
(GPa), Density (g/cm³), Energy Absorption (KJ/m³),
Thermal Conductivity (W/m·K) and Specific Heat
(J/g°C), using three machine learning methodologies:
ANN, Random Forest and Decision Tree models. The
chapter begins with a discussion of the data obtained
from the web scraper and its validation process, which
serves as the foundation for the subsequent analysis.

The purpose of applying these distinct models is to
understand the predictive performance and accuracy of
each method in capturing the complex, temperature-
dependent behavior of these materials. The findings
discussed in this chapter are critical for advancing the
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understanding of how temperature influences the
mechanical and thermal properties of these materials and
how machine learning can be leveraged for more
accurate predictions.

In this section, the results of web scraper data are
presented. As indicated, the data from articles were
extracted using Plot Digitizer and exported to the excel
file. After extracting data, the validation process is
conducted and data is validated with other articles.

Fig. 1: Comparison of young modulus between web scraper
and berkeley dataset

Fig. 2: Comparison of density between web scraper and
berkeley dataset

Fig. 3: Comparison of thermal conductivity between web
scraper and berkeley dataset

Fig. 4: Comparison of specific heat between web scraper and
berkeley dataset

Figures (1-4) show the validation results for young’s
modulus, density, thermal conductivity and specific heat,
in order. In Figure (1), the results show that the data
obtained from Berkley is 2.77% more than webs scraper
under 298.15 Kelvin and this difference for 334.15
Kelvin is 3.01. In Figure (2), the density of web scraper
and Berkley data set is represented for 298.15 and 334.15
Kelvin. The results show that 2.10 and 2.85 percent for
Berkeley and Web Scraper, respectively.

Figure (3) shows the thermal conductivity data in
which the figure indicates 33.65 and 32. 61% for 298.15
and 334.15 K, respectively. Finally, the validation results
for the specific heat in Figure (4) show 3.33 and -0.75%
for 298.15 and 334.15 K. The validation results
demonstrate that the data obtained through the web
scraper is accurate, with small discrepancies that fall
within acceptable limits. Therefore, web scraper data can
be considered reliable and suitable for further analysis
and use.

To ensure the reliability and accuracy of the
predictive models developed in this study, a verification
process is undertaken by comparing the predicted values
to the actual material properties. This comparison serves
as a critical step in validating the effectiveness of the
ANN, Random Forest and Decision Tree models used for
predicting temperature-dependent behavior.

In this section, the verification of the ANN model for
predicting the properties of TiAl, TiCu and TiO2 is
presented. The accuracy and reliability of the model are
assessed by comparing the predicted values with the
actual experimental data for each material. This
comparison helps in understanding the model's
effectiveness in capturing the intricate relationships
between the material properties across different
temperatures. The materials, TiAl, TiCu and TiO2, are
evaluated under varying conditions and the performance
of the ANN is analyzed to ensure its robustness in
predicting the critical properties of these materials.

In Figure (5), the comparison between actual and
predicted values of key material properties, including
band gap, density and specific heat, for TiAl, is
illustrated using an ANN predictive model.

Fig. 5: Comparison of actual and predicted band gap (eV),
density (g/cm3), specific heat (J/g.C), young module
(GPa) and thermal conductivity (W/m.K) values in TiAl
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The graph provided in Figure (5) highlights the
differences between actual and predicted values for
various TiAl material properties, offering important
insights into the model's performance.

The ANN model demonstrated strong predictive
performance for TiAl properties, with minimal
discrepancies across various parameters. The predicted
band gap deviated by only 0.005%, while density
showed a close match with a 0.85% difference. Specific
heat exhibited a slightly larger deviation of 54.40%,
likely due to microstructural variations. Young's modulus
prediction was highly accurate, differing by just 0.23%.
The model achieved an impressive R² score of 0.980874,
reflecting its ability to explain 98.09% of the data's
variance. Thermal conductivity predictions were also
reliable, with a 6.31% deviation. Overall, the ANN
model effectively captured TiAl properties with minor
deviations that remain within acceptable limits for
engineering applications.

ANN is also used to predict material properties of
TiCu at approximately 334.15 K, focusing on parameters
such as band gap, density and specific heat. Figure (6)
illustrates the comparison between actual and predicted
values, demonstrating the ANN model’s effectiveness in
estimating these critical properties and its relevance for
TiCu’s thermal behavior and industrial applications.

Fig. 6: Comparison of actual and predicted band gap (eV) K,
density (g/cm3) K, specific heat (J/g.C), young module
(GPa) K and thermal conductivity (W/m.K) K values in
TiCu

Figure (6) presents a comparison between the actual
and predicted values of various material properties for
the TiCu alloy, offering a comprehensive view of the
ANN model's performance in predicting these properties.
The ANN model exhibited strong predictive performance
for TiCu alloy properties, with minimal discrepancies
across key parameters. The predicted band gap slightly
overestimated the actual value by just 0.0030%,
indicating high accuracy. Density predictions closely
matched the actual values, with a minor difference of
3.73%, demonstrating the model's reliability in capturing
structural characteristics. Specific heat showed a small
underestimation of 2.60%, likely influenced by
experimental variations or temperature-dependent
effects. Young's modulus prediction was highly precise,

differing by only 0.40%, while thermal conductivity
displayed excellent accuracy with a 3.80% deviation.
The model achieved an impressive R² score of 0.997607,
explaining 99.76% of the data's variance, reinforcing its
strong predictive capability and reliability.

TiO2 is a widely studied material due to its unique
optical and electronic properties. At approximately
334.15 K, understanding the material properties of TiO2
such as band gap, density and specific heat is crucial for
assessing its thermal behavior and performance in
diverse environments. ANN has been utilized to
accurately predict these properties. Figure (7) illustrates
the comparison between actual and predicted values for
the material properties of TiO2, with the data represented
on a log scale. The band gap shows a slight
overestimation in the predicted value (3.112 eV)
compared to the actual value (2.823 eV), indicating a
10.23% difference. This discrepancy may suggest a need
for further refinement in the model, possibly due to the
complex interactions between temperature and the band
gap in TiO2. Despite this, the predicted band gap still
falls within a reasonable range, reflecting the model's
overall capability in capturing the key electronic
properties of TiO2.

Fig. 7: Comparison of actual and predicted band gap (eV) K,
density (g/cm3) K and specific heat (J/g.C), in TiO 2

The model demonstrates strong predictive accuracy
for TiO2 properties, with minor deviations. Density is
slightly overestimated by 3.06%, likely due to
microstructural complexities. Specific heat shows the
largest deviation at 9.65%, suggesting sensitivity to
experimental conditions. The Mean Squared Error
(MSE) of 0.0009 indicates minimal prediction error,
reflecting high precision. While the model performs well,
further refinements could enhance accuracy for
temperature-dependent properties. Additionally, a
Random Forest model was applied to predict TiAl
properties at approximately 334.15 K, highlighting its
effectiveness in capturing complex patterns for
optimizing material applications.

In this section, the performance of the Random Forest
model for predicting the material properties of TiAl is
evaluated. Figure (8) presents the comparison between
actual and predicted values across several critical
properties, with the data analyzed to assess the model's
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accuracy and reliability. The Random Forest model
demonstrated strong performance in predicting the
material properties of TiAl. For the band gap, the model's
prediction of 0 eV matched the actual value, indicating
accurate capture of the material's electronic
characteristics. The density prediction (3.529 g/cm³) was
almost identical to the actual value (3.528 g/cm³),
showing a minimal 0.017% discrepancy. The specific
heat prediction (0.730 J/g°C) was 54% higher than the
actual value (0.4723 J/g°C), suggesting some room for
improvement in estimating this property. The Young's
modulus prediction (84.86 GPa) was nearly identical to
the actual value (84.81 GPa), with a negligible 0.02%
difference, demonstrating high precision in mechanical
property estimation. The thermal conductivity prediction
(11.18 W/m·K) showed a 6% deviation, reflecting a
strong alignment with the actual value.

The model's R² score of 0.998168 indicates excellent
accuracy, explaining almost all the variance in the data.
This score reflects the model's reliability and consistency
in making predictions, underscoring its effectiveness for
predicting TiAl’s material properties with minimal
deviations.

Fig. 8: Comparison of actual and predicted band gap (eV),
density (g/cm3), specific heat (J/g.C), young module
(GPa) and thermal conductivity (W/m.K) K values in
TiAl

Figure (9) presents a detailed comparison between
the actual and predicted values for various material
properties of the TiCu alloy of the ANN model. The
Random Forest model showed strong performance in
predicting the material properties of the TiCu alloy. For
the band gap, the model predicted 0.0012 eV, slightly
deviating from the actual value of 0 eV, indicating a
limitation in capturing the band gap. The density
prediction of 6.507 g/cm³ was 3.5% higher than the
actual value of 6.274 g/cm³, suggesting potential factors
not fully captured by the model. The specific heat
prediction (0.461 J/g°C) closely matched the actual value
(0.451 J/g°C), showing high accuracy in predicting
thermal properties. The model's prediction for Young's
modulus (112.84 GPa) was very close to the actual value
(112.68 GPa), with only a 0.2% difference, reflecting
excellent accuracy in mechanical stiffness estimation.
Thermal conductivity was predicted at 53.86 W/m·K,

closely aligning with the actual value (51.97 W/m·K),
with only a small difference of 1.89 W/m·K.

The model achieved an R² score of 0.997764,
indicating exceptional accuracy, with nearly 99.8% of the
variance explained. This high score demonstrates the
model's reliability and robustness in predicting the
material properties of TiCu, with minimal discrepancies
between predicted and actual values.

Fig. 9: Comparison of actual and predicted band gap (eV),
density (g/cm3), specific heat (J/g.C), young module
(GPa) and thermal conductivity (W/m.K) values in TiCu

Accurate prediction of material properties is crucial
for scientific research and industrial applications. This
study utilizes the Random Forest model to estimate
TiO2's properties at various temperatures, specifically
around 334.15 K.

Figure (10) presents a comparison between the actual
and predicted values of various material properties for
TiO2, offering a detailed view of the Random Forest
model's performance. Analyzing the discrepancies
highlighted in this graph provides valuable insights into
both the strengths and areas for improvement of the
model.

Fig. 10: Comparison of actual and predicted band gap (eV) K,
density (g/cm3) and specific heat (J/g.C), in TiO 2

The Random Forest model predicts a band gap of
3.111964 eV, which is 10.26% higher than the actual
2.8227 eV, indicating an overestimation that may be
improved by incorporating more electronic structure
data. The predicted density of 1.0876 g/cm³ is 3.11%
higher than the actual value, suggesting reasonable
accuracy but room for refinement. Specific heat is
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underestimated by 9.68%, likely due to temperature-
dependent or microstructural effects not fully captured
by the model. The Mean Squared Error (MSE) of 0.0054
reflects a small prediction error, indicating high model
reliability. Further optimizations could enhance
prediction accuracy.

In this analysis, a Decision Tree model was utilized
to estimate properties of Titanium Aluminide (TiAl) at
approximately 334.15 K. The model's effectiveness was
evaluated by comparing its predictions with actual
measurements for properties such as band gap, density,
specific heat, energy absorption, Young's modulus and
thermal conductivity. Figure (11) presents this
comparison, showcasing how well the Random Forest
model predicts these key properties. This assessment
highlights the model's precision and reliability in
estimating important parameters, providing valuable
insights into TiAl's thermal behavior and its practical
applications in various fields.

Figure (11) presents a comparison between the actual
and predicted values of various material properties for
TiAl, showcasing the performance of the Decision Tree
model. This comparison provides insights into the
model’s accuracy and highlights areas where it excels or
may require improvement.

Fig. 11: Comparison of actual and predicted band gaps (eV),
density (g/cm3), specific heat (J/g.C), young module
(GPa) and thermal conductivity (W/m.K) values in TiAl

The Random Forest model demonstrates strong
performance in predicting TiAl material properties. The
predicted density (3.528 g/cm³) is very close to the actual
value (3.528597 g/cm³), with a small discrepancy of
0.008312 g/cm³. The specific heat prediction (0.731
J/g°C) is about 50% higher than the actual value (0.472
J/g°C), indicating a potential area for improvement. The
predicted Young's modulus (84.81 GPa) is nearly
identical to the actual value (84.811949 GPa), with a
minor discrepancy of 0.137 GPa. The predicted thermal
conductivity (11.192 W/m·K) slightly deviates from the
actual value (11.94 W/m·K), with a 6.26% difference.

The model’s R² score of 0.993841 indicates it
accounts for 99.38% of the variance, showing high
predictive accuracy and strong alignment with actual
values. While the model performs well in predicting

density, Young's modulus and thermal conductivity, there
are discrepancies in specific heat and band gap,
highlighting areas for potential refinement.

Fig. 12: Comparison of actual and predicted band gap (eV),
density (g/cm3), specific heat (J/g.C), young module
(GPa) and thermal conductivity (W/m.K) values in TiCu

Figure (12) presents this comparison, showcasing
how well the Random Forest model predicts these key
properties. Figure (12) presents a comparison between
the actual compares the actual and predicted values of
TiCu alloy properties, revealing the Decision Tree
model's strong performance with some minor
discrepancies.

The Decision Tree model shows strong performance
in predicting TiCu material properties. The predicted
density (6.506 g/cm³) is slightly higher than the actual
value (6.274 g/cm³) by about 3.7%, suggesting a need for
refinement to better capture factors like alloy
composition. The specific heat prediction (0.461 J/g°C)
is marginally higher than the actual value (0.451 J/g°C),
with a small discrepancy of about 2%. The predicted
Young's modulus (112.76 GPa) is very close to the actual
value (112.68 GPa), with a minimal difference of 0.08
GPa, demonstrating high accuracy in stiffness prediction.
The predicted thermal conductivity (53.98 W/m·K) is
slightly higher than the actual value (51.97 W/m·K) by
about 2.1 W/m·K, reflecting the model's strong
capability in predicting heat conduction properties.

The model’s R² score of 0.992873 indicates that
99.29% of the variance in the observed values is
explained, highlighting the model's high accuracy and
reliability in capturing the data's patterns. Overall, the
Decision Tree model provides very reliable predictions,
with minimal discrepancies between predicted and actual
values.

Evaluating the material properties of TiO2, including
band gaps, density and specific heat, at approximately
334.15 K is essential for understanding its thermal
behavior and performance under various conditions. In
this context, Decision Tree models have been employed
to predict these properties with a focus on their accuracy
and reliability.

Figure (13) compares the actual and predicted values
for TiO2 material properties, revealing some
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discrepancies. The predicted band gap is 3.113 eV, about
10.23% higher than the actual value of 2.823 eV,
suggesting that the Decision Tree model captures the
trend but may not fully account for complex interactions
affecting the band gap. For density, the model predicts
1.088 g/cm³, slightly overestimating the actual value of
1.055 g/cm³ by 3.14%. The specific heat prediction of
0.6840 J/g°C is 9.68% lower than the actual 0.7584
J/g°C, indicating an underestimation. Despite a low
Mean Squared Error (MSE) of 0.007350, these
discrepancies highlight the need for model refinement,
especially for band gaps and specific heat predictions, to
improve accuracy for TiO2 in practical applications.

Fig. 13: Comparison of actual and predicted band gap (eV) K,
density (g/cm3) K and specific

Model Development

In this section, the predicted results of our model
development efforts are presented, concentrating on the
material properties of Titanium Aluminide (TiAl),
Titanium Copper (TiCu) and Titanium Dioxide (TiO2).
The analysis employs three modeling approaches:
Artificial Neural Networks (ANN), Random Forest and
Decision Tree algorithms. These models, after
undergoing rigorous verification as detailed in the model
verification section, are used to predict key material
properties.

Figure (14) illustrates the variation of material
properties for TiAl Young's Modulus, Density, Thermal
Conductivity and Specific Heat—across a range of
temperatures. The ANN model predicts material
properties of TiAl across a temperature range (298.15-
498.15 K). Young's Modulus decreases from 87.195 GPa
at 298.15-74.9 GPa at 498.15 K, showing reduced
stiffness at higher temperatures, which could impact
applications requiring rigidity. Density also decreases
slightly from 3.55-3.40 g/cm³ due to thermal expansion,
affecting the strength-to-weight ratio. Thermal
conductivity remains stable between 10.72 W/m·K and
13.34 W/m·K, indicating little change in heat conduction
properties. Specific heat increases from 0.709-0.843
J/g°C, reflecting a greater capacity to store thermal
energy as temperature rises.

When comparing actual and predicted values, the
model performs well at lower temperatures. At 298.15 K,

the predicted Young’s Modulus (87.2 GPa) closely
matches the actual value (88.2 GPa), but at 498.15 K, the
predicted value (74.91 GPa) underestimates the actual
value (81 GPa) by 6.09 GPa. For density, the predicted
value (3.55658 g/cm³) slightly underestimates the actual
density (3.622 g/cm³) at 298.15 K. Thermal conductivity
is slightly underestimated at lower temperatures
(10.7239 W/m·K vs 11.4423 W/m·K) but also slightly
underperforms at higher temperatures. Specific heat is
overestimated at both ends of the temperature range, with
significant overestimation at the lower and higher
temperatures, suggesting a need for model refinement in
predicting specific heat.

Overall, while the ANN model accurately predicts
some properties of TiAl, it shows discrepancies in
specific heat and higher temperature predictions,
indicating areas for improvement.

Fig. 14: ANN Predictions of TiAl Properties with temperature
variation

Figure (15) illustrates the predicted variations of
material properties for TiCu across a temperature range
from 298.15-498.15 K. The ANN model predicts
material properties of TiCu across the temperature range
(298.15-498.15 K). Young's Modulus decreases from
116.74 GPa at 298.15-96.13 GPa at 498.15 K, indicating
that TiCu becomes more flexible and less stiff at higher
temperatures. This reduction in rigidity may affect the
material's structural performance in temperature-
sensitive applications. Density slightly decreases from
6.55-6.273 g/cm³ due to thermal expansion, impacting
the material's strength-to-weight ratio. Thermal
conductivity remains stable, fluctuating between 49.13
W/m·K and 76.28 W/m·K, indicating consistent heat
conduction properties across temperatures. Specific heat
increases from 0.447-0.528 J/g°C, reflecting a growing
capacity to store thermal energy as the temperature rises.

The comparison between the actual and predicted
values reveals some discrepancies. For Young's Modulus,
the model slightly overestimates values at lower
temperatures (116.74 GPa vs. 112.9 GPa at 298.15 K)
but underestimates at higher temperatures (96.13 GPa vs.
111.76 GPa at 498.15 K), showing a significant
underprediction at 498.15 K. For density, the model
slightly overestimates the value at 298.15 K (6.5595
g/cm³ vs. 6.318 g/cm³) and underestimates it at 500 K
(6.2737 g/cm³ vs. 6.1303 g/cm³). The model performs
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very well for thermal conductivity, with exact predictions
at 298.15 K (49.1304 W/m·K) and a slight
overestimation at 500 K (76.285 W/m·K vs. 69.27
W/m·K). For specific heat, the model accurately predicts
values at lower temperatures (0.4475 J/g°C vs. 0.4475
J/g°C at 298.15 K) but slightly overestimates values at
higher temperatures (0.5280 J/g°C vs. 0.5129 J/g°C at
500 K).

Overall, the ANN model performs well for TiCu,
especially in predicting thermal conductivity and specific
heat, with minor overestimation of specific heat and
discrepancies in Young's Modulus and density at higher
temperatures.

Fig. 15: ANN predictions of TiCu properties with temperature
variation

For the analysis of TiO2, the primary focus is on the
band gap, density and specific heat. These fundamental
properties are crucial for evaluating TiO2's performance
across various applications. The band gap provides
insight into TiO2's electronic properties and its suitability
for optical and electronic applications. Density is
essential for understanding the material’s mass-to-
volume ratio, which affects its structural and mechanical
performance.

Fig. 16: ANN predictions of TiO 2 band gap with temperature
variation

Figure (16) illustrates the variation in the predicted
band gap of Titanium Dioxide (TiO₂) across a
temperature range from 298.15-498.15 K. The data
shows a gradual increase in the band gap, starting at
2.7996 eV at 298.15 K and reaching 2.9338 eV at 498.15
K.

This trend indicates that as the temperature rises,
TiO₂'s band gap increases steadily. The observed

increase in band gap with temperature suggests that
TiO₂’s electronic band structure becomes more favorable
for electronic transitions at higher temperatures. This
behavior implies that TiO₂ exhibits greater resistance to
electronic excitations as temperature increases. An R2
score of 0.9993 means that approximately 99.93% of the
variance in the predicted band gap values is explained by
the ANN model. This suggests that the model captures
nearly all of the variability in the data, leaving only
0.07% of the variance unexplained.

In practical terms, this rising band gap implies that
TiO2 could exhibit reduced electrical conductivity and
altered optical properties at elevated temperatures. This
characteristic is beneficial for applications requiring
high-temperature stability and performance, as it
indicates TiO2's ability to maintain its electronic and
optical properties under thermal stress.

Fig. 17: ANN predictions of TiO2 parameters with temperature
variation

The ANN-predicted data for TiO2 across different
temperatures is illustrated in Fig. (17). As the
temperature increases, the density of TiO2 decreases
significantly, from 1.7677 g/cm³ at 298.15-1.6781 g/cm³
at 498.15 K. This reduction in density reflects the
material's thermal expansion, where the increase in
atomic vibrations at higher temperatures leads to a lattice
expansion, thereby reducing density. However, the
occurrence of negative density values in the predictions
indicates a limitation in the ANN model. Specifically, the
model's inability to predict physical properties accurately
beyond a certain range or its insufficient training data
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may result in unphysical values such as negative
densities. These negative values suggest that the model
has extrapolated beyond its training range, where it
might not perform reliably.

In contrast, the specific heat of TiO2 increases from
0.6693 J/g.C at 298.15 K to 0.7511 J/g.C at 498.15 K.
This trend indicates that TiO2’s capacity to absorb and
store thermal energy grows with temperature. The rising
specific heat suggests that more energy is required to
raise the temperature of TiO2 as it becomes hotter. This
behavior could be beneficial in applications where the
material is subjected to temperature fluctuations or used
for thermal energy storage.

This section details the application of the Random
Forest model for predicting the material properties of
TiAl, TiCu and TiO2. The Random Forest approach
enhances prediction accuracy by aggregating multiple
decision trees, thus providing robust estimates and
capturing complex interactions within the data.

Fig. 18: Random forest predictions of TiAl properties with
temperature variation

Figure (18) demonstrates the Random Forest
predictions of TiAl properties as functions of
temperature variation. The Random Forest model for
TiAl predicts material properties across a temperature
range from 298.15-498.15 K. Young's Modulus decreases
steadily from 87.013 GPa at 301.15-74.47 GPa at 498.15
K, reflecting the material's reduced rigidity at higher
temperatures. Density also decreases from 3.55 g/cm³ to
3.40 g/cm³, which is attributed to thermal expansion.
Thermal conductivity increases slightly, from 10.712
W/m.K to 13.44 W/m.K, indicating stable heat
conduction. Specific heat increases from 0.708 J/g°C to
0.846 J/g°C, reflecting a greater capacity for thermal
energy storage at higher temperatures.

The model's predictions are generally accurate with
small discrepancies. For Young's Modulus, the predicted
values are close but slightly underestimated at lower
temperatures (87.01 GPa vs. 88.2 GPa at 298.15 K) and
slightly overestimated at higher temperatures (75.15 GPa
vs. 74.474 GPa at 498.15 K). The predicted density
values are close to actual values, with a small
underestimation at 298.15 K (3.5555 g/cm³ vs. 3.62243
g/cm³) and a nearly perfect match at 498.15 K (3.4017
g/cm³ vs. 3.401683 g/cm³). For thermal conductivity, the
model slightly underestimates values at lower
temperatures but matches perfectly at higher
temperatures (13.4399 W/m.K). Specific heat predictions
show a large overestimation at 298.15 K (0.7081 J/g°C
vs. 0.437559 J/g°C) but a perfect match at 498.15 K
(0.8465 J/g°C). The model performs better at higher
temperatures, accurately predicting the trends in thermal
conductivity and specific heat.

Figure (19) illustrates the Random Forest model's
predictions for TiCu properties across a range of
temperatures. This figure provides insights into how key
material properties Young's Modulus, Density, Thermal
Conductivity and Specific Heat vary with temperature.

The Random Forest model for TiCu shows that
Young's Modulus decreases with increasing temperature,
from 116.41 GPa at 301.15 K to 95.54 GPa at 498.15 K.
This decrease reflects the material's reduced stiffness due
to thermal expansion. Similarly, the density decreases
from 6.55 g/cm³ at 298.15 K to 6.265 g/cm³ at 498.15 K,
which is also attributed to thermal expansion. Thermal
conductivity slightly increases from 48.42 W/m.K to
77.163 W/m.K, indicating stable heat conduction
properties with minor enhancement. Specific heat
increases from 0.447 J/g°C to 0.532 J/g°C, suggesting
that TiCu requires more energy for temperature increases
as the temperature rises.

In terms of predictions, the model performs
reasonably well but with slight discrepancies. For
Young's Modulus, the predicted values closely match the
actual values, with a small underestimation at 498.15 K
(95.73 GPa vs. 95.545 GPa). The predicted density
values are slightly higher than actual values, with a
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difference of 0.2393 g/cm³ at 298.15 K (predicted 6.5573
g/cm³ vs. actual 6.318 g/cm³) but still follow the correct
downward trend. For thermal conductivity, the model
slightly overestimates the values, with a discrepancy of
0.4 W/m·K at 298.15 K and a more significant
overestimation at 498.15 K (77.1636 W/m·K vs. 69.27
W/m·K). Similarly, the specific heat predictions slightly
overestimate the values, with a difference of 0.0085
J/g°C at 298.15 K and a slightly larger difference of
0.0197 J/g°C at 498.15 K. Despite these small
discrepancies, the model captures the general trends of
the material properties effectively.

Fig. 19: Random forest predictions of TiCu properties with
temperature variation

Figure (20) illustrates the variation in the predicted
band gap of Titanium Dioxide (TiO₂) over a temperature

range from 298.15 to 498.15 K. The data shows a
gradual increase in the band gap, starting at 2.8006 eV at
298.15 K and reaching 2.9335 eV at 498.15 K. The trend
indicates a steady rise in the band gap as temperature
increases. For example, at 302.15 K, the band gap is 2.80
eV and it continues to increase, reaching 2.83 eV at
350.15 K and 2.93 eV at 498.15 K. The Random Forest
model achieved an R2 score of 0.9994, indicating an
exceptional fit with 99.94% of the variance in band gap
values explained by the model. This high score
demonstrates the model's robust predictive accuracy and
strong performance on the given dataset. In Figure (20)
the observation suggests that TiO₂'s electronic band
structure becomes more favorable for electronic
transitions at higher temperatures. The increasing band
gap with temperature indicates that TiO₂ becomes more
resistant to electronic excitations as the temperature
rises. This effect is likely due to enhanced lattice
vibrations and thermal expansion, which impact the
electronic band structure and contribute to the observed
increase in the band gap.

Figure (21) presents the predicted properties of TiO₂,
specifically density and specific heat, across a
temperature range from 298.15 to 498.15 K using the
Random Forest method. This figure provides crucial
insights into how these properties vary with temperature,
which is essential for understanding the thermal behavior
of TiO₂.

Fig. 20: Random forest predictions of TiO 2

In Figure (21) the predicted density of TiO₂ shows a
marked decrease as the temperature increases. At 298.15
K, the density is 1.654 g/cm³. As the temperature rises,
the density decreases significantly, reaching a near-zero
value of 0.00001 g/cm³ at 498.15 K. This trend suggests
that TiO₂ undergoes considerable thermal expansion as
the temperature increases. The reduction in density with
rising temperature is a common physical phenomenon
where the material’s lattice structure expands due to
increased atomic vibrations and thermal energy. This
behavior indicates that at higher temperatures, TiO₂'s
atomic or molecular arrangement becomes more
dispersed, leading to a lower density.
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In contrast, the specific heat of TiO₂ exhibits an
increasing trend with temperature. Starting at 0.671
J/g·C at 298.15 K, the specific heat rises steadily to
0.748 J/g·C by 498.15 K. This increase in specific heat
with temperature signifies that TiO₂ requires more heat
energy to raise its temperature as the temperature
increases. This behavior is indicative of heightened
phonon activity, which reflects the material’s increased
capacity to absorb thermal energy at elevated
temperatures. The rising specific heat suggests that
TiO₂'s thermal management properties improve with
temperature, allowing it to absorb and store more heat
energy.

The data presented in this figure highlights the
significant thermal expansion of TiO₂ and its increasing
heat capacity with temperature. These properties are
critical for applications where TiO₂ is exposed to varying
thermal conditions, such as in catalysts, pigments and
electronic devices. The observed trends in density and
specific heat emphasize the importance of considering
thermal effects in the design and application of TiO₂-
based materials. It is essential to validate these predicted
values with experimental data to ensure their physical
accuracy and relevance in practical applications.

Fig. 21: Random forest predictions of TiO2
In this section, the application of the results from the

Decision Tree were compared with actual values to
assess the model's accuracy and reliability in predicting
the behavior of materials like TiAl, TiCu and TiO2.

The Decision Tree model's output for Figure (22)
includes predictions for various material properties

across a temperature range from 298.15 to 498.15 K. The
Decision Tree model for TiAl shows that as temperature
increases, Young's Modulus decreases from 87.16 GPa at
298.15-74.35 GPa at 498.15 K, indicating reduced
stiffness at higher temperatures, which aligns with
typical material behavior. Density also decreases slightly
from 3.55 g/cm³ at 298.15 K to 3.40 g/cm³ at 498.15 K
due to thermal expansion. Thermal conductivity
increases slightly from 10.679-13.46 W/m·K, suggesting
a mild improvement in heat conduction with
temperature. Specific heat increases from 0.706 J/g·C to
0.847 J/g·C, which is expected as the material's heat
capacity rises with temperature.

Fig. 22: Decision tree predictions of TiAl properties with
temperature variation

In terms of model performance, the Decision Tree
predictions show some discrepancies. At 298 K, the
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predicted Young's Modulus is 87.17 GPa (slightly
underestimating the actual value of 88.2 GPa) and at 500
K, the predicted value is 74.35 GPa (underestimating the
actual value of 81 GPa). For density, the model
underestimates values, with a discrepancy of -0.0093
g/cm³ at 298 K and -0.1912 g/cm³ at 500 K. The thermal
conductivity is also slightly underpredicted, with
discrepancies of -0.2872 W/m·K at 296.8 K and -0.8303
W/m·K at 502.88 K. For specific heat, the model slightly
underpredicts both at 296.8 K and 498.15 K.

The model’s R² score is 0.8408, suggesting that
84.08% of the variance in material properties can be
explained by the model, indicating a good fit. However,
further adjustments may be needed to refine the
predictions, particularly for the band gap and thermal
conductivity, which could indicate issues with data
fitting or preprocessing. Overall, the Decision Tree
model captures the expected trends for Young's modulus,
density and specific heat, but further improvements are
necessary to fully align with the temperature
dependencies of these properties.

The Decision Tree model's output for Figure (23)
provides predictions for various material properties
across a temperature range from 298.15 to 498.15 K. The
Decision Tree model for TiCu shows that as temperature
increases, Young's modulus decreases from 116.66 GPa
at 298.15 K to 95.35 GPa at 498.15 K, indicating a
reduction in stiffness, which is typical for materials at
higher temperatures. Density also decreases slightly from
6.56 g/cm³ at 298.15 K to 6.26 g/cm³ at 498.15 K,
reflecting the expected thermal expansion of the
material. Thermal conductivity shows an unusual
increase from 48.027 W/m·K at 298.15 K to 77.40
W/m·K at 498.15 K, which suggests a slight reduction in
the material’s heat-conducting ability as temperature
rises, contrary to typical behavior. Specific heat increases
from 0.446 J/g·C at 298.15 K to 0.53 J/g·C at 498.15 K,
indicating an increase in heat capacity with temperature.

Model predictions show some discrepancies. At
293.15 K, the predicted Young’s modulus (113.25 GPa)
slightly overestimates the actual value (112.9 GPa) and
at 498.15 K, the predicted value (96.11 GPa) is slightly
higher than the actual value (95.34 GPa). For density, the
model consistently overpredicts, with the predicted
values being slightly higher than the actual ones at both
298.15 K and 498.15 K. Thermal conductivity
predictions are quite accurate at lower temperatures
(48.02 W/m·K predicted vs. 48.02 W/m·K actual) but
overestimate the thermal conductivity at 498.15 K (77.40
W/m·K predicted vs. 69.27 W/m·K actual), indicating a
tendency to predict a higher increase in conductivity. For
specific heat, the model slightly overestimates the values
at both 300 K (0.4468 vs. 0.4392 J/g·C) and 498.15 K
(0.5334 vs. 0.5129 J/g·C).

The R² score for the model is 0.8558, suggesting that
85.58% of the variance in the material properties is

explained by the model, which indicates a strong fit.
While the predicted trends align well with typical
material behavior, the minor discrepancies in thermal
conductivity and some overestimations of other
properties suggest areas for further refinement in the
model to better capture the expected temperature
dependencies.

Fig. 23: Decision tree predictions of TiCu properties with
temperature variation

Figure (24) depicts the variation in the predicted band
gap of Titanium Dioxide (TiO₂) over a specified
temperature range. The data shows a general trend of
increase in the band gap, with values starting at 2.7959
eV and reaching up to 2.9344 eV. The band gap increases
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progressively with temperature. For example, starting at
2.7959 eV, it rises to 2.8046 eV, then fluctuates slightly
but generally increases, reaching 2.8691 eV and
eventually peaks at 2.9344 eV. Specific values include
2.8323 eV at one point and 2.8860 eV at another,
reflecting a steady increase in band gap values. This
trend indicates that TiO₂’s electronic band structure
becomes more favorable for electronic transitions at
higher temperatures. The gradual increase in band gap
suggests that TiO₂ becomes more resistant to electronic
excitations as the temperature rises. This behavior is
likely due to enhanced lattice vibrations and thermal
expansion, which affect the electronic band structure and
contribute to the observed increase in the band gap. An
R2 score of 0.9946 of the models signifies that
approximately 99.46% of the variance in the predicted
band gap values can be explained by the model.

Fig. 24: Decision tree predictions of TiO2
In Figure (25), which illustrates the outputs from the

Decision Tree model for predicting density and specific
heat of TiO2, several key observations can be made. The
predicted density shows an initial decrease from 1.705
g/cm³ at 298.15 K to a minimum around 0.745 g/cm³ at
350.15 K. This decrease aligns with the general trend
that materials expand with increasing temperature,
leading to lower density. However, beyond 350.15 K, the
density values drop dramatically to near zero, indicating
a potential issue with the model. Such extreme values are
unusual and suggest that the Decision Tree might be
overfitting or extrapolating inaccurately at higher
temperatures. In contrast, the specific heat shows a
consistent and realistic increase with temperature, rising
from 0.670 J/g.C at 298.15 K to 0.749 J/g.C at 498.15 K.
This increase is consistent with the expected behavior of
materials, which generally require more energy to raise
their temperature as they become hotter. The decision
tree's prediction of specific heat appears reasonable,
reflecting the typical trend for thermal properties.

Random Forest often performs better than ANN and
Decision Trees due to its ensemble nature, where
multiple decision trees work together to make
predictions. By averaging the outputs of many trees, it
reduces the risk of overfitting, which is common in

individual Decision Trees. This ensemble approach
improves accuracy and robustness, as the model can
generalize better to unseen data. Unlike individual
Decision Trees, which may overfit due to their
complexity, Random Forest uses random subsets of data
and features for each tree, preventing any single tree
from having too much influence on the final prediction.
It is also more robust to noise and outliers, as the
combined predictions of many trees tend to smooth out
the impact of anomalous data. Furthermore, Random
Forest does not require as much hyperparameter tuning
as ANN models, which need careful adjustments to
layers and learning rates, making it easier to use with
minimal tuning. Its ability to handle both linear and
nonlinear relationships in the data and provide more
accurate predictions, especially with complex or noisy
data, makes it a superior choice in many cases.
Additionally, while ANN models are often seen as "black
boxes," Random Forest offers more interpretability, as
each tree can be visualized and understood, which helps
in diagnosing model performance. Overall, Random
Forest's flexibility, accuracy and ability to manage
complex data relationships contribute to its superior
performance compared to both Decision Trees and ANN
models.

Fig. 25: Decision tree predictions of TiCu properties with
temperature variation

For future research, developing a model that
automatically collects data through a web scraper could
significantly enhance the efficiency of gathering material
property data. By integrating real-time data collection
from scientific publications, databases, or online
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resources, such a model would streamline the data
acquisition process for training predictive models.
Automating data retrieval through web scraping would
not only save time but also allow for the continuous
update of material property datasets, ensuring that
models stay relevant with the latest available
information. This approach could be particularly
beneficial for materials science research, where new
findings and experimental data are frequently published.

Machine learning models, particularly Random
Forest, have demonstrated strong capabilities in
predicting material properties such as Young’s modulus,
density, thermal conductivity and specific heat across
various temperatures. These models outperformed other
methods, including Artificial Neural Networks (ANN)
and Decision Trees, in terms of accuracy and
consistency. The ability of Random Forest to handle
complex, nonlinear relationships in material property
data without overfitting makes it an ideal choice for
predicting the behavior of materials under different
conditions. This approach can significantly reduce the
time and cost associated with traditional experimental
methods, allowing for faster development and
optimization of materials. The predictive accuracy of
machine learning models, especially for materials like
TiAl, TiCu and TiO2, holds significant promise in fields
such as aerospace, automotive, biomedical and energy
sectors. For instance, in the aerospace industry, these
models can be used to design lightweight, high-strength
alloys by predicting material properties under varying
temperatures and stress conditions. In the biomedical
field, machine-learning models could assist in the
development of biomaterials for implants or prosthetics
by predicting their mechanical properties and
biocompatibility under different physiological
conditions. Additionally, these models can support the
design of more efficient energy materials by predicting
thermal properties essential for energy storage or heat
exchange applications.

Conclusion
In conclusion, the application of machine learning

methods, including ANNs, Random Forests and Decision
Trees, demonstrates their effectiveness in accurately
predicting material properties across varying conditions:

ANN Model for TiAl: Achieved an R² score of
0.980874, accurately predicting density, Young's
modulus and thermal conductivity, with minor
deviations in band gap
ANN Model for TiCu: Achieved an R² score of
0.997607, demonstrating high precision in
predicting density, Young's modulus and thermal
conductivity, with minor deviations in band gap and
specific heat
ANN Model for TiO2: Showed a low MSE of
0.0009, accurately predicting density and specific
heat, but overestimated the band gap and had slight
deviations in density

Random Forest Model for TiAl: R² score of
0.998168, accurately predicted density, specific heat
and thermal conductivity, with minimal deviations,
though further refinement is necessary for band gap
predictions
Random Forest Model for TiCu: Achieved an R²
score of 0.997764, providing reliable predictions for
specific heat and Young’s modulus, but showed
significant deviations in density and band gap
Random Forest Model for TiO2: Excellent R² score
of 0.9994 for band gap predictions; however,
density predictions approached zero at high
temperatures, indicating model issues needing
further validation
Decision Tree Model for TiAl, TiCu and TiO2:
Demonstrated strong predictive capabilities with
high R² scores (TiAl: 0.993841, TiCu: 0.992873,
TiO2: 0.9946)
ANN model provides valuable insights into how the
material properties of TiAl, TiCu and TiO2 change
with temperature. While the model is robust for
most properties, addressing issues such as density
for TiO2 values is crucial for ensuring reliable
predictions. Understanding these trends is essential
for optimizing material performance in temperature-
sensitive applications
Random Forest model offers valuable insights into
how TiAl, TiCu and TiO2 properties change with
temperature. Its strong predictive capabilities make
it a robust tool for analyzing material behavior in
temperature-sensitive applications. Therefore, the
Random Forest method can accurately predict the
alloy material properties and their behavior in
different temperatures range
Decision Tree model provides valuable insights into
the temperature-dependent behavior of TiAl, TiCu
and TiO2. While the predictions for Young's
Modulus, Density and Specific Heat align with
expected trends, issues
Improved Material Performance in Biomedical
Applications: The precise prediction of specific
heat, thermal conductivity and density facilitates the
development of advanced biomedical solutions,
including orthopedic implants, surgical tools and
antimicrobial coatings, ensuring improved
durability, stability and performance in clinical
environments
Contribution to Thermal Management Strategies:
The research provides valuable insights for
industries requiring effective thermal regulation,
such as aerospace, automotive and electronics. By
understanding the thermal behavior of these
materials, engineers can optimize designs for
improved heat dissipation and enhanced system
efficiency
Machine learning models, particularly Random
Forest, excel in predicting material properties like
Young's modulus, density and thermal conductivity,
outperforming ANN and Decision Trees. These
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models offer faster, cost-effective material design,
particularly in aerospace, automotive, biomedical
and energy sectors. They enable the optimization of
materials for applications such as high-strength
alloys, biomedical implants and energy-efficient
materials
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