
Journal of Computer Science 2 (1): 19-28, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Ramzi A. Haraty, Lebanese American University, P.O. Box 13-5053 Chouran,
 Beirut, Lebanon 1102, 2801

19

Towards a Temporal Multilevel Secure Database (TMSDB)

Ramzi A. Haraty and Natalie Bekaii

Division of Computer Science and Mathematics
Lebanese American University, Beirut, Lebanon

Abstract: Standard Relational Databases are used to store the state of reality at a single moment of
time. Temporal Databases are used to store Time-Varying Data. Multilevel Secure Databases are used
to securely store highly sensitive data. Each of these databases serves its purpose well, but if we were
to model the temporal and sensitive aspect of the real world data, we will not be able to use any of the
previously mentioned databases. Our aim here is to develop a new database model that can be used to
model multilevel secure temporal data.

Key words: Temporal multilevel secure database, standard relational database, temporal database

INTRODUCTION

 Conventional relational databases were designed to
capture reality. They present some aspect of the real
world. They were designed to keep record of current
data without keeping track of historical data. In
conventional databases, changes to the real world are
reflected in the database. Old data stored in the database
is deleted or updated every time a new change occurs.
On the other hand, temporal databases which are
another type of databases are by definition databases
that keep track of historical data. Old data is never
deleted or updated. These databases can be used to
capture past, present and future data, but they provide
little support for insuring the secrecy of data. Multilevel
secure database a third type of databases, insure the
secrecy of data and insure that each user only gains
access to only those data for which he/she has proper
clearance, but do not support the recording and
querying of time varying data, or historical data. Our
aim in this study is to present the definition of a new
relational database model, a model that combines both
the properties of the temporal database model and the
multilevel secure database model, a model that supports
both recording of secret and temporal data. The new-
presented model is the temporal multilevel secure
database model.

Historical background: Several relational models for
multilevel secure databases have been proposed over
the years. All of these proposals implement the policy
of mandatory access protection defined[1]. Mandatory
access controls policies were interpreted for
computerized systems. The mandatory access policies
were made to control access to highly sensitive data.
They are used in applications that support data with
different access classes and users with different
authorizations, applications such as civilian, military,

commercial and governmental agencies. In these
applications the objects (data items) are grouped by
their classification and the subjects (active processes,
users) are grouped by their clearance level.
 Accesses to objects are allowed or denied based on
a comparison of the classification associated with the
object and clearance associated with the subject. We
take the classifications and clearances from a domain of
partially ordered access classes. For two access classes
c1 and c2, c1 is higher than c2 if c1 > c2 and c1
dominates c2 if c1≥ c2. Mandatory access policies state
that no direct access by unauthorized user to classified
data is to be allowed. They also enforce secure
information flow by preventing information from
flowing indirectly from high access classes to lower
access classes.
 According to Bell-LaPadula two restrictions are
imposed on all data accesses.

* The simple security property: A subject is allowed

a read access to an object only if the subject
clearance is identical to or higher than the object’s
classification.

* The �-property: A subject is allowed a write
access to an object only if the subject’s clearance is
identical to or lower than the object’s
classification.

 To implement the two restrictions listed above,
access classes were associated with the elements of a
relation and clearances were associated with subjects
accessing the relation. Subjects with different
clearances see different versions of a multilevel
relation.
 In addition to normal security threats, there were
some indirect means that threatened the security of the
system, a problem referred to as the covert channel.
Covert channels result from passing down information

J. Computer Sci.,2 (1): 19-28, 2006

 20

indirectly by subjects at high levels to subjects at lower
levels. Let us look at the following scenario: A subject
at a level C wants to insert a new tuple with a primary
key pk at level C and it happens that a tuple with the
same primary key pk is inserted at the higher level S by
a subject S. Taking this case from a database
perspective, the insertion of the new tuple should be
rejected, but with respect to security, to reject the
insertion of this tuple will infer indirectly to the user at
the level C the existence of a tuple with the same
primary key pk at a higher security level. To avoid this
problem, multilevel relations had to be allowed to
contain multiple tuples with the same primary key and
these tuples were known as the polyinstantiated tuples.
There are two different types of polyintantiation was
defined[2]:

* Entity or Tuple Polyinstantiation: is to allow

multiple tuples with the same primary key but
different access classes to be stored within the
same relation.

* Attribute or Element Polyinstantiation: is to allow
two or more tuples with the same primary key and
same associated access classes but with different
values for one or more of the remaining non-key
attributes to be stored in the same relation.

 The coexistence of two or more tuples with the
same primary key in the same relation will result in
ambiguity and confusion for users. Therefore, some
additional integrity constraints needed to be specified to
be able to control polyinstantiation and to avoid data
ambiguity.
 In general all the multilevel relational data models
were based on the mandatory access policies and the
concept of tuple polyinstantiation, as for the additional
integrity constraints they differed from one data model
to another, some were alike, some were based on those
defined in other models and some were totally different.
The Sea View model[3] was the first model to
implement the mandatory protection policies. This
model was developed by SRI International and Gemini
Computers. The Sea View model implement multilevel
relations using an algorithm called the decomposition
algorithm. The decomposition algorithm decomposes
multilevel real relations into single-level base relations.
Later a recovery algorithm is used to recover a
multilevel real relation from a single-level relation.
 The Jajodia-Sandhu model was derived from the
Sea View model. The Jajodia-Sandhu model discussed
the most fundamental aspects of the multilevel
relational data model independently of implementation
issues. Many aspects of the Jajodia-Sandhu model are
derived from the Sea View model. What Jajodia-
Sandhu model added to the Sea View model is the
requirement that at each access class there can be at
most one tuple for each entity. In Jajodia-Sandhu model

modified versions of the Sea View decompositions and
recovery algorithms were given.
 The LDV model[4] is another multilevel secure
relational database model. In the LDV model some
restrictions are placed on polyinstantiation. To allow
tuple polyinstantiation in multilevel relations, a
maintenance level is associated with each tuple in the
database. The maintenance level of a tuple is the level
at which the tuple was inserted into the database. The
strength of the LDV model is based on the derivation
technique used to solve element polyinstantiation and
the classification constraints, used to solve covert
channels.
 The MLR data model[5] is a model that combines
ideas from Sea View, belief-based semantics and LDV
model. It is a simple, unambiguous and has the
advantage of retaining upward information flow.
Moreover it has five integrity constraints and five
operation statements for manipulating multilevel
relations.
 The MLR data model retained some previously
defined concepts such as polyinstanstiation, referential
integrity and data manipulation concepts and introduced
several new concepts such as the data-borrow integrity
and the uplevel statement.
 Standard relational data models were designed to
store a snapshot of the real world at a single instant of
time. In these databases the variation of data over time
is treated the same way as ordinary data. This might be
just what we need in certain applications, but in other
applications where there is a need to store the past,
present and future of data this is not enough. These
applications include scheduling applications such as
airlines, trains, record-keeping applications such as
medical applications, accounting, banking and
inventory applications. The use of standard relational
databases for these applications will cause a high data
redundancy problem. The demand for storing and
managing historical and time varying data started to
appear in the early 1970s in the area of medical
information systems; this interest increased in 1982. A
bibliography contained 80 articles from the years 1982
till 1986, was published in 1986[6]. In 1986, there were
at least 25 groups studying time in databases. Among
these groups we have Ben-Zvi[7], Ariav et al. [8],
Snodgrass[9], Lum et al.[10], Clifford[11], Snodgrass and
Ahn[12] and Gadia and Vaishmav[13]. These studies can
be classified into three categories: the formulation of
semantics of time at the conceptual level, the
development of a model for temporal databases and the
design of temporal query languages.
 The studies done to develop a temporal data model
followed two approaches.
 The first approach is to extend the standard
relational data model so that it supports time varying
data and the second approach is based on extending the
snapshot model with time appearing as additional
attributes.

J. Computer Sci.,2 (1): 19-28, 2006

 21

 A book published in year 1993[14], was one of the
books that extensively covered temporal databases
research till year 1993. It is an excellent reference to the
different temporal databases models published till that
year.
 The Historical Relational Data Model (HRDM)
was one of the earliest temporal database models. This
historical model is a consistent extension of the
traditional relational data model. It supported the
recording of time varying data, modeled relationships
over time and enforced referential integrity constraints
with respect to the added temporal dimension. This
model added the new object, the set T of times, to the
standard relational data model and changed the domains
of the relation attributes to become functions from
points in time (T) into some simple value domain.
 Users over the years begun to increasingly request
for temporal database models, therefore, the time
dimension has been added to many data models. These
models include the entity-relationship model, semantic
data models, knowledge based data models, relational
data model, object-oriented data model and deductive
databases.
 In the past few years, more than 2000 papers and
books have been written about temporal databases.
Most of these papers were listed in a series of seven
cumulative bibliographies (the newest one[15] provides
pointers to its predecessors). Other bibliographies with
papers talking about temporal databases published in
the last seven years.
 The first book that entirely talked about temporal
databases was published in year 2000 “Developping
Time-Oriented Database Aplications in SQL” [16].
 Reviewing the historical background of temporal
databases and multilevel secure databases[17] is a paper
that investigates the applicability of the parametric
model for temporal data to query multilevel security
data. This paper gives a brief introduction to the
parametric model for temporal data and the WSQ
model for multilevel security database and shows how
to adapt the parametric model to multilevel security.
The Concept of a user hierarchy in the parametric
model is introduced. As an example for the user
hierarchy, let us consider the following community of
users: system, public, analyzer and classical with user
domains [0, NOW], [0,NOW - 10], [NOW - 4,NOW]
and {NOW}, respectively. The system user can see the
whole information, the public can only see information
at least 10 years old, the analyzer has the last 5 years
worth of information and the classical user only sees
the current information. This study introduces the two
models for multilevel security the parametric model and
the WSQ model and shows that queries can be
expressed more naturally in the parametric model.

MULTILEVEL SECURE DATABASES

 Multilevel secure databases are databases that
contain large amounts of very highly sensitive and
confidential data (e.g., military, governmental, etc.…)

that is why access to the data stored in these databases
needs to be authorized. Although, there is no clear
agreement on the definition of a multilevel secure
database model, we try to present in this chapter the
basic concepts of a multilevel secure relational model.
Our aim is to use the fundamental aspects presented in
this chapter, in building up the model for temporal
multilevel secure databases.
 One of the main concepts in multilevel secure
databases is the assignment of access privileges to users
of the database so as to be able to manage and protect
confidential and sensitive data. Each user is given
access privileges to access the data he/she is authorized
to access. We protect confidential data either by making
it inaccessible to unauthorized users or by providing a
cover story. To provide a cover story, the same real-
world entity is depicted by more than one record. Each
of these records is assigned a different level
classification. Users with different access clearances
see different versions of the data in the database. These
records have the same primary key at all the
classification levels but with different values for the
non-key attributes at each classification level. This
technique is used to protect information stored at a
higher security level by providing some lower security
levels. Data hidden from lower clearance users will be
seen by a user of a higher clearance if this user has the
clearance to see this data.
 Access privileges can be assigned to relations, to
individual tuples in a relation, to individual columns, or
to individual data elements of a relation.

TEMPORAL DATABASES

 A standard relation is two-dimensional with
attributes and tuples as dimensions. A temporal relation
contains two additional, orthogonal time dimensions,
namely valid time and transaction time. Valid time
denotes the interval of time during which according to
our beliefs a fact is true with respect to the real world.
Transaction time records when facts are stored in the
temporal relation. Valid and transaction time have
precise, crisp definitions. If changes to the past are
important, then valid time support is required. If it is
necessary to rollback to a previous state of the database,
then transaction time support is called for. Moreover,
valid times can be updated since they reflect our beliefs
of when a tuple is considered to be true, but transaction
times can not be updated, since they reflect the time a
tuple is recorded in the database and this time is set by
the system and not by the user and therefore it can be
changed.
 Temporal Databases can be divided into three types
based on the two different types of time dimensions
used in temporal databases.

* Transaction Time Databases: Transaction Time

database is a database that contains only one of the

J. Computer Sci.,2 (1): 19-28, 2006

 22

two orthogonal time dimensions, the transaction
time. These databases support the recording of past
and present data only.

* Valid Time Databases: Valid Time database is a
temporal database that records only the valid time
orthogonal time dimension. It supports the
recording of past, present and future data, since the
valid time depends on what the user believes.

 * Bitemporal Databases: The Bitemporal database is
a database that contains both the two time
orthogonal dimensions, the valid time and the
transaction time. It supports the recording of past,
present and future data. Not only it supports the
recording of what we believe was true, is true, or
will be true but also the recording of the time of
when we did believe so.

 In temporal databases other than the primary and
foreign key constraints we have two main constraints.
The first constraint is used to solve the redundancy and
circumlocution problems and the second is used to
solve the contradiction problem.

* Redundancy and circumlocution problems

Constraint: If at any time a relation contains two
distinct tuples that are identical except for their
valid time values i1 and i2 � i1 merges i2 must be
false.

* Contradiction problem Constraint: If at any given
time a relation containing two tuples that have the
apparent primary key value but differ on the values
of their non-key attributes then their valid time
values i1 and i2 must be such the i1 overlaps i2 is
false.

TEMPORAL MULTILEVEL SECURE

DATABASES MODEL

 This study brings together two research directions
in databases technology, temporal databases that keeps
record of the history of data and multilevel secure
databases which groups data in a database into different
classification levels and allows only users with the
appropriate security clearance to access the data stored
on the corresponding classification level. Over the last
twenty years, there ha been a major demand for
recording historical data and in the past few years, the
concern for data security has increased. Temporal
multilevel secure databases meet the two requirements.
They are concerned with assigning access privileges to
past, current and future data. They have both the
characteristics of a temporal database and those of a
multilevel secure database. In this chapter, we present
the definition for a temporal multilevel secure database
model. The definition of a temporal multilevel secure
relation is presented below:

 A temporal multilevel secure relation is of the
form:

R(A1,C1,A2,C2,…,An,Cn,VT,Cvt,TC)
Where, Ai is a data attribute over domain Di, Ci is a
classification attribute for Ai, VT is the valid time
attribute, Cvt is a classification attribute for the valid
time attribute and TC is the tuple-class attribute. The
domain of Ci is specified by a set {Li, …,Hi} which
enumerates the allowed values for access classes,
ranging from the greatest lower bound (glb) Li to the
least upper bound (lub) Hi. The domain of TC is the set
{lub{Li; i=1,…,n},…, lub{Hi: i= 1,…,n}} and the
domain of Cvt is the set {lub{Li; i=1,…,n},…, lub{Hi:
i= 1,…,n}.
 In multilevel temporal databases, we store different
database states and users with different clearances see
different versions of these database states. These
different versions must be kept coherent and consistent,
without introducing any downward signaling channels.
All the tuples in the database must be meaningful, so
we should not have redundancy, circumlocution or
contradiction problems. To be able to meet all of these
requirements we need to specify some constraints on
temporal multilevel secure databases. These constraints
must be a combination of the integrity constraints of
temporal databases along with those of multilevel
secure databases.

Entity integrity: Let AK be the apparent key of R and
let VT be the valid time of R, A temporal multilevel
relation R satisfies entity integrity if and only if for all
instances Rc of R and t ∈ Rc:
Ai ∈ AK � [Ai] ≠ null
[VTi] ≠ null
Ai, Aj ∈ AK � t[Ci] =t[Cj] =t[CVT] (where CVT is
the classification of the valid time)
Ai ∉ AK and Ai <> VTi � t[Ci] ≥ t[CAK] (where
CAK is the classification of the apparent key)

 The first requirement ensures that no attribute of a
primary key of a base relation may be null. The second
requirement specifies that the valid time value can
never be null. The third requirement ensures that all the
attributes of a primary key of a base relation must have
the same access class, not only this the valid time
access class must also have the same access class as
these attributes. The fourth requirement says that the
access class of all non-key attributes (the valid time is
not included) in a tuple dominates the access class of
the primary key.

Null integrity: A multilevel temporal relation R
satisfies null integrity if and only if for each instance
Rc of R both of the following conditions are true:
For all t ∈ Rc, t[Ai] = null � t[Ci] = t[CAK];

J. Computer Sci.,2 (1): 19-28, 2006

 23

Let us say that tuple t subsumes tuple s if for every
attribute Ai, either
t[VTi] overlaps s[VTi] and t[Ai] � s[Ai]
 or
t[Ai] = s[Ai] and t[VTi] merges s[VTi]
 The first requirement means that attributes that
have null values have an access class that is equal to the
access class of the primary key. The second
requirement states that Rc does not contain two distinct
tuples with different non-key attributes values and the
valid time of one overlaps the valid time of another, or
two distinct tuples with identical value for all the
attributes and the valid time of one merges the valid
time of another. Having such tuples will lead to a
problem similar to one of the problems we had in
temporal relational model, the redundancy,
circumlocution or contradiction problem. That is why
we need to prevent the existence of such tuples either
by combining the tuples that have a redundancy or
circumlocution problem or by preventing the existence
of tuples that would cause contradiction (Note we are
talking about the attributes that would an access class
similar to that of the primary key and therefore similar
to that of the valid time).

InterInstance integrity: R satisfies interinstance
integrity if and only if for all c’ ≤ c we have Rc’ = σ
(Rc, c’), where the filter function σ produces the c’
instance Rc’, from Rc as follows:
For every tuple t ∈ Rc such that t[CAK] = c’ , there is a
tuple t’ ∈ Rc’ with t’[AK,CAK] and for Ai ∉ AK

 t[Ai,Ci] if t[Ci] ≤ c’
t’[Ai,Ci] = {
 <null,t[CAK]> otherwise

 There are no tuples in Rc’ other than those derived
by the above rule.
 If at any given time the end result contained two
tuples that have the same apparent primary key value
(the non valid time attributes of the primary key) but
differ on the values of their non-key attributes then their
valid time values i1 and i2 must be such that i1 overlaps
i2 is false.
 If at any time the end result contained two distinct
tuples that are identical except for their valid time
values i1 and i2, then i1 merges i2 must be false.
 In this constraint, the filter function is used to map
the multilevel temporal relation to different instances,
one for each access class, so as to give the user the
ability to see only the historical data for which he is
cleared. The resulting obtained instance will be similar
in a way to a temporal database. In addition, we must
make sure in the end result to combine the tuples that
cause redundancy or circumlocution and not to have
two tuples that lead to a contradiction.

Polyinstantiation integrity: In temporal multilevel
secure databases, we may have several tuples with the
same primary key but with different values for the non-
key attributes. Not only this, even at the same access
level we will have more than one tuple with the same
primary key but with different valid times. As
previously mentioned in multilevel secure databases we
cannot prevent a low user from inserting a tuple with
the same primary key as a previously inserted high
level tuple or we might create some downward
signaling channel that will violate the secrecy of data.
At the same time we can not prevent a user at the same
access level from inserting a tuple with the same
primary key as an old existing tuple at the same access
level but with different valid time. We can either refuse
such an insertion or override existing data. Refusing to
insert this tuple, or overriding existing data for either
any of the two previously mentioned reasons will cause
a downward signaling channel, the loss of secret
information and the destruction of historical data. We
have no choice but to keep all the tuples without
violating the foundations of relational databases. That’s
why we need to declare the access class and the valid
time to be part of the primary key. So we need to
specify the following key constraint:
 R satisfies the key integrity if and only if for every
Rc we have for all Ai: AK, VT, CAK, CVT, Ci → Ai.
that means that the user specified primary key AK in
conjunction with the valid time, the classification
attributes CAK, the classification attribute CVT and Ci,
functionally determines the values of Ai attribute.
 The operations on a relational database can be
categorized into two main categories retrievals and
updates. The update operations can be divided into
three types of operations: Insert which is used to insert
a new tuple or tuples in a relation, Delete which is used
to delete tuples and Modify which is used to change the
values of some attributes.
 We only need to worry about insert and modify
operations in a temporal multilevel secure database.
We are going to show by examples how update
operations take place in a temporal multilevel secure
database. Whenever we need to do an update operation,
we need to make sure not to violate the integrity
constraints specified on the database.
 Let us take for example the temporal multilevel
military officers relation presented in Table 1.

Table 1: An example of a temporal multilevel secure relation
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-∞] U U
101 S Miles S Marshal S [1985/7-∞] S S
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-∞] U U
101 S Miles S Marshal S [1985/7-∞] S S

 When introducing multilevel access classes.
Access clearances are assigned to individual data
elements of a relation. Subjects having different

J. Computer Sci.,2 (1): 19-28, 2006

 24

clearances see different versions of the military
officers’ relation. A U-User having a clearance at the
access class u will see a version of the military officers’
relation that includes only the data that were assigned
an access class u. While an S-User will be able to see a
version of the military officers table that will include
both the data that were assigned an access class u and
an access class s. In order to be able to record time
varying data into our database we need to extend the
military officers’ relation by adding the temporal
attribute ValidTime. It is an interval that we use to
determine when the data inserted into the tuple, was, is
or will be valid. The U-user version of the military
officers table is shown in Table 2 and the S-User
version of the military officers table is shown in
Table 3.

Table 2: The U-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-∞] U U

Table 3: The S-user version of the military _officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-∞] U U
101 S Miles S Inspector General S [1985/7-∞] S S

Table 4: The U-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-1981/3] U U
100 U Johnson U Lieutanent General U [1981/4-∞] U U

 In order to understand how update operations take
place in a temporal multilevel secure relation, let us
take the following example. Let us assume that on April
1981 a U-User wants to update the rank of the military
officer “Johnson” from “Major General” to “Lieutenant
General”. Table 4 shows the U-user version of the
military officers table and Table 5 shows the S-User
version after this update.

Table 5: The S-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-1981/3] U U
100 U Johnson U Lieutanent General U [1981/4-∞] U U
101 S Miles S Inspector General S [1985/7-∞] S S

 As a result to this update a whole new tuple is
inserted. This new tuple is inserted at the U class. The
valid time for the old tuple of the military officer
“Johnson” is updated to reflect the time in history when
the rank of officer “Johnson” was “Major General”.
From the date April 1981, the rank of the officer
“Johnson” changed to “Lieutenant General”.
 As we can see from that example, an update
performed by a User with an X clearance on a tuple
with an access privilege X is dealt with in a way similar
to the way we deal with an update operation in a
temporal database by inserting a new tuple with a new
valid time interval and updating the valid time interval

of the old tuple. The new inserted tuple will also have
an access privilege X.
 Let us take another example, in which we deal with
the case where a higher level user tries to update a tuple
with a lower level access privilege. Going back to our
Military Officers example, a tuple originally inserted by
a U-User to the Military Officers table, can be updated
by a higher level user like the S-User. Assume that on
February 1, 1997, a user with an S clearance gives the
two officers “Johnson” and “Miles” a new higher rank.
Since in temporal databases whenever we are updating
we do not actually update the value, but we rather insert
a new tuple with the same values for all the attributes,
except for the attribute that is being updated and the
valid time timestamp value, the same applies here and
the S user would have to insert a new tuple. This tuple
would be inserted at the S-level since an S-user is
performing the operation (Table 6 and 7). But this
would create a problem, because we would have two
tuples with the same apparent key with overlapping
timestamps.

Table 6: The S-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-1981/3] U U
100 U Johnson U Lieutanent GeneralU [1981/4-∞] U U
100 S Johnson S Inspector General S [1997/2-∞] S S
101 S Miles S Inspector General S [1981/4-1987/1] S S
101 S Miles S Marshal S [1997/2-∞] S S

Table 7: The U-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-1981/3] U U
100 U Johnson U Lieutanent General U [1981/4-1997/1] U U
100 U Johnson U Null U [1997/2-∞] U U

Table 8: The S-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-1981/3] U U
100 U Johnson U Lieutanent General U [1981/4-1997/1] U U
100 U Johnson U Null U [1997/2-∞] U U
100 S Johnson S Inspector General S [1997/2-∞] S S
101 S Miles S Inspector General S [1981/4-1987/1] S S
101 S Miles S Marshal S [1997/2-∞] S S

 This would result in a temporary inconsistency in
the database that needs to be resolved. For instance, the
inconsistency may be resolved as follows: The S-user
logs on at the U level and insert a new tuple with a
nullified rank value that happens to have the same
timestamp of the tuple inserted at the S-level. Table 7
and 8 show the results.
 This schema won’t create a downward signaling
channel from one subject to another. Since the
nullification of the salary at the U-level is being done
by a U-subject. Someone might say that there is a
downward signaling channel with a human in the loop.
The human is, however trusted not to let the channel be
exercised without good cause.
 The coexistence of the tuple (100, Johnson,
Inspector General, [1997/2-∞]) and the tuple (100,

J. Computer Sci.,2 (1): 19-28, 2006

 25

Johnson, null,[1997/2-∞]) in Military OfficersS , two
tuples with the same primary key, is what we call
polyinstantiation. Here there is no threat of entity or
attribute polyinstantiation, because at any time the
attribute value is updated this means that a new tuple
would need to be inserted with the same primary key,
same time timestamps, but with different value for the
attribute at each level, the value of the attribute would
appear null at the lowest level, if this attribute was
updated by a higher level user.
 Another problem that the coexistence of these two
tuples might create is that they both have the same time
timestamps. In temporal databases at any given instance
of time each military officer is supposed to have only
one rank. This is a problem that we refer to as the
contradiction problem. Since the military officer 100 is
shown to have a rank of both null and “Inspector
General” from the date February1997 and up to this
date.
 There is another option to consider when dealing
with the problem of having two tuples with the same
primary key and overlapping times.The S user could
login at the U level but instead of inserting a new tuple
with a nullified rank value that happens to have the
same timestamp as the tuple inserted at the S-level
(Table 7 and 8) he could just perform a temporal delete
on the military officer ‘100’. This delete won’t result in
deleting the military officer ‘100’ at the U-level, but it
would rather end the validity time of this tuple by
changing the end value of the valid interval to the start
value of the valid interval of the tuple inserted at the S
level, decreased of one unit of the used temporal
granularity. Table 9 shows the U_user version of the
military officers table with the ended valid time for
officer ‘100’ and Table 10 shows the S-user version of
the military officers table.

Table 9: The U-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 U Johnson U Major General U [1953/3-1981/3] U U
100 U Johnson U Lieutanent General U [1981/4-1997/1] U U

 The deletion of the officer ‘100’ U-user tuple will
not result in a downward signaling channel since the
tuple deletion is done by a U-user and the deletion itself
might be considered as a good cover story to the change
of the rank of the officer.

MODEL MODIFICATIONS

 After taking several examples of the update
operations that might take place in a temporal
multilevel secure database, we notice that the
classifications of all the attributes within a certain tuple
are the same. The case where we might have two
different classifications for two different attributes in
the same tuple will not occur in temporal multilevel
secure databases. In multilevel secure databases this

case occurs, when a user at a certain level for example
level1 inserts a new tuple, then a user at level 2 where
level 2 > level 1 updates one of the attributes of the
tuple inserted at level 1. In temporal secure databases,
the previous example will result in a new tuple inserted
at level 2, therefore all of the attributes of the tuple at
level 1 will have the same original element
classification. Therefore, there is no need of recording
the element classification for each attribute, the tuple
classification will be sufficient to record the
classification of all the attributes. Table 11 shows the
S-User version of the military officers table after
removing the element classification for each attribute
and relying on the tuple classification to record the
classification of all the tuple attributes.

Table 11: The S-user version of the military_officer’s table
ID Name Rank Valid Time TC
100 Johnson Major General [1953/3-1981/3] U
100 Johnson Lieutanent General [1981/4-1997/1] U
100 Johnson Inspector General [1997/2-∞] S
101 Miles Inspector General [1981/4-1987/1] S
101 Miles Marshal [1997/2-∞] S

 The removal of the element classification will lead
to a change in the definition of the temporal multilevel
secure database. The new definition of the temporal
multilevel secure relation would be as follows:

R (A1,A2,…,An, VT, TC)

Where, Ai is a data attribute over domain Di, VT is the
valid time attribute and TC is the tuple-class attribute.
The domain of TC is specified by a set {Li, …,Hi}
which enumerates the allowed values for access classes,
ranging from the greatest lower bound (glb) Li to the
least upper bound (lub) Hi.
 Since the definition of the temporal multilevel
secure relation has been changed so would the
definitions of the integrity constraints. The new
definitions are listed below:

Entity integrity: Let AK be the apparent key of R and
let VT be the valid time of R, A temporal multilevel
relation R satisfies entity integrity if and only if for all
instances Rc of R and t ∈ Rc:
Ai ∈ AK � [Ai] ≠ null
[VTi] ≠ null

 The new definition of the entity integrity constraint
specifies that no part of the primary key can have a null.
The first requirement ensures that no attribute of a
primary key of a base relation may be null. The second
requirement specifies that the valid time value can
never be null. The Third and the fourth requirement
have been removed of the new definition.
Null integrity: A multilevel temporal relation R
satisfies null integrity if and only if for each instance Rc
of R both of the following conditions are true:

J. Computer Sci.,2 (1): 19-28, 2006

 26

Let us say that tuple t subsumes tuple s if for every
attribute Ai, either
t[VTi] overlaps s[VTi] and t[Ai] � s[Ai]
 or
t[Ai] = s[Ai] and t[VTi] merges s[VTi]
 The first requirement of this constraint is no longer
needed. The second requirement that states that Rc does
not contain two distinct tuples with different non-key
attributes values and the valid time of one overlaps the
valid time of another, or two distinct tuples with
identical value for all the attributes and the valid time of
one merges the valid time of another, still holds.

InterInstance integrity: R satisfies interinstance
integrity if and only if for all c’ ≤ c we have Rc’ = σ
(Rc, c’), where the filter function σ produces the c’
instance Rc’, from Rc as follows:
For every tuple t ∈ Rc such that TC = c’, there is a
tuple t’ ∈ Rc’ with t’[TC]
There are no tuples in Rc’ other than those derived by
the above rule.
 If at any given time the end result contained two
tuples that have the same apparent primary key value
(the non valid time attributes of the primary key) but
differ on the values of their non-key attributes then their
valid time values i1 and i2 must be such that i1 overlaps
i2 is false.
 If at any time the end result contained two distinct
tuples that are identical except for their valid time
values i1 and i2, then i1 merges i2 must be false.
 The first requirement of this integrity has been
modified to meet the new definition of the temporal
multilevel secure database relation.

Polyinstantiation integrity: The new definition of the
polyinstantiation integrity to meet the new definition of
the temporal multilevel secure database. We declare the
apparent key, the tuple access class and the valid time
to be the primary key. So the new key constraint
definition is as follows:
 R satisfies the key integrity if and only if for every
Rc we have for all Ai, VT, TC → Ai. that means that
the user specified primary key AK in conjunction with
the valid time, the tuple classification attribute TC
functionally determines the values of Ai attribute.

MODEL IMPLEMENTATION

 A prototype implementing the concepts presented
in this study has been developed. TMSDB, the new
developed prototype was used to create and manipulate
temporal multilevel secure databases. It was
implemented using Powerbuilder 9.0 for application
development and Sybase Adaptive Server Anywhere as
a DBMS. TMSDB is a GUI application that works as a
front end to a relational DBMS. It translates temporal
multilevel secure SQL statements into standard SQL
statements.

 TMSDB is a software application that provides the
user with the functionalities of creating and
manipulating a temporal multilevel secure database.
Using TMSDB the user can create a database, its tables
and define primary key and foreign key constraints on
these tables. At the physical level, newly created
records are time stamped with valid time periods by
adding two additional attributes to the table “valid time
start” and “valid time end”. As for multilevel security a
third additional attribute is added to the table, the TC
attribute. This attribute is used to record the tuple
classification.
 Moreover, TMSDB supports temporal query
language ATSQL2. ATSQL2 is an extension to SQL
and it supports temporal SQL statements and queries,
temporal inserts, update and delete statements. The user
can query and update the created database using
ATQL2. As for queries, the retrieved data will be
filtered according to the time flags specified in the
temporal SQL statements.
 TMSDB also supports multilevel security by the
use of a security system that requires the user to login
to the system using a login in name and an encrypted
password. The login name and password are used to
determine the access level of the user. The user access
level is used to determine the tuple classification of
newly inserted tuples and the filtering criteria to use
when returning the results of executed queries.
 We provide a list of example queries executed
using TMSDB. These queries and their results are listed
below.

Example 1: To create the “officer” table the SQL
presented below was executed in the TMSDB
application.

CREATE TABLE officer
 (officer_code varchar(3) not null, officer_f_name
varchar(20), officer_l_name varchar(20), primary
key(officer_code)) AS VALIDTIME

Example 2: The SQL presented below was used to
insert a new officer record in the “officer” table. This
SQL was executed by an S-user. The result of this SQL
is the tuple presented in Table 12.

VALIDTIME PERIOD [1990/01/01-2001/01/01)
INSERT INTO "officer"
("officer_code","officer_f_name", "officer_l_name")
VALUES ('40', 'Thomas', 'Johnson’);

Table 12: The results of example 2
code f_name l_name Valid Time TC
40 Thomas Johnson [1990/01/01-2001/01/01] S

Example 3: The SQL presented below was used to
insert a new officer record in the “officer” table. This
SQL was executed by a U-user. So now we have two

J. Computer Sci.,2 (1): 19-28, 2006

 27

Officers with the same officer code in the Officer table.
The two officers’ records were inserted by users with
different access levels. The table records are presented
in Table 13.
VALIDTIME PERIOD [1992/01/01-2006/01/01)
INSERT INTO "officer"
("officer_code","officer_f_name", "officer_l_name")
VALUES ('40', 'John', 'Frank’);

Table 13: The results of example 3
code Of_name l_name Valid Time TC
40 Thomas Johnson [1990/01/01-2001/01/01] S
40 John Frank [1992/01/01 -2006/01/01] U

Example 4: The SQL presented below was used to
insert a new officer record in the “officer” table. This
SQL was executed by an S-user. The table records of
Officer table are presented in Table 14.

VALIDTIME PERIOD [2002/01/01-Forever)
INSERT INTO "officer"
("officer_code","officer_f_name", "officer_l_name")
VALUES ('50', 'Fred', 'Wagner’);

Table 14: The results of example 4
code Of_name l_name Valid Time TC
50 Fred Wagner [2002/01/01 – Forever] S
40 Thomas Johnson [1990/01/01-2001/01/01] S
40 John Frank [1992/01/01 -2006/01/01] U

Example 6: A U-user logs on to the TMSDB
applications and executes the following SQL query:

VALIDTIME PERIOD [beginning – forever)
SELECT *
FROM officer
The Results of the executed SQL query are presented in
Table 15. The Only record that will be visible for the U-
User is the officer John Record.

Table 15: The results of example 6
code Of_name l_name Valid Time TC
40 John Frank [1992/01/01 -2006/01/01] U

Example 7: An S-user logs on to the TMSDB
applications and executes the same previous SQL
query:
 The Results of the executed SQL query are
presented in Table 16. The Only record that will be
visible for the U-User is the officer John Record.

Table 16: The results of example 7
code Of_name l_name Valid Time TC
50 Fred Wagner [2002/01/01 – Forever] S
40 Thomas Johnson [1990/01/01-2001/01/01] S
40 John Frank [1992/01/01 -2006/01/01] U

Example 8: The S-User wants to modify the Officer
“Fred Wagner” family name to “Fred Steinberg”.
Today’s date is ‘2005/05/04’, the result of this update is

presented in Table 17. A new tuple is inserted for the
officer ‘Fred’ with the same apparent primary key and
same first name, the last name has been changed to
‘steinberg’, the valid time start is set to today’s date and
the validtime end value is set forever (to say that the
data in this record is valid until changed). The old
record for the officer ‘Fred’ is not modified except for
the value of the valid end time which is set to
yesterday’s date.

VALIDTIME PERIOD [2003/01/01 – forever)
UPDATE officer SET officer_l_name = ‘Steinberg’
where officer_code = ‘50’

Table 17: The results of example 8
code f_name l_name Valid Time TC
50 Fred Wagner [2002/01/01 – 2005/05/03] S
40 Thomas Johnson [1990/01/01-2001/01/01] S
40 John Frank [1992/01/01 -2006/01/01] U
50 Fred Steinberg [2005/05/04 – Forever] S

CONCLUSION

 In this study we introduced a new database model
the temporal mulltilevel secure relational data model. It
is a model that combines the characteristics of the
temporal database model and the multilevel secure
database model. In multilevel secure databases the main
concern are mandatory access control, polyinstantiation
and secure transaction processing, while in temporal
databases the main concern is the addition of time
support to record historical, present and future data. The
temporal multilevel secure database model is a model
that meets all of these concerns combined. In this study,
we present an overview of the research and
development efforts in both the area of temporal
databases and multilevel secure databases, a definition
of the new suggested model, the update operations that
can take place in a temporal multilevel secure database
and the integrity constraints that we need to meet in a
temporal multilevel secure database in order to make
sure that all the data inserted in the database is
consistent, meaningful, historical and secure. A
prototype of this model has been implemented. A
detailed description and some of the example queries
executed using this prototype are also presented in this
study
 More work is still to be done in this area. The
temporal database used in this model is a validtime
database; therefore the developed temporal multilevel
secure database model was a validtime temporal
multilevel secure model. In this model the only time
attribute added to the model was the validtime interval.
Much more interesting work remains to be done in the
area of bitemporal multilevel secure database model, a
model that will support the recording of both the
transaction time and the validtime interval and the
transaction-time temporal multilevel secure model, that
will support only the recording of the transaction time.

J. Computer Sci.,2 (1): 19-28, 2006

 28

REFERENCES

1. Department of Defense, 1985. National Computer

Security Center. Department of Defense Trusted
Computer System Evaluation Criteria. DOD
5200.28-STD

2. Jajodia, S., S. Sandhu Ravi and T. Blaustein
Barbara. Toward a Multilevel Secure Relational
Data Model. Information Security, pp: 460-492

3. Lunt, T.F., D.E. Denning, R.L. Schell, M.
Heckman and W.M. Shockley, 1990. The Sea
View Security Model. IEEE Trans. Software
Engg., 16: 6.

4. Haigh, J.T., R.C. O’Brien and D.J. Thomsen, 1991.
The LDV Secure Relational DBMS Model.

5. Smith, K. and M. Winslett, 1992. Entity Modeling
in the MLS relational Model. In Proc. Intl. Conf.
Very Large Databases (Vancouver, Canada, Aug.
1992), IEEE Computer Society Press, Los
Alamitos, CA, pp: 199-210.

6. Mckenzie, E., 1986. Bibliography: Temporal
databases. ACM SZGMOD Rec., 15: 40-52.

7. Ben-Zvi, J., 1982 The Time Relational Model.
Ph.D. Thesis. Department of Computer Science,
University of California, Los Angeles, CA.

8. Ariav, G., A. Beller and H.L. Morgan, 1984. A
Temporal Model (Technical Report DS-WP 82-
12-05). Department of Decision Sciences
University of Pennsylvania, Philadelphia, PA. Bar-
Hillel, Yehoshua 1954 Indexical Expressions.
Mind, 63: 359-379.

9. Snodgrass, R., 1984. The Temporal Query

Language TQUEL. In Proc. Third ACM SIGACT-
SIGMOD Symp. Principles of Database Systems,
Waterloo, Ontario, Canada.

10. Lum, V., et al., 1984. Designing DBMS Support
for the Temporal Dimension. In ACM–SIGMOD
Intl. Conf. Management of Data. Boston, MA.

11. Clifford, J., 1985. Towards an Algebra of
Historical Databases. In ACM-SIGMOD Intl.
Conf. Management of Data. Austin, TX.

12. Snodgrass, R. and I. Ahn, 1985. A Taxonomy of
Time in Data Bases. In ACM-SIGMOD Intl. Conf.
Management of Data. Austin, TX.

13. Gadia, S.K. and J. Vaishnav, 1985. A query
language of homogenous temporal data base. In
Proc. Fourth Ann. ACM SIGACT-SIGMOD
Symp. Priniciples of Database Systems.

14. Tansel, A., J. Clifford, S. Jajodia, A. Segev and R.
Snodgrass, 1993. Temporal Databases: Theory,
Design and Implementation. The
Benjamin/Cummings Publishing Company,
Redwood City.

15. Wu, Y., S. Jajodia and X. S. Wang. Temporal
Database Bibliography Update, pp: 338-366.

16. Snodgrass, R.T., 2000. Developing Time-Oriented
Database Applications in SQL. Morgan Kaufmann
Publishers.

17. Shashi K. Gadia, 1998. Applicability of temporal
data models to query multilevel security databases:
A case study. Computer Science Department Iowa
State University.

