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Abstract: The Receiver Operating Characteristic (ROC) curve and the area 

under the ROC (AUC) are widely used in determining the diagnostic 

capability of a binary classification procedure. Since the test performance is 

affected by covariates, the ROC and AUC have been utilized in a 

Generalized Linear Regression (GLM) setting. In this study, we revisit a 

problem where the AUC regression model was used in a clinical study with 

discrete covariates by considering ROC regression models with both 

discrete and continuous covariates. The two ROC regression models are 

based upon a widely used parametric model and a recently published model 

based upon fitting the placement values with the beta distribution. The two 

methods are illustrated using data from a clinic study. 
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Introduction 

The Receiver Operating Characteristic (ROC) curve 

and the area under the ROC (AUC) are widely used 

measure of accuracy for diagnostic test to distinguish 

between two populations. An important application of 

ROC curve is to determine how a test’s performance is 

affected by covariates. One approach is to model the 

AUC of the ROC curve by modifying the Mann-

Whitney statistics (MW) as a GLM (Pepe, 2003). 

Another approach is to model the ROC directly.    

Dodd and Pepe (2003) proposed a Generalized Linear 

Model (GLM) framework to directly model the ROC 

with covariates as follows: 
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for t∈ (0,1) where g-1 is a monotone link function, X is a 
vector of covariates, h0(⋅) is an unknown monotonic 
increasing function and b is a vector of the model 

parameters. Assumptions concerning h0(⋅) define 

whether (1) is a parametric (Alonzo and Pepe, 2002) or 

semi-parametric (Cai, 2004). Although the two models 

differ, they are both based upon the conditional 

expectation of Mann-Whitney U-statistic. 
Stanley and Tubbs (2018) presented an alternative 

GLM model for the ROC as a function of the covariate-

adjusted placement values. They compared their model 

with the parametric and semi-parametric model using 

simulated normal and extreme value data. 

The objective of this paper is to investigate the 

parametric and beta ROC regression models when 

compared with the AUC regression model presented by 

(Zhang et al., 2011) using data from a clinical trial 
concerning the efficacy of an active drug to treat stress 

urinary incontinence in North American women. 

The outline for this paper is as follows. Section 2 

presents a brief overview of the two ROC regression 

methods. The results for the two methods using the 

incontinence trial data are reported in section 3. The 

paper concludes with a discussion in section 4. 

Methods 

Let Y be a continuous random variable used to 

distinguish between the two populations. Assume that 

the non-diseased or control population is indicted by 

D = 0. Let D = 1 denote the diseased or cases 
population of interest and assume that large values of 

Y are more likely to be associated with the disease 

indicator. The classifier assigns a subject to the 

diseased group if Y ≥ c. In which case, the true 
positive rate of the test is TPR(c) = Pr[Y ≥ c|D = 1] 
and the false positive rate of the test is FPR(c) = Pr[Y 
≥ c|D = 0]. The ROC curve, is defined as a collection 
of all TPR-FPR pairings. 

The placement value of Y, denoted as (PVD = 0), is the 

proportion of the reference or control population with 

observations greater than Y (the survival value for Y in 
the reference or control population). This is just a 
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transformation of Y given by PVD = 0 = S0(Y). It has been 
shown that the CDF for the placement is the ROC. That 

is: 
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where, t ∈ (0,1) and S1, S0 are the survival function for 
the diseased and non-diseased populations. 

Considering the covariates, denoted by X, the 

covariate-adjusted ROC can be written as: 
 

( ) ( )( )1

0,, 1, ,
,

D D
XX X X X

ROC t S S t
−

=  (2) 

 

for t ∈ (0,1) where 
1, ,

D
X X

S (c) = Pr(Y ≥ c)| X, XD, D = 1), 

S0,X (c) = Pr(Y ≥ c)|X, D = 0) and c is any threshold. 
Thus, ( )

,

D
X X

ROC t  is the probability that the test result Y 

of the diseased subject is greater than or equal to the tth 
quantile of the test result adjusted by the covariates of 

the unaffected subject. 

The ROC is the CDF of the placement values PVD 

(Pepe and Cai, 2004). The covariate-adjusted notation 

is given by: 
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Stanley and Tubbs (2018) provide a description of the 

algorithms used to model the ROC with the parametric 

presented by (Alonzo and Pepe, 2002) and the beta 

placement value model. A brief description of both 

methods are included for completeness. 

Parametric Method 

Alonzo and Pepe (2002) extended the use of ROC-

GLM by considering the ROC curve as a parametric 

function of covariates and using the binary indicator 

as the dependent variable. The parametric function of 

covariates is reflected in parametric form of h0(⋅). The 
binary indicators compare the test result for a diseased 

subject to a specified set of covariate-adjusted 

quantiles of the distribution of test results from non-

diseased subjects. Then the binary values can be 

modeled using logistic regression methods. Their 

parametric form for h0(⋅) is: 
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where, h1(t) = 1 and h2(t) = Φ
-1
(t). In which case, we 

have: 
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,
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for t ∈ (0,1). The algorithm for parametric the method 
can be written as: 

 

1. Specify a set of FPRs: T = {tl: l = 1, ... ,nT} ∈ (0,1) 
2. Estimate the covariate specific survival function 

0, jX
S for the reference population at each t ∈ T, j = 

1,2, ... ,n0 using quantile regression 
3. For each diseased observation yi|D = 1, calculate PVi = 

0,

ˆ
i
x

S ( yi|D = 1), i = 1,2, ... ,n1 

4. Calculate the binary placement value indicator �
it
U = 

I(PVi ≤ t), t ∈ T 

5. Fit the model E[Ûit] = g
-1
( ( )�

0

ˆh t X β′+ )) to obtain 

1̂
γ , 

2
γ̂  and β̂  

 

Beta Regression Method 

Stanley and Tubbs (2018) proposed a method that 

models the placement values using beta regression. This 

method is easy to implement and it eliminates the 

dependency in models that use binary variables when 

using the logit or probit models. 

The Beta regression model can be written as a GLM 

(Ferrari and Cribari-Neto, 2004) in terms of its mean µ = 

E(Y) and precision parameter φ = a + b where the mean 
and variance for Y ∼ Beta(a, b): 
 

( ) ( )
( ) ( )

2
.

1

a ab
E Y and Var Y

a b a b a b

= =

+ + + +

 

 

can be written as: 
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The beta regression model can be written as: 
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The algorithm for beta regression method can be 

written as: 



Xing Meng and J.D. Tubbs / Current Research in Biostatistics 2020, Volume 10: 20.24 

DOI: 10.3844/amjbsp.2020.20.24 

 

22 

1. Specify a set of FPRs: T = {tl: l = 1, ... ,nT} ∈ (0,1) 
2. Estimate the covariate specific survival function 

0, jX
S for the reference population at each t ∈ T using 

quantile regression 

3. For each diseased observation 
1 jx
y , calculate PVj = 

( )0 1

ˆ
jx

S y  

4. Perform a beta regression on the PVs to obtain 

estimates β̂  and φ̂  

5. Transform to obtain â = ˆµ̂φ and b̂  = (1- µ̂ ) φ̂  

6. Calculate the CDF of the placement values using the 

Beta(â, b̂ ) distribution to obtain �ROC and the �AUC  

 

Application 

Zhang et al. (2011) presented results for AUC 
regression using data from a placebo-controlled study to 

determine the efficacy of an active drug to treat stress 

urinary incontinence in menopausal women. Their 

primary endpoint was the relative Percent reduction in 

Incontinence Episode Frequency (PIEF) from baseline to 

the final visit (12 weeks), where larger PIEF reduction 

indicates the desired treatment effect. They considered 

two discrete covariates; strata and horm50. The 

covariate strata indicate the severity of disease at 

baseline where 1 indicates the lowest level and 4 

represents the highest number of episodes. The second 

covariate, horm50, is binary where 1 indicates that the 

subject had hormone replacement therapy prior to the 

start of the study. Zhang et al. (2011) indicated that they 
elected to reduce the computational complexity of their 

example by selecting a 10% random sample (n = 407) 

from the total available subjects. 

Since we do not have access to the same sample 

used by (Zhang et al., 2011), we present the results 
for the data set that we have access (n = 2200) and for 

four (4) random subsets of size 420 with a 1:1 split for 

the treatment and control, in hopes of understanding 

data variability and dependency on the performance of 

the ROC regression methods. In addition, we will 

consider two additional covariates, a binary indicator 

of high level of BMI (BMI > 30) and a continuous 

covariate, BMI. 

Discussion 

Table 1 reproduces the results of a table given in 

(Zhang et al., 2011) where we have highlighted the 
potential significant terms in red. Tables 2 and 3 contain 

the results obtained when using the ROC methods with 

the strata and horm50 as covariates. The interaction 

terms were included. Our objective in this study was to 

use both ROC regression models to obtain estimates for 

the regression coefficients without being overly 

concerned about the significance of the terms as was 

done in (Zhang et al., 2011). When comparing our 

results with those given in Table 1 it is doubtful that any 

terms are significant when using the results of the beta 

model whereas the parametric method may have found 

some significant AUCs. It appears that the parametric 

ROC model produces estimates that are closer to those 

given in Table 1 than the beta method. This shouldn’t be 

that surprising since the parametric ROC model modifies 

the use of the Mann-Whitney statistic used in (Zhang et al., 
2011). Although we have elected not to be overly 

concerned about the standard errors of our estimates in 

this study, it should be mentioned that the standard errors 

for the beta method are obtained directly from the beta 

regression model whereas the parametric method makes 

use of bootstrapped estimates. 

 

Table 1: Zhang et al. (2011) �AUC estimates for strata with 

horm50 

 Model 

Strata Horm50 �AUC  Bootstrap DeLong 

1 No 0.458  (0.068, 0.848)  (0.138, 0.778) 

 Yes 0.467  (0.019, 0.914)  (0.140, 0.793) 

2 No  0.576  (0.420, 0.732)  (0.412, 0.739) 

 Yes  0.437  (0.289, 0.585)  (0.300, 0.575) 

3 No  0.596  (0.435, 0.757)  (0.428, 0.764) 

 Yes  0.878  (0.763, 0.993)  (0.751, 1.000) 

4 No  0.654  (0.497, 0.811)  (0.514, 0.794) 

 Yes  0.625  (0.484, 0.766)  (0.492, 0.759) 

 

Table 2: Beta �AUC  estimates for strata with horm50 

  Sample 

 Model ----------------------------------------------------

Strata  Horm50  all  1  2  3  4 

1  No  0.569  0.535  0.345  0.661  0.699 

 Yes  0.638  0.728  0.656  0.683  0.634 

2  No  0.622  0.646  0.621  0.578  0.649 

 Yes  0.611  0.657  0.620  0.688  0.617 

3  No  0.555  0.595  0.541  0.574  0.608 

 Yes  0.593  0.524  0.602  0.637  0.682 

4  No  0.567  0.578  0.572  0.565  0.590 

 Yes  0.589  0.624  0.621  0.535  0.561 

 

Table 3: Parametric �AUC  estimates for strata with horm50 

  Sample 

 Model ---------------------------------------------------- 

Strata  Horm50  all  1  2  3  4 

1  No  0.549  0.566  0.415  0.685  0.724 

 Yes  0.547  0.543  0.653  0.701  0.516 

2  No  0.566  0.558  0.581  0.454  0.598 

 Yes  0.587  0.592  0.630 0.609  0.576 

3  No  0.597  0.633  0.583  0.611  0.622 

 Yes  0.633  0.589  0.637  0.637  0.680 

4  No  0.580  0.615  0.547  0.622  0.586 

 Yes  0.628  0.635  0.670  0.611  0.602 
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Table 4: Beta �AUC estimates for strata with high BMI 

  Sample 
 Model ---------------------------------------------------- 
Strata  BMI  all  1  2  3  4 

1  Low  0.631  0.721  0.724  0.661  0.710 
 High  0.607  0.604  0.467  0.658  0.696 
2  Low  0.610  0.697  0.651  0.649  0.652 
 High  0.642  0.677  0.733  0.721  0.619 
3  Low  0.592  0.624  0.558  0.629  0.608 
 High  0.632  0.706  0.669  0.655  0.604 
4  Low  0.589  0.610  0.603  0.601  0.611 
 High  0.577  0.587  0.530  0.600  0.601 

 

Table 5: Parametric �AUC  estimates for strata with high BMI 

  Sample 
 Model ---------------------------------------------------- 
Strata  BMI  all  1  2  3  4 

1  Low  0.575  0.571  0.579  0.536  0.595 
 High  0.578  0.589  0.449  0.652  0.594 
2  Low  0.606  0.654  0.595  0.663  0.621 
 High  0.636  0.636  0.670  0.709  0.607 
3 Low  0.602  0.604  0.583  0.617  0.624 
 High  0.621  0.655  0.667  0.660  0.570 
4  Low  0.604  0.622  0.604  0.608  0.612 
 High  0.604  0.625  0.548  0.613  0.626 

 

Table 6: Beta �AUC  estimates for strata with continuous BMI 

  Sample 
 Model ----------------------------------------------------- 
Strata  BMI  all  1  2  3  4 

1  25  0.624  0.684  0.670  0.653  0.708 
 30  0.630  0.685  0.662  0.666  0.704 
 35  0.636  0.685  0.655  0.678  0.699 
2  25  0.616  0.690  0.670  0.665  0.647 
 30  0.622  0.690  0.662  0.677  0.642 
 35  0.628  0.691  0.655  0.689  0.636 
3  25  0.599  0.651  0.591  0.627  0.610 
 30  0.605  0.651  0.583  0.640  0.604 
 35  0.611  0.652  0.576  0.652  0.599 
4  25  0.579  0.600  0.581  0.588  0.612 
 30  0.585  0.600  0.573  0.602  0.607 
 35  0.591  0.601  0.565  0.615  0.601 

 

Table 7: Parametric �AUC  estimates for strata with continuous 

BMI 

  Sample 
 Model ----------------------------------------------------- 
Strata  BMI  all  1  2  3  4 

1  25  0.573  0.576  0.549  0.566  0.597 
 30  0.581  0.577  0.544  0.582  0.591 
 35  0.588  0.578  0.540  0.598  0.584 
2  25  0.610  0.648  0.611  0.669  0.621 
 30  0.618  0.649  0.607  0.683  0.615 
 35  0.626  0.650  0.603  0.697  0.609 
3  25  0.603  0.619  0.606  0.620  0.612 
 30  0.610  0.620  0.601  0.635  0.607 
 35  0.618  0.621  0.597  0.650  0.601 
4  25  0.598  0.623  0.586  0.596  0.622 
 30  0.605  0.624  0.582  0.612 0.617 
 35  0.613  0.625  0.577  0.627  0.611 

Table 4-7 summarize the results when using BMI as a 

covariate with the entire data set and 4 subset data sets. 

Table 4 and 5 summarize the results when using the 

discrete BMI covariate. There is a lot going on in these 

tables, but both methods indicate that the separation 

between the treatment and the control groups decreases 

as the BMI increases. We see similar results when using 

BMI as a continuous covariate with both ROC methods 

(Tables 6 and 7). 

Conclusion 

Our objective was to demonstrate how two ROC 

regression methods could be used instead of the more 

commonly used AUC regression models based upon the 

Mann-Whitney statistic when one has both discrete and 

continuous covariates. The ROC model provided believable 

results when used with data from a clinical study where the 

results from the AUC model were published. The 

parametric ROC model given by Alonzo and Pepe (2002) 

is widely used and is commercially available for use in R 

packages and Stata. The beta model based upon 

modeling the placement scores given by Stanley and 

Tubbs (2018) is not as widely used. Yet, it performed as 

well as the parametric model. 
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