Journal of Computer Science 1 {3}: 429-436, 2005
ISSN 1549-3636
© Science Publicaticns, 2005

Asynchronous NoC Router Design

'Sami Badrouchi, ! Abdelkrim Zitouni, 2Kholdoun Torki and 'Rached Tourki
1 aboratoire EunE, Faculté des Sciences de Monastir, 5019 Monastir, Tunisie
Laboratoire TIMA, INPG, 46 Avenue Félix Viallet 38031, Grenoble Cédex, France

Abstract: The Quality of Service Network on Chip (QNoC} is the moest perferment solution that
provides low latency transfers and power efficient System on Chip (ScC) interconnect. This study
presents an asynchronous NoC roufer, for use in 2-I) mesh-connected networks. [t comprises multiple
interconnected input and cutput ports and dynamic arbitration mechanisms that resolve any cutput port
conflicts based on the messages priorities. The proposed router protecel and its asynchronous
madeling are based on the Speed Independent State Transitien Graph (STG) model. The generated
STG are transformed into VHDL data flow descriptions and the low level implementation is based
ontc a parameterized library. This library integrates the popular asynchronous SI modules such as
C-element, Q-element, fairly arbiter, etc. The device is implemented in 0.35 pm CMOS technology
and its performance is compared with a synchronous router of the same functionality. The
asynchronous reuter enables a higher data rate and a comparable silicon area.

Keywords: System on Chip, Network on Chip, Asynchrenous Router, Asynchronous Arbiter

INTRODUCTION

Since, data synchrenization problems arise in
multi-clock domain SoC and operating clocked
interconnects becomes increasingly more difficult, large
SoC are freated as Glebally Asynchrenous Locally
Synchroncus {GALS) systems, calling for suitable
interconnects beyond conventional synchrenous buses.
GALS paradigm not only avoids the problem of clock
skew but also leads to lower power consumption. NoC
are advocated as a solutien for the SoC interconnect
problem [1].

Communication between system modules is done by
handshaking, where signals are exchanged on the
control path in order fo arrange the exchange of data.
The packet router may use a bundled data that are
controlled and transmitted asynchroncusly [2]. The
shared bus solution used for connecting the functional
units by the commercial SoC [3-6] is not a suitable NoC
interconnect since it can provide limited connectivity.
The Networks on Chip (NoC) are a better alternative
than the classic architectures based on busses. Every
node is the point of passage of several plets coming of
different claimants.

Several works has been focused on the synchronous
NoC by using the 2-D mesh, torus, fat (ree and
hierarchical topologies [7-12]. The cut-trough and
packet switching fechniques have been used for the
interconnect design. Synchroncus NoC roufers
supporting virtual channels are described in [13, 14].
Other synchronous routers are discussed in [15]. A
synchronous 5-port router provides for two service
levels (best effort and guaranteed throughput) has been
presented in [16].

Only a few works have been focused on the design of
asynchrenocus NoC. Synchronous routers using

429

round-robin arbitration and supporting asynchrenous
interconnect are presented in [17, 18], though
synchronization issues are ignored. CHAIN [19, 20] has
presented flexible asynchrencus intercennection NoC
structures by using a 1-of-4 encoding. A design and
implementation of a fast, low-power and multi service
levels NoC has been presented in [21]. NoC wrappers
and synchroenization issues are discussed in [22-27].
The main contribution of the proposed approach
consists on synthesising QNoC router to be integrated
inte a 2D mesh NoC. The propesed router integrates a
centralized Speed Independent dynamic arbiter based
on messages priorities. STG are used as specification
models and generalized C-elements are used for gate
level implementation.

In section 2, we present the asynchroncus library that is
used as data base for the router specification. The
C-element gates and the arbiter synthesis technique are
outlined in this section. Section 3 describes the router
design. In section 4, we present the experiment results
and we compare the performance of the asynchronous
router with a synchronous router of the same
functionality. Section 3 concludes the study.

ASYNCHRONOUS LIBRARY

The first step in implementing the router was to
construct a library of asynchrencus coemponents.
Correct, hazard-free CMOS implementations were
explored from a number of literature scurces. To design
the complexes asynchroncus components such as
arbitration modules, we have used the STG as input
specification model and the C-element gate for the low
level implementation. Starting frem the specification
step, we extract the C-elements production rules and
transform them inte dataflow synthesizable VHDL

J. Computer Sci., 1 (3): 429-436, 2005

B —
39—. Q=qgA+qB+AB }Q:q.A+A.B
A
B —
B - A }Q:q.A+A.B+q.C
C Q=qB+A
C —_—] -
c_4 :
—Ar3. . 0] S_0OUTL3. . 0]
—_—eL3..0]
- X
U= 3(3.0] BO000 [0000} 010110101111 §0100 {1001 {1110 {0011 1000 ¥ 1101 40010 {0111 §1100 Y0001 {01101011 0000 {0101 (R
ilﬁb[&.ﬂ] B 0001 0001 {0011 ¥0101 01111001 {1011 §1101 ¥ 1111 {0001 §0011 0101 0111 § 1001 ¥1011 ¥1101 {1111 {0001 {0011 {0101 {0111 4
1
L=
V&P s ou3.0] | BOOOD | D000 0001 DT YOIOT001 (1101 T1T1) 1001 (000101111101 (1001 K101 (1111 0001 -
L T

Fig. 1: Different forms of the Muller C-Elements and a Simulation Result of a 4x2 Inputs C-4 Module

reset
(B2 == ¢_element
A €
c3
compar
H—=— reset
= A
- E‘g arbiter
ﬁ\ —=— R4 RS ¢ element E‘f‘e‘ o il
En ms? A e 5%
C =5
. T et ca
LS (120 gy Lo i VA o4
5 il 2[1:10] cd
Pkl e | 62
PTG Ll 2 4[1:0]
(AR
P[0 2l ol
¢_elemeant
== B ‘I
5% =)
c5
(B
¢_elemeant
o ¢
ct

Fig. 2: A Dynamic Asynchronous Arbiter with Three Requesters

description. Many standard asynchronous components
such as Fire arbiter, Q-element, Select and Decision
wait are stored in this library. The compenents that we
have developed tc be used in the NoC router are
described below.

Muller C-element: The symmetric Muller C-element is
one of the main building blocks of SI asynchronous
circuits. It performs the function of synchronisation.
The device waits for an event on each of its inputs.
When this occurs, an event is produced on the output.
The device then waits for the next pair of input events,

430

If two events arrive on the same input, without an event
on the other input, then the events will cancel each
other out and the circuit will again be waiting for an
event on each input, as before. C-elements can be also
constructed to respond to transitions in only one
direction on particular inputs. These forms of
C-clement are konown as generalized C-elements,
Figure 1 presents the different forms of the Muller
C-elements.

These symmetric C-glements have been regrcuped by
four, in “C-4" modules, for obvicus reasons of
coenvenience for reuse in the NoC router as explained

J. Computer Sci., 1 (3): 429-436, 2005

later. For every couple of entries we found the
functionality of a two input C-element. The simulation
of the quadruple C-element (Fig. 1), give results in
conformity with those expected. The output remains at
zero in the beginning of the simulation because the
entries are either all two to zero, either different.

Dynamic Arbiter: The dynamic priority discipline is
different form the static one as it uses dedicated priority
ports to receive priority information from requesters.
For each access, the requester that has the highest
priority will gain the access. In [28], when there are
many requesters that have identical priority orders, the
requester that has the highest indices is conventionally
granted the access. In ocur approach, when there are
many requesters that could have the same priority
orders, requesters are granfed the access in a round-
robin scheme. Each requester has a priority which is
shifted in a circular way each time one of the requesters
gels access fo the resource. After being serviced, a
requester receives the lowest priority. Such scheme is
characterised by the absence of any absclute order in
which requesters are being granted access to a rescurce.

Arbiter Architecture: The dynamic arbiter
architecture is composed by two moedules, a priority
comparator and a round-robin arbiter interconnected by
n C-elements {n represents the number of requesters}
and an OR gate as shown by Fig. 2 in the case of an
arbiter with four requesters. After receiving the request
signals from the requesters, the priority comparator
stores the priority values from the priority ports of the
active requests and compares them. After the
comparison step, the comparator sends out a set of
internal signals that correspond to the requesters that
have the highest pricrities. After being combined with
four C-elements, the output signals are transmitted to
the arbiter module. Thus, only the requesters that have
requested the access and that have been selected by the
comparator module will be treated by the arbiter. If we
have only one requester that has been selected by the
comparator it will be granted the access automatically
by the arbiter and the priority list is shifted in a circular
way. When we have twe or three or four requesters that
have the same actual priorities orders, then the
requester that has the last highest pricrity order will
grant the access and the priority list is shifted in a
circular way. We notice that the outputs of
the C-elements that enter to the arbiter module will be
activated only if the requesters have requested the
access and they are selected by the comparator. We
notice that if a requester has gained the access (its grant
is activated) the comparator moedule will deactivate the
generated internal signals. This scheme is implemented
by an enable {(En} signal that is generated by an OR
gate with four inputs {G1, G2, G3, G4}. The cutputs of
the C-elements that enter to the arbiter still high
until the active requests become low. Alsc the

431

comparator will be activated again only if the enable
signal becomes active (the actval requester has
released the bus).

Round Robin Arbiter Synthesis: The STG and the
C-element based implementation of an asynchronous
round-rebin arbiter with two requesters are presented in
Fig. 3. This graph is formed by two identical fixed
pricrity sub-graphs where R1 have the highest priority
in the first sub-graph {(sub-graph (12} and R2 have the
highest priority in the second (sub-graph (21)}. When
the requester R1 has gained the access to the shared
output port, the sub-graph (12} becomes inactive and
the sub-graph {21} is activated. When the requester R2
has gained the access to the cutput port, the sub-graph
(21) becomes inactive and the sub-graph {(12) is
activated.

The implementation idea 1is to synthesise each
sub-graph with a fixed priority arbiter with two
requesters. [f the arbiter receives two requests on both
R1 and R2 ceoncurrently, the generalized C-element
based blocs selects the highest requester to be granted
by asserting one of its two cufput wires. This in turn
causes the resource to be requested by asserting Req.
When the resource has completed its operation, it
asserts Ack and acknowledgment is forwarded to the
requesting module that was chosen depending on
its priority order.

The activation and the deactivation of each sub-graph
are performed by the oufputs of a two states counter.
The rising edge of the counter CLK is generated when
Rl or R2 has terminated its resource access by
detecting the falling edge of G1 or G2. At the beginning
we assume that the requester R1 have the highest
pricrity. This requester is activated by falling edge of
the Reset signal. The proposed arbitration structure can
be easily extended into asynchronous arbiter with n
requesters.

ROUTER DESIGN

We have adopted an asynchroncus router with five
input/output ports (North, East, Local, South and West},
having each a bi-directional exchange bus suitable for
2D mesh NoC architecture. In such architecture each
router is connected to four neighbours and a Processing
Element (PE} as presented in Fig. 4. All inter-modules
communications are carried out in packets. We assume
that a packet coming through an input port is not
returned to the output port of the same interface.
Packets are partitioned into small flits, which are sent
threugh the NoC using wormhole routing.

Header Fields: To support varying communication
requirements, each packet carries priority information,
related to data communication requirements. Each
packet consists of three types of flits: a header flit, body
flits and a tail {lit, indicating End-of-Packet {EOP).

J. Computer Sci., 1 (3): 429-436, 2005

C-element based implementation of sub-graph(12)

———————Ack

[T
R1
o I
— 5 '
Q
Reset .

G2
4-Phase protocol implementation

C-element based implementation of sub-graph(21)

(a)
1+
1
1 Rl
1
1
1
1 G1-
1
1
1
1
Sub-graph (12) 1 Sub-graph 21)
(b}

Fig 3: (a} C-element Based Implementation of an Asynchronous Round-Robin Arbiter with Two Requesters and
{(b) STG of Round-Robin Asynchronocus Arbiter with Two Requesters

Every port sends a byte (header} that contains the
address of its target port, the number of flits to be
transmitted and the packet nature. Based on the packets
nature, message priorities may be different. The header
fields are presented in Table 1.

The highest two bits indicate the packet nature.
The “00” code is associated to the signalling packet
(Signalling[G0]) such as urgent messages, short packets,

Table 1: Header Fields
Asked port address {3 bits)
Packet Flits -
nature number North East Local West South
2bits 3 bits 001 010 100 011 000

432

interrupt and control signals that requires low transport

latency

and represents the highest priority packets.

J. Computer Sci., 1 (3): 429-436, 2005

Fig. 4. NoC 2D Mesh Architecture

The “01” code is associated to the real-time application
packets (Real-Time[01]}. The “107 code is associated
to the RD/RW packets (Read/Write[10]} such as
short memory and register access. The “11” code is
asscciated to the block transfer packets (Block-
Transfer[11]} such as leng messages and blocks of
data that represents the lowest prierity packets. We
have adopted a scurce-specified routing and the
lowest three header bits indicate the output port
where the packet is to be transmitted. We assigned
to every port an address as presented in Table 1.
The "Adr Ports" module generator contains the
addresses of the different ports that it sends to the
medules of cemparisen. It is activated as soocn as a
demand appears on one of the 5 ports. Each packet
contains a list of cutput ports addresses that are
extracted in each router and stored in a FIFO buffer.

Narne: _Walug: I S‘Dlus 1D‘|Dus 15.pus 2D.|Dus 25.|Dus SD‘IDus 35.pus 4D.|Dus 45.|Dus a0,
- Ensble T 0o 1]

== cmpared_Adrss B 01 011

B H_3 B 01100001 01100001

B H_2 F 00000000 00000000

= H_1 00000000 00000000

i H.0 B 01100000 01100000) 01100001

5= Redln BO000 (0000 (D101 }1010)1111 YD100)1001 1110 Y0011 10001101 }{T010)01 11){1100)0001 Y0110 1011 {0000 (D101 {1010 1111
& ReqOut B 0000|0000 1001

Fig. 5. Example of Simulation of the Comparator Module

= Reqi[4.0] | BOODDD |-) 00001 11010 {01111 {10100 (11001 {11110 o001t Yot000 {01101 10010 {10111 {11100 Yoooo1 {ootio o101t) -
= D_Nih7.0] B 10101010 10101010 J{ 10101100

&= D_Est[7.0] [5 11110000 11110000 Y ooooto0 ¥ 1110000 10101001) 11110000 10101100
&= 0_Laf.0] B1111101 1111011 I 00000000 X 00000001

= D_Sth[7..0] [B 11110000 11110000 H 11111010 J 00000000 Yoo - 00000000

&= D_Wst[7..0] B 00000011 00000011 i
- Reqhl 0 | U fiifiif

= ReqE 0 U I

< Reql 0 i
- RegS o [T LT L § L L LT

wraw | 0 L]] | L] B
iB= Ackd D [

9= Ack3 ' EHEHEHTH BRI

= Ack? 0

- Ak : K il]

9= AckD D []

< Grthlth 0 |] |

< GriEst 0 [F]

- Grllel D []

£ Grtsth o | []

B Grtwst 0 [] EBEEREE []

Fig. 6: Example of Simulation Results of the Mapped Architecture

433

J. Computer Sci., 1 (3): 429-436, 2005

The other header bits {(Header(5 downto 3)) indicate the
packet flits number. Thus, the packet where
Header(7 downto 3) has the lowest value corresponds
to the highest priority packet. This means that if a
packet fransfers large amounts of data in a single
transfer over an cutput port, then that packet is assigned
a lower pricrity, fo prevent other packet from being
denied access to the cutput port for a significant period
of time while the data is being transferred.

Router Arbiter: Each NoC router integrates an arbiter
to resolve access conflict to the output ports. Such
arbitration can be performed by using either a free
arbiter, consisting of standard two-way arbiters, or a
Mutual Exclusion (ME}. Both architectures incur
similar area but the ME seems to be slightly faster than
the tree arbiter [26]. Since the ME does not always
preserve the original order of the incoming requests it
can grant the access to a requester that has a lowest
priority that can performs preemptive routing according
to packet priority.

By using the proposed dynamic scheme we have
designed an asynchronous arbiter that allows the
resclution of access cenflict problems of each oufput
port starting from the priority information of each
incoming packet. The router architecture is constituted
by five round-robin arbitration medules and five
comparators interconnected by some C-elements and
OR gates (Fig. 15(a}). Each comparator is affected to an
output port. Each arbiter serves the 4 demands that are
addressed to every port. The requests effectively
allocated by the different comparators are treated by the
corresponding referees.

The addresses of the different ports are sent to the
comparators the moment the signal of activation passes
te logic 1, as soon as a demand is received on the Reqln
bus of the requests port. Then, even though there is not
an active demand anymore, the addresses remain to the
rank of the outputs of the generating block of addresses.

Comparator Modules: The enfries of the comparison
module are the address to which is geing to be
compared, the addresses asked by the different ports,
the enable signal (En}, that permits to deactivate this
module sc much as a port had the access. Each
comparator can be solicited only by the ports different
from its corresponding port. For example, the North
comparator could be solicited by demands that can
come only from the ports East, Local, Scuth and West.
Every port sends a byte that contains the parameters of
its target port, the number of flits to transmit and the
order of priority of the packet.

The comparator module is disabled, as scon as a
demand has been granted by the arbitration medule,
keeping the time to treat it. The data sent on the target
port will not be interrupted.

434

The simulation of the comparisen module gave the
following results {Fig. 5} The H n port represent the
asked addresses and the bits of priority regrouped with
the number of flits to exchange. As ocutputs, ReqOut, is
a vector which bits are activated for the claimants,
according to an order already established, when they
ask for the port compared by this medule and of course
having the highest priority that first takes account of the
priority of the packet defined its most elevated type
(Signalling [0C] (Highest}, Real-Time [01], Read/Write
[10], Block-Transfer [11]{Lowest)}. The number of flits
is taken then in consideration in case of equality of
pricrity between two claimants which one sends the less
flits and it is kept.

The comparator module is functional as soon as the
Enable signal is active. Before, the outputs are
deactivated. The compared address is (011} that
correspond to the Scuth port. The different headers are
examined then to see which the claimant ports are and
which ones of them are asking for the South port. In
Fig. 5 that corresponds to the simulation of the South
comparator, for the period following the cne where
there is not any claimant, we observe two demands
coming from the ports East and West (G101}, If we see
the ports for that they ask, we notice that the West port
asks for the South port and the East port asks for the
West port. Only the output that corresponds to the West
port is activated.

EXPERIMENTAL RESULTS

Figure 6 presents a simulation result of the different
modules grouped together to form the complete router.
It is then immediate to see, according to the demands,
the behavicur of the router. For example, the demands
being to "01111" means that all ports are claimants
except the North port. If we examine the asked ports,
we notice that the input ports asks for the West and the
Local ports. The West port asks for the South port. The
last port asks for the East port. We notice also that
ReqE, ReqS and ReqW are activated, since they are
asked for. The demands pass then by the arbiters to
adjust possible simultanecus demands {case of the
demands Local and West toward the Scuth port}, it is
sufficient to wait for an acknowledge to allow the
access to every port.

The proposed asynchroncus router is compared with a
synchronous router of the same functionality. These
routers were synthesized using Synopsys Design
Compiler using a (.35um standard cell library. For the
asynchronous router we have started from data flow and
structural instantiated VHDL descriptions extracted
from manual designed STG. For the synchronous router
we have used VHDL/RTL instantiated descriptions.
Since wormhole routing was used, some packets
will be blocked for a period time in the network. The

J. Computer Sci., 1 (3): 429-436, 2005

|

D Stf7:0] -k

cmprtr
Erable

crrpared_Acrss{20]
Heacr_3[20]
Heac_2(20]
Heacr_1[20]
Heacr_0[20]

PF 340

PF_440

PF 1[0

PF_0{40

Recln[3:0

cmprtr_Nth

o
Ab 4 Askers _“E:l,)—kg@’
bt Foc[30] Gri[3:0] et

Afb_Nih

c,
ag !

a3:0]
5_oul[3:0] freimmn

RecOu3:0]

b[z:0]

c 4 Nth

Arb 4 Askers | > RegE =
Poql30] | Gri[3:0] [k

Arb_Est

cmprtr

<] Erable

crrpared_Ackss{20]
Heacr_3[20]
Heacr_2[20]
Headr_1[20]
Heac_0[20]
PF_340

PF 440

PF 1[40

PF_0{40

Reclh[3:0

cmprtr_Est

c4
ReqOu{30] pao] SO0

adr_ports
North(20]
Eagt20]
Loca20]
South[20]
West[20]

Erable

Gen Adrss

Ao 4 Askers | B~
Rec(0] Grioc)] e

Arb_Lel Reql

DR

Arb_4 Askers

c_4 Est Rec[30] Gri[3:0] [t ™

{ReaS ™=

Arb_Sth
Reqs

Arb_4_Askers
1 Recf30] Gr{30]

cmprtr

+d Erable

errparest Ackss{20]
Heacr_320]
Heacr_2(2:0]
Heac_1[20]
Heacr_0[20]
PF_340

PF 440

PF_1[40

PF_0{40)

Recln[3:0

cmprtr_Lel

c4
ReqOu[30] b SOUO)

>+ {Reg ==

Arb_Wst

ReqW

c4

az0 '
;SO
FEC I S

> Grihth >~
¢ 4 Ll c_4 Nth ab N

GntNth

c4
af3:0)
boo SO0 ~

Acie0] -l

cmprtr
Erable

crrpared_Acrss[20]
Heacr_3(2:0)
Heac_2[20]
Headr_1[20]
Heacr_0[20]

PF 340

PF 240

PF 1[0

PF_0{40)

Recln[3:0]

cmprtr Wst

ReqQu[30]

) oG
¢ 4 Est ab
GntEst

¢4
 a(s0] -
b SO0 o [

c4
2[3:0]
boop S U0

o4 Lol ab GniLel

c 4 Wst

c4
afz0]) ~
P ﬁ/%

¢ 4 Sth ab Gntsth

D Nihj7:0] >4k

D_Lol[7:0] <l

D Wl[7.0] ~><k

T

T

cmprtr
Erable

crrparect Ackss{20]
Heacr_3[20]
Heacr_2(20]
Heac_1[20]
Heacr_0[20]
PF_340

PF 440

PF 1[40

PF &0

Reclh[3:0

cmprtr_Sth

c4
- 43.0]
ReOu{30] pzo] S0

c4)
& ™ —
:{3 z s w30 - e Grtst =

GntWst

¢4 Sth

Fig. 7: Architectural View of the Proposed Router

Fig. 8: Layout of the Final Asynchronous Router

435

synchronous router operates with 66 Mflits/s as data
rate (~270 Mhz). After being integrated into a (5x5) 2D
mesh NoC, the final devices occupy a smaller silicon
area than the asynchronous one (4200 mm by 4200
mm). The same NoC based on asynchronous router
occupy a 4881 mm by 4881 mm silicon area and the
asynchronous router operates with 80 Mflits/s as a data
rate. The synchronous router requires less area than the
asynchronous router. The asynchronous router enables
a data rate that is notably greater than the synchronous
one. Figure 7 presents the architecture view of the
asynchronous router controller. The input/output FIFO
buffers and the header addresses FIFO buffer that form
the data path are not shown. Figure 8 presents the
layout result of the final asynchronous router.

J. Computer Sci., 1 (3): 429-436, 2005

CONCLUSIONS

In this study, we have presented an asynchronous router
to be integrated into a 2D mesh NoC. The output ports
arbitrate conflicting requests based into a dynamic
arbiter according to packet priority. This scheme allows
a preemption of lower priority transports.

We have used STG and an asynchrenous library for the
specification step. The synthesized router is SI and it is
based on the generalized C-element gates and the
4-phase “valid”-“invalid” {(Reg/Ack) signals in order to
avoid the inputs race problems. The routers have been
designed by using a CMOS (.35um technelogy. The
asynchronous reuter operates with 80 Mbytes/s as a
data rate. A {(5x5) 2D mesh NoC based on the
asynchrencus router occupies a 4881 mm by 4881 mm
silicon area. Our design show that the asynchronous
router enables a netable grater data rate than their
synchroncus counterparts (66 Mflits/s) but only a small
difference less than the synchronous NoC in silicon
area (4200 mm by 4200 mm). This is evident since
QNoC for GALS ScoC naturally benefit from
asynchrencus interconnects.

Future study will analyse the use of different links, such
as serial versus parallel links. Packet and flit formats
should also be questioned. The area and delay
minimization based on a multiple service level router
will be elaborated in order to reduce the interconnection
problems. The entire NoC model should be analyzed
when used for specific applications and different usage
models and communication requirement mixes. The
power consumption will alse be studied in order to
allow an efficient portability.

REFERENCES
1 Dally, W.I. and B. Towles, 2001. Route Packets, Not
Wires: On-Chip Interconnection Networks. Proc. DAC.
Sutherland, [., 1989. Micropipelines. Comm. of
ACM, Val: 6.
Sonics, Incorporated, http:/www.sonicsinc.com.
Peterson, W., 1999, Design Philosophy of the
Wishbone SoC Architecture. In
http://www silicore.net/wishbone.htm.
Flynn, D., 1997. Amba: Enabling reusable cn-chip
design. Intl. J. [EEE Micro, pp: 20-27.
IBMCoreConnect Information, 2000. In
http://www.chips.ibm.com/products/powerpc/cores.
Liang, J., 8. Swaminathan and R. Tessier, 2000, A SOC:
A Scalable, Single-Chip Communicaticns Architecture.
In the IFEE Intl. Cenf. Parallel Architectures and
Compilation Techniques, pp: 524-529.
Ho, H. and T.M. Pinkston, 2003. A Methodology
for Designing Efficient On-Chip Interconnects on
Well-Behaved Communication Patterns. In The 9™
Intl. Symposium on High-Performance Computer
Architecture (HPCA'03), pp: 377.
Kumar, S., A. Jantsch, I. Soininen, M. Forsell, M.
Millberg, J. Oberg, K. Tiensyrja and A. Hemani,
2002. A network on Chip Architecture and Design
Methodology. In Preoc. IEEE Computer Society
Annual Symposium on VLSI, pp: 105-112.
Hu, I. and R. Marculescu, 2003. Exploiting the
Routing Flexibility for Energy/Performance Aware
Mapping of Regular NoC Architectures. In Proc.

10.

436

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25,

26.

27

28.

Design, Automation and Test in
Conference.

Ye, T.T., L. Benini and G.D. Micheli, 2003,
Packetized On-Chip Interconnect Communication
Analysis for MPSoC. In Proc. Design Automation
and Test in Burope, pp: 344-349.

Dally, W.J. and B. Towles, 2001. Route Packets,
Not Wires: On Chip Interconnection Networks. In
Proc. the 38 Design Autemation Conference.

Peh, L. and W.J. Dally, 2001. A Delay Medel and

Speculahve Architecture for Pipelined Routers. 7t

Eurcpe

Intl. Symp. High-Performance Computer
Architecture (HPCA).
Mullins, R., A. West and S. Moore, 2004,

Low- Latency Virtual Channel Routers for On- Chip
Network. Proc. 31" Intl. Symp. Computer
Architecture.

Wang, H., L.S. Peh and S. Malik, 2003. Power
Driven Design of Router Micrearchitectures in
On-Chip Networks. Proc. MICRO-36.

Rijpkema, E., K. Geossens et al., 2003. Trade-offs
in the Design of a Router with both Guaranteed and
Best-effort Services for Networks on Chip. IEE
Proc.-Comp. Digit. Tech., 150: 294-302.

Banerjee, N., P. Vellanki and K.S. Chatha, 2004. A
Power and Performance Model for Network-
on-Chip Architectures. Proc. DATE.

Vellanki, P., N. Banerjee and K.S. Chatha, 2004.
Quality-of-Service and Hrror Coentrol Techniques
for Network-on-Chip Architectures. Proc.
GLSVLSI’04, Boston, USA, pp: 45-50.
Bainbridge, I. and S. Furber, 2002. Chain: a Delay-
Insensitive Chip Area Interconnect. [EEE Micro,
22:16-23.

Bainbridge, W.J., L.A. Plana and S.B. Furber, 2004.
The Design and Test of a Smartcard Chip Using a
CHAIN Self-timed Network-on-Chip. Proc. DATE.
Belotin, E., I. Ciden, R. Ginosar and A. Kelodny,
2004. Cost considerations in Network on Chip.
Special issue on Networks on Chip. Integration-
The VLSI T

Dobkin, R., R. Ginosar and C.P. Setiriou, 2004.
Data Synchronization I[ssues in GALS SoCs. Proc.
ASYNC.

Kessels, I., A. Peeters, P. Wielage and S.-J. Kim,
2002. Clock Synchronization through Handshake
Signalling. Proc. ASYNC, pp: 539-68.

Villiger, T., H. Kaeslin, F.K. Girkaynak, S.
Oectiker and W. Fichtner, 2003. Self-Timed Ring
for Globally-Asynchronous Locally-Synchronous
Systems. Proc. ASYNC, pp: 141-150.

Muttersbach, J., T. Villiger and W. Fichtner, 2000,
Practical Design of Globally-Asynchrenous
Locally-Synchronous Systems. Proc. ASYNC, pp:
32-61.

Mecore, S., G. Taylor, R. Mullins and P. Rebinson,
2002, Point to Peint GALS Interconnect. Proc.
ASYNC.

Mocore, S.W., G.S. Taylor, P.A. Cunningham, R.D.
Mullins and P. Robinson, 2000. Self-Calibrating
Clocks for Globally Asynchronous Locally
Synchronous Systems. Proc. Intl. Conf. Computer
Design (ICCD}.

Rigaud, I.B., 2002. Spécification de Biblicthéques
pour la Synthése de Circuits Asynchrenes. Phd
Thesis, National Institut of Pelvtechnique of
Grenoble, France.

