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Abstract: Standard Relational Databases are used to store the state of reality at a single moment of 
time. Temporal Databases are used to store Time-Varying Data. Multilevel Secure Databases are used 
to securely store highly sensitive data. Each of these databases serves its purpose well, but if we were 
to model the temporal and sensitive aspect of the real world data, we will not be able to use any of the 
previously mentioned databases. Our aim here is to develop a new database model that can be used to 
model multilevel secure temporal data. 
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INTRODUCTION 

 
 Conventional relational databases were designed to 
capture reality. They present some aspect of the real 
world. They were designed to keep record of current 
data without keeping track of historical data. In 
conventional databases, changes to the real world are 
reflected in the database. Old data stored in the database 
is deleted or updated every time a new change occurs. 
On the other hand, temporal databases which are 
another type of databases are by definition databases 
that keep track of historical data. Old data is never 
deleted or updated. These databases can be used to 
capture past, present and future data, but they provide 
little support for insuring the secrecy of data. Multilevel 
secure database a third type of databases, insure the 
secrecy of data and insure that each user only gains 
access to only those data for which he/she has proper 
clearance, but do not support the recording and 
querying of time varying data, or historical data. Our 
aim in this study is to present the definition of a new 
relational database model, a model that combines both 
the properties of the temporal database model and the 
multilevel secure database model, a model that supports 
both recording of secret and temporal data. The new-
presented model is the temporal multilevel secure 
database model.  
 
Historical background: Several relational models for 
multilevel secure databases have been proposed over 
the years. All of these proposals implement the policy 
of mandatory access protection defined[1]. Mandatory 
access controls policies were interpreted for 
computerized systems. The mandatory access policies 
were made to control access to highly sensitive data. 
They are used in applications that support data with 
different access classes and users with different 
authorizations, applications such as civilian, military, 

commercial and governmental agencies.  In these 
applications the objects (data items) are grouped by 
their classification and the subjects (active processes, 
users) are grouped by their clearance level. 
 Accesses to objects are allowed or denied based on 
a comparison of the classification associated with the 
object and clearance associated with the subject.  We 
take the classifications and clearances from a domain of 
partially ordered access classes. For two access classes 
c1 and c2, c1 is higher than c2 if c1 > c2 and c1 
dominates c2 if c1≥ c2. Mandatory access policies state 
that no direct access by unauthorized user to classified 
data is to be allowed. They also enforce secure 
information flow by preventing information from 
flowing indirectly from high access classes to lower 
access classes. 
 According to Bell-LaPadula two restrictions are 
imposed on all data accesses. 
 
* The simple security property: A subject is allowed 

a read access to an object only if the subject 
clearance is identical to or higher than the object’s 
classification. 

* The �-property: A subject is allowed a write 
access to an object only if the subject’s clearance is 
identical to or lower than the object’s 
classification. 

 
 To implement the two restrictions listed above, 
access classes were associated with the elements of a 
relation and clearances were associated with subjects 
accessing the relation. Subjects with different 
clearances see different versions of a multilevel 
relation. 
 In addition to normal security threats, there were 
some indirect means that threatened the security of the 
system, a problem referred to as the covert channel. 
Covert channels result from passing down information 
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indirectly by subjects at high levels to subjects at lower 
levels. Let us look at the following scenario: A subject 
at a level C wants to insert a new tuple with a primary 
key pk at level C and it happens that a tuple with the 
same primary key pk is inserted at the higher level S by 
a subject S. Taking this case from a database 
perspective, the insertion of the new tuple should be 
rejected, but with respect to security, to reject the 
insertion of this tuple will infer indirectly to the user at 
the level C the existence of a tuple with the same 
primary key pk at a higher  security level. To avoid this 
problem, multilevel relations had to be allowed to 
contain multiple tuples with the same primary key and 
these tuples were known as the polyinstantiated tuples. 
There are two different types of polyintantiation was 
defined[2]: 
 
* Entity or Tuple Polyinstantiation: is to allow 

multiple tuples with the same primary key but 
different access classes to be stored within the 
same relation. 

* Attribute or Element Polyinstantiation: is to allow 
two or more tuples with the same primary key and 
same associated access classes but with different 
values for one or more of the remaining non-key 
attributes to be stored in the same relation. 

 
 The coexistence of two or more tuples with the 
same primary key in the same relation will result in 
ambiguity and confusion for users. Therefore, some 
additional integrity constraints needed to be specified to 
be able to control polyinstantiation and to avoid data 
ambiguity. 
 In general all the multilevel relational data models 
were based on the mandatory access policies and  the 
concept of tuple polyinstantiation, as for the additional 
integrity constraints they differed from one data model 
to another, some were alike, some were based on those 
defined in other models and some were totally different.  
The Sea View model[3] was the first model to 
implement the mandatory protection policies. This 
model was developed by SRI International and Gemini 
Computers. The Sea View model implement multilevel 
relations using an algorithm called the decomposition 
algorithm. The decomposition algorithm decomposes 
multilevel real relations into single-level base relations. 
Later a recovery algorithm is used to recover a 
multilevel real relation from a single-level relation. 
 The Jajodia-Sandhu model was derived from the 
Sea View model. The Jajodia-Sandhu model discussed 
the most fundamental aspects of the multilevel 
relational data model independently of implementation 
issues. Many aspects of the Jajodia-Sandhu model are 
derived from the Sea View model. What Jajodia-
Sandhu model added to the Sea View model is the 
requirement that at each access class there can be at 
most one tuple for each entity. In Jajodia-Sandhu model 

modified versions of the Sea View decompositions and 
recovery algorithms were given. 
 The LDV model[4] is another multilevel secure 
relational database model. In the LDV model some 
restrictions are placed on polyinstantiation. To allow 
tuple polyinstantiation in multilevel relations, a 
maintenance level is associated with each tuple in the 
database. The maintenance level of a tuple is the level 
at which the tuple was inserted into the database. The 
strength of the LDV model is based on the derivation 
technique used to solve element polyinstantiation and 
the classification constraints, used to solve covert 
channels. 
 The MLR data model[5] is a model that combines 
ideas from Sea View, belief-based semantics and LDV 
model. It is a simple, unambiguous and has the 
advantage of retaining upward information flow. 
Moreover it has five integrity constraints and five 
operation statements for manipulating multilevel 
relations. 
 The MLR data model retained some previously 
defined concepts such as polyinstanstiation, referential 
integrity and data manipulation concepts and introduced 
several new concepts such as the data-borrow integrity 
and the uplevel statement. 
 Standard relational data models were designed to 
store a snapshot of the real world at a single instant of 
time. In these databases the variation of data over time 
is treated the same way as ordinary data. This might be 
just what we need in certain applications, but in other 
applications where there is a need to store the past, 
present and future of data this is not enough. These 
applications include scheduling applications such as 
airlines, trains, record-keeping applications such as 
medical applications, accounting, banking and 
inventory applications. The use of standard relational 
databases for these applications will cause a high data 
redundancy problem. The demand for storing and 
managing historical and time varying data started to 
appear in the early 1970s in the area of medical 
information systems; this interest increased in 1982. A 
bibliography contained 80 articles from the years 1982 
till 1986, was published in 1986[6]. In 1986, there were 
at least 25 groups studying time in databases. Among 
these groups we have Ben-Zvi[7], Ariav et al. [8], 
Snodgrass[9], Lum et al.[10], Clifford[11], Snodgrass and 
Ahn[12] and Gadia and Vaishmav[13]. These studies can 
be classified into three categories: the formulation of 
semantics of time at the conceptual level, the 
development of a model for temporal databases and the 
design of temporal query languages. 
 The studies done to develop a temporal data model 
followed two approaches. 
 The first approach is to extend the standard 
relational data model so that it supports time varying 
data and the second approach is based on extending the 
snapshot model with time appearing as additional 
attributes. 
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 A book published in year 1993[14], was one of the 
books that extensively covered temporal databases 
research till year 1993. It is an excellent reference to the 
different temporal databases models published till that 
year. 
 The Historical Relational Data Model (HRDM) 
was one of the earliest temporal database models. This 
historical model is a consistent extension of the 
traditional relational data model. It supported the 
recording of time varying data, modeled relationships 
over time and enforced referential integrity constraints 
with respect to the added temporal dimension. This 
model added the new object, the set T of times, to the 
standard relational data model and changed the domains 
of the relation attributes to become functions from 
points in time (T) into some simple value domain. 
 Users over the years begun to increasingly request 
for temporal database models, therefore, the time 
dimension has been added to many data models. These 
models include the entity-relationship model, semantic 
data models, knowledge based data models, relational 
data model, object-oriented data model and deductive 
databases. 
 In the past few years, more than 2000 papers and 
books have been written about temporal databases. 
Most of these papers were listed in a series of seven 
cumulative bibliographies (the newest one[15] provides 
pointers to its predecessors). Other bibliographies with 
papers talking about temporal databases published in 
the last seven years. 
 The first book that entirely talked about temporal 
databases was published in year 2000 “Developping 
Time-Oriented Database Aplications in SQL” [16]. 
 Reviewing the historical background of temporal 
databases and multilevel secure databases[17] is a paper 
that investigates the applicability of the parametric 
model for temporal data to query multilevel security 
data. This paper gives a brief introduction to the 
parametric model for temporal data and the WSQ 
model for multilevel security database and shows how 
to adapt the parametric model to multilevel security. 
The Concept of a user hierarchy in the parametric 
model is introduced. As an example for the user 
hierarchy, let us consider the following community of 
users: system, public, analyzer and classical with user 
domains [0, NOW], [0,NOW - 10], [NOW - 4,NOW] 
and {NOW}, respectively. The system user can see the 
whole information, the public can only see information 
at least 10 years old, the analyzer has the last 5 years 
worth of information and the classical user only sees 
the current information. This study introduces the two 
models for multilevel security the parametric model and 
the WSQ model and shows that queries can be 
expressed more naturally in the parametric model. 
 

MULTILEVEL SECURE DATABASES 
 
 Multilevel secure databases are databases that 
contain large amounts of very highly sensitive and 
confidential data (e.g., military, governmental, etc.…) 

that is why access to the data stored in these databases 
needs to be authorized. Although, there is no clear 
agreement on the definition of a multilevel secure 
database model, we try to present in this chapter the 
basic concepts of a multilevel secure relational model. 
Our aim is to use the fundamental aspects presented in 
this chapter, in building up the model for temporal 
multilevel secure databases. 
 One of the main concepts in multilevel secure 
databases is the assignment of access privileges to users 
of the database so as to be able to manage and protect 
confidential and sensitive data. Each user is given 
access privileges to access the data he/she is authorized 
to access. We protect confidential data either by making 
it inaccessible to unauthorized users or by providing a 
cover story. To provide a cover story, the same real-
world entity is depicted by more than one record. Each 
of these records is assigned a different level 
classification. Users with different access clearances 
see different versions of the data in the database. These 
records have the same primary key at all the 
classification levels but with different values for the 
non-key attributes at each classification level. This 
technique is used to protect information stored at a 
higher security level by providing some lower security 
levels. Data hidden from lower clearance users will be 
seen by a user of a higher clearance if this user has the 
clearance to see this data. 
 Access privileges can be assigned to relations, to 
individual tuples in a relation, to individual columns, or 
to individual data elements of a relation. 
 

TEMPORAL DATABASES 
 
 A standard relation is two-dimensional with 
attributes and tuples as dimensions. A temporal relation 
contains two additional, orthogonal time dimensions, 
namely valid time and transaction time. Valid time 
denotes the interval of time during which according to 
our beliefs a fact is true with respect to the real world. 
Transaction time records when facts are stored in the 
temporal relation. Valid and transaction time have 
precise, crisp definitions. If changes to the past are 
important, then valid time support is required. If it is 
necessary to rollback to a previous state of the database, 
then transaction time support is called for. Moreover, 
valid times can be updated since they reflect our beliefs 
of when a tuple is considered to be true, but transaction 
times can not be updated, since they reflect the time a 
tuple is recorded in the database and this time is set by 
the system and not by the user and therefore it can be 
changed. 
 Temporal Databases can be divided into three types 
based on the two different types of time dimensions 
used in temporal databases. 
 
* Transaction Time Databases: Transaction Time 

database is a database that contains only one of the 
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two orthogonal time dimensions, the transaction 
time. These databases support the recording of past 
and present data only.  

* Valid Time Databases: Valid Time database is a 
temporal database that records only the valid time 
orthogonal time dimension. It supports the 
recording of past, present and future data, since the 
valid time depends on what the user believes.  

 * Bitemporal Databases: The Bitemporal database is 
a database that contains both the two time 
orthogonal dimensions, the valid time and the 
transaction time. It supports the recording of past, 
present and future data. Not only it supports the 
recording of what we believe was true, is true, or 
will be true but also the recording of the time of 
when we did believe so. 

 
 In temporal databases other than the primary and 
foreign key constraints we have two main constraints. 
The first constraint is used to solve the redundancy and 
circumlocution problems and the second is used to 
solve the contradiction problem. 
 
* Redundancy and circumlocution problems 

Constraint: If at any time a relation contains two 
distinct tuples that are identical except for their 
valid time values i1 and i2 � i1 merges i2 must be 
false. 

* Contradiction problem Constraint: If at any given 
time a relation containing two tuples that have the 
apparent primary key value but differ on the values 
of their non-key attributes then their valid time 
values i1 and i2 must be such the i1 overlaps i2 is 
false. 

 
TEMPORAL MULTILEVEL SECURE 

DATABASES MODEL 
 
 This study brings together two research directions 
in databases technology, temporal databases that keeps 
record of the history of data and multilevel secure 
databases which groups data in a database into different 
classification levels and allows only users with the 
appropriate security clearance to access the data stored 
on the corresponding classification level. Over the last 
twenty years, there ha been a major demand for 
recording historical data and in the past few years, the 
concern for data security has increased. Temporal 
multilevel secure databases meet the two requirements. 
They are concerned with assigning access privileges to 
past, current and future data. They have both the 
characteristics of a temporal database and those of a 
multilevel secure database. In this chapter, we present 
the definition for a temporal multilevel secure database 
model. The definition of a temporal multilevel secure 
relation is presented below: 
 

 A temporal multilevel secure relation is of the 
form: 
 
R(A1,C1,A2,C2,…,An,Cn,VT,Cvt,TC)  
Where, Ai is a data attribute over domain Di, Ci is a 
classification attribute for Ai, VT is the valid time 
attribute, Cvt is a classification attribute for the valid 
time attribute and TC is the tuple-class attribute. The 
domain of Ci is specified by a set {Li, …,Hi} which 
enumerates the allowed values for access classes, 
ranging from the greatest lower bound (glb) Li to the 
least upper bound (lub) Hi. The domain of TC is the set 
{lub{Li; i=1,…,n},…, lub{Hi: i= 1,…,n}} and the 
domain of Cvt is the set {lub{Li; i=1,…,n},…, lub{Hi: 
i= 1,…,n}. 
 In multilevel temporal databases, we store different 
database states and users with different clearances see 
different versions of these database states.  These 
different versions must be kept coherent and consistent, 
without introducing any downward signaling channels. 
All the tuples in the database must be meaningful, so 
we should not have redundancy, circumlocution or 
contradiction problems. To be able to meet all of these 
requirements we need to specify some constraints on 
temporal multilevel secure databases. These constraints 
must be a combination of the integrity constraints of 
temporal databases along with those of multilevel 
secure databases. 
 
Entity integrity: Let AK be the apparent key of R and 
let VT be the valid time of R, A temporal multilevel 
relation R satisfies entity integrity if and only if for all 
instances Rc of R and t ∈ Rc: 
Ai ∈ AK � [Ai] ≠ null 
[VTi] ≠ null 
Ai, Aj ∈ AK � t[Ci] =t[Cj] =t[CVT] (where CVT is 
the classification of the valid time) 
Ai  ∉ AK and Ai <> VTi � t[Ci] ≥ t[CAK] (where 
CAK is the classification of the apparent key) 
 
 The first requirement ensures that no attribute of a 
primary key of a base relation may be null. The second 
requirement specifies that the valid time value can 
never be null. The third requirement ensures that all the 
attributes of a primary key of a base relation must have 
the same access class, not only this the valid time 
access class must also have the same access class as 
these attributes. The fourth requirement says that the 
access class of all non-key attributes (the valid time is 
not included) in a tuple dominates the access class of 
the primary key. 
 
Null integrity: A multilevel temporal relation R 
satisfies   null   integrity if and only if for each instance 
Rc of R both of the following conditions are true: 
For all t ∈ Rc, t[Ai] = null � t[Ci] = t[CAK];  
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Let us say that tuple t subsumes tuple s if for every 
attribute Ai, either 
t[VTi] overlaps s[VTi] and t[Ai] � s[Ai] 
                         or 
t[Ai] = s[Ai] and t[VTi] merges s[VTi] 
 The first requirement means that attributes that 
have null values have an access class that is equal to the 
access class of the primary key. The second 
requirement states that Rc does not contain two distinct 
tuples with different non-key attributes values and the 
valid time of one overlaps the valid time of another, or 
two distinct tuples with identical value for all the 
attributes and the valid time of one merges the valid 
time of another. Having such tuples will lead to a 
problem similar to one of the problems we had in 
temporal relational model, the redundancy, 
circumlocution or contradiction problem. That is why 
we need to prevent the existence of such tuples either 
by combining the tuples that have a redundancy or 
circumlocution problem or by preventing the existence 
of tuples that would cause contradiction (Note we are 
talking about the attributes that would an access class 
similar to that of the primary key and therefore similar 
to that of the valid time). 
 
InterInstance integrity: R satisfies interinstance 
integrity if and only if for all c’ ≤ c we have Rc’ = σ 
(Rc, c’), where the filter function σ produces the c’ 
instance Rc’, from Rc as follows: 
For every tuple t ∈ Rc such that t[CAK] = c’ , there is a 
tuple t’ ∈ Rc’ with t’[AK,CAK] and for Ai ∉ AK 
 
   t[Ai,Ci] if t[Ci] ≤ c’ 
t’[Ai,Ci] = { 
 <null,t[CAK]> otherwise 
 
 There are no tuples in Rc’ other than those derived 
by the above rule. 
 If at any given time the end result contained two 
tuples that have the same apparent primary key value 
(the non valid time attributes of the primary key) but 
differ on the values of their non-key attributes then their 
valid time values i1 and i2 must be such that i1 overlaps 
i2 is false. 
 If at any time the end result contained two distinct 
tuples that are identical except for their valid time 
values i1 and i2, then i1 merges i2 must be false. 
 In this constraint, the filter function is used to map 
the multilevel temporal relation to different instances, 
one for each access class, so as to give the user the 
ability to see only the historical data for which he is 
cleared. The resulting obtained instance will be similar 
in a way to a temporal database. In addition, we must 
make sure in the end result to combine the tuples that 
cause redundancy or circumlocution and not to have 
two tuples that lead to a contradiction. 
 

Polyinstantiation integrity: In temporal multilevel 
secure databases, we may have several tuples with the 
same primary key but with different values for the non-
key attributes. Not only this, even at the same access 
level we will have more than one tuple with the same 
primary key but with different valid times. As 
previously mentioned in multilevel secure databases we 
cannot prevent a low user from inserting a tuple with 
the same primary key as a previously inserted high 
level tuple or we might create some downward 
signaling channel that will violate the secrecy of data. 
At the same time we can not prevent a user at the same 
access level from inserting a tuple with the same 
primary key as an old existing tuple at the same access 
level but with different valid time. We can either refuse 
such an insertion or override existing data. Refusing to 
insert this tuple, or overriding existing data for either 
any of the two previously mentioned reasons will cause 
a downward signaling channel, the loss of secret 
information and the destruction of historical data. We 
have no choice but to keep all the tuples without 
violating the foundations of relational databases. That’s 
why we need to declare the access class and the valid 
time to be part of the primary key. So we need to 
specify the following key constraint: 
 R satisfies the key integrity if and only if for every 
Rc we have for all Ai: AK, VT, CAK, CVT, Ci → Ai. 
that means that the user specified primary key AK in 
conjunction with the valid time, the classification 
attributes CAK, the classification attribute CVT and Ci, 
functionally determines the values of Ai attribute. 
 The operations on a relational database can be 
categorized into two main categories retrievals and 
updates. The update operations can be divided into 
three types of operations: Insert which is used to insert 
a new tuple or tuples in a relation, Delete which is used 
to delete tuples and Modify which is used to change the 
values of some attributes. 
 We only need to worry about insert and modify 
operations in a temporal multilevel secure database.  
We are going to show by examples how update 
operations take place in a temporal multilevel secure 
database. Whenever we need to do an update operation, 
we need to make sure not to violate the integrity 
constraints specified on the database. 
 Let us take for example the temporal multilevel 
military officers relation presented in Table 1. 
 
Table 1: An example of a temporal multilevel secure relation 
ID Name Rank Valid Time TC 
100  U Johnson U Major General  U [1953/3-∞]  U U 
101   S Miles     S Marshal             S [1985/7-∞]   S S 
ID Name Rank Valid Time TC 
100  U Johnson U Major General  U [1953/3-∞]  U U 
101   S Miles     S Marshal             S [1985/7-∞]    S S 

 
 When introducing multilevel access classes. 
Access clearances are assigned to individual data 
elements of a relation. Subjects having different 
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clearances see different versions of the military 
officers’ relation. A U-User having a clearance at the 
access class u will see a version of the military officers’ 
relation that includes only the data that were assigned 
an access class u. While an S-User will be able to see a 
version of the military officers table that will include 
both the data that were assigned an access class u and 
an access class s. In order to be able to record time 
varying data into our database we need to extend the 
military officers’ relation by adding the temporal 
attribute ValidTime. It is an interval that we use to 
determine when the data inserted into the tuple, was, is 
or will be valid.  The U-user version of the military 
officers table is shown in Table 2 and the S-User 
version   of   the  military  officers  table  is  shown  in 
Table 3. 
 
Table 2: The U-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100  U Johnson U Major General U [1953/3-∞] U U 
 
Table 3: The S-user version of the military _officer’s table 
ID Name Rank Valid Time TC 
100  U Johnson U Major General U  [1953/3-∞] U U 
101   S Miles     S Inspector General S  [1985/7-∞]  S S 

 
Table 4: The U-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100  U Johnson  U Major General        U [1953/3-1981/3] U U 
100  U Johnson  U Lieutanent General U [1981/4-∞]         U U 

 
 In order to understand how update operations take 
place in a temporal multilevel secure relation, let us 
take the following example. Let us assume that on April 
1981 a U-User wants to update the rank of the military 
officer “Johnson” from “Major General” to “Lieutenant 
General”. Table 4 shows the U-user version of the 
military officers table and Table 5 shows the S-User 
version after this update. 
 
Table 5: The S-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100 U Johnson U Major General         U [1953/3-1981/3]  U U 
100 U Johnson U Lieutanent General U [1981/4-∞]          U U 
101 S Miles     S Inspector General    S [1985/7-∞]          S S 

 
 As a result to this update a whole new tuple is 
inserted. This new tuple is inserted at the U class.  The 
valid time for the old tuple of the military officer 
“Johnson” is updated to reflect the time in history when 
the rank of officer “Johnson” was “Major General”. 
From the date April 1981, the rank of the officer 
“Johnson” changed to “Lieutenant General”. 
 As we can see from that example, an update 
performed by a User with an X clearance on a tuple 
with an access privilege X is dealt with in a way similar 
to the way we deal with an update operation in a 
temporal database by inserting a new tuple with a new 
valid time interval and updating the valid time interval 

of the old tuple. The new inserted tuple will also have 
an access privilege X. 
 Let us take another example, in which we deal with 
the case where a higher level user tries to update a tuple 
with a lower level access privilege. Going back to our 
Military Officers example, a tuple originally inserted by 
a U-User to the Military Officers table, can be updated 
by a higher level user like the S-User. Assume that on 
February 1, 1997, a user with an S clearance gives the 
two officers “Johnson” and “Miles” a new higher rank. 
Since in temporal databases whenever we are updating 
we do not actually update the value, but we rather insert 
a new tuple with the same values for all the attributes, 
except for the attribute that is being updated and the 
valid time timestamp value, the same applies here and 
the S user would have to insert a new tuple. This tuple 
would be inserted at the S-level since an S-user is 
performing the operation (Table 6 and 7). But this 
would create a problem, because we would have two 
tuples with the same apparent key with overlapping 
timestamps. 
 
Table 6: The S-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100 U Johnson U Major General       U [1953/3-1981/3]  U U 
100 U Johnson U Lieutanent GeneralU [1981/4-∞]           U U 
100 S Johnson S Inspector General  S [1997/2-∞]           S S 
101 S Miles     S Inspector General  S [1981/4-1987/1]   S S 
101 S Miles     S Marshal                 S [1997/2-∞]           S S 

 
Table 7: The U-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100  U Johnson  U Major General        U [1953/3-1981/3] U U 
100  U Johnson  U Lieutanent General U [1981/4-1997/1] U U 
100  U Johnson  U Null                         U [1997/2-∞]         U U 

 
Table 8: The S-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100 U Johnson U Major General         U [1953/3-1981/3]  U U 
100 U Johnson U Lieutanent General U [1981/4-1997/1]  U U 
100 U Johnson U Null                         U [1997/2-∞]           U U 
100 S Johnson S Inspector General    S [1997/2-∞]           S S 
101 S Miles     S Inspector General   S [1981/4-1987/1]   S S 
101 S Miles     S Marshal                   S [1997/2-∞]           S S 

 
 This would result in a temporary inconsistency in 
the database that needs to be resolved. For instance, the 
inconsistency may be resolved as follows: The S-user 
logs on at the U level and insert a new tuple with a 
nullified rank value that happens to have the same 
timestamp of the tuple inserted at the S-level. Table 7 
and 8 show the results. 
 This schema won’t create a downward signaling 
channel from one subject to another. Since the 
nullification of the salary at the U-level is being done 
by a U-subject. Someone might say that there is a 
downward signaling channel with a human in the loop. 
The human is, however trusted not to let the channel be 
exercised without good cause.  
 The coexistence of the tuple (100, Johnson, 
Inspector General, [1997/2-∞]) and the tuple (100, 
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Johnson,  null,[1997/2-∞]) in Military OfficersS , two 
tuples with the same primary key, is what we call 
polyinstantiation. Here there is no threat of entity or 
attribute polyinstantiation, because at any time the 
attribute value is updated this means that a new tuple 
would need to be inserted with the same primary key, 
same time timestamps, but with different value for the 
attribute at each level, the value of the attribute would 
appear null at the lowest level, if this attribute was 
updated by a higher level user.  
 Another problem that the coexistence of these two 
tuples might create is that they both have the same time 
timestamps. In temporal databases at any given instance 
of time each military officer is supposed to have only 
one rank. This is a problem that we refer to as the 
contradiction problem. Since the military officer 100 is 
shown to have a rank of both null and “Inspector 
General” from the date February1997 and up to this 
date.  
 There is another option to consider when dealing 
with the problem of having two tuples with the same 
primary key and overlapping times.The S user could 
login at the U level but instead of inserting a new tuple 
with a nullified rank value that happens to have the 
same timestamp as the tuple inserted at the S-level 
(Table 7 and 8)  he could just perform a temporal delete 
on the military officer ‘100’. This delete won’t result in 
deleting the military officer ‘100’ at the U-level, but it 
would rather end the validity time of this tuple by 
changing the end value of the valid interval to the start 
value of the valid interval of the tuple inserted at the S 
level, decreased of one unit of the used temporal 
granularity. Table 9 shows the U_user version of the 
military officers table with the ended valid time for 
officer ‘100’ and Table 10 shows the S-user version of 
the military officers table. 
 
Table 9: The U-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100  U Johnson  U Major General        U [1953/3-1981/3] U U 
100  U Johnson  U Lieutanent General U [1981/4-1997/1] U U 

 
 The deletion of the officer ‘100’ U-user tuple will 
not result in a downward signaling channel since the 
tuple deletion is done by a U-user and the deletion itself 
might be considered as a good cover story to the change 
of the rank of the officer. 
 

MODEL MODIFICATIONS 
 
 After taking several examples of the update 
operations that might take place in a temporal 
multilevel secure database, we notice that the 
classifications of all the attributes within a certain tuple 
are the same. The case where we might have two 
different classifications for two different attributes in 
the same tuple will not occur in temporal multilevel 
secure databases.  In multilevel secure databases this 

case occurs, when a user at a certain level for example 
level1 inserts a new tuple, then a user at level 2 where 
level 2 > level 1 updates one of the attributes of the 
tuple inserted at level 1. In temporal secure databases, 
the previous example will result in a new tuple inserted 
at  level  2,  therefore  all of the attributes of the tuple at  
level 1 will have the same original element 
classification. Therefore, there is no need of recording 
the element classification for each attribute, the tuple 
classification will be sufficient to record the 
classification of all the attributes.  Table 11 shows the 
S-User version of the military officers table after 
removing the element classification for each attribute 
and relying on the tuple classification to record the 
classification of all the tuple attributes. 
 
Table 11: The S-user version of the military_officer’s table 
ID Name Rank Valid Time TC 
100  Johnson  Major General         [1953/3-1981/3]   U 
100  Johnson  Lieutanent General [1981/4-1997/1]   U 
100  Johnson  Inspector General   [1997/2-∞]           S 
101  Miles      Inspector General   [1981/4-1987/1]  S 
101  Miles     Marshal                  [1997/2-∞]           S 

 
 The removal of the element classification will lead 
to a change in the definition of the temporal multilevel 
secure database. The new definition of the temporal 
multilevel secure relation would be as follows: 
 
R (A1,A2,…,An, VT, TC)  
 
Where, Ai is a data attribute over domain Di, VT is the 
valid time attribute and TC is the tuple-class attribute. 
The domain of TC is specified by a set {Li, …,Hi} 
which enumerates the allowed values for access classes, 
ranging from the greatest lower bound (glb) Li to the 
least upper bound (lub) Hi. 
 Since the definition of the temporal multilevel 
secure relation has been changed so would the 
definitions of the integrity constraints. The new 
definitions are listed below: 
 
Entity integrity: Let AK be the apparent key of R and 
let VT be the valid time of R, A temporal multilevel 
relation R satisfies entity integrity if and only if for all 
instances Rc of R and t ∈ Rc: 
Ai ∈ AK � [Ai] ≠ null 
[VTi] ≠ null 
 
 The new definition of the entity integrity constraint 
specifies that no part of the primary key can have a null. 
The first requirement ensures that no attribute of a 
primary key of a base relation may be null. The second 
requirement specifies that the valid time value can 
never be null. The Third and the fourth requirement 
have been removed of the new definition. 
Null integrity: A multilevel temporal relation R 
satisfies null integrity if and only if for each instance Rc 
of R both of the following conditions are true: 
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Let us say that tuple t subsumes tuple s if for every 
attribute Ai, either 
t[VTi] overlaps s[VTi] and t[Ai] � s[Ai] 
                         or 
t[Ai] = s[Ai] and t[VTi] merges s[VTi] 
 The first requirement of this constraint is no longer 
needed. The second requirement that states that Rc does 
not contain two distinct tuples with different non-key 
attributes values and the valid time of one overlaps the 
valid time of another, or two distinct tuples with 
identical value for all the attributes and the valid time of 
one merges the valid time of another, still holds. 
 
InterInstance integrity: R satisfies interinstance 
integrity if and only if for all c’ ≤ c we have Rc’ = σ 
(Rc, c’), where the filter function σ produces the c’ 
instance Rc’, from Rc as follows: 
For every tuple t ∈ Rc such that TC = c’, there is a 
tuple t’ ∈ Rc’ with t’[TC]  
There are no tuples in Rc’ other than those derived by 
the above rule. 
 If at any given time the end result contained two 
tuples that have the same apparent primary key value 
(the non valid time attributes of the primary key) but 
differ on the values of their non-key attributes then their 
valid time values i1 and i2 must be such that i1 overlaps 
i2 is false. 
 If at any time the end result contained two distinct 
tuples that are identical except for their valid time 
values i1 and i2, then i1 merges i2 must be false.  
 The first requirement of this integrity has been 
modified to meet the new definition of the temporal 
multilevel secure database relation. 
 
Polyinstantiation integrity: The new definition of the 
polyinstantiation integrity to meet the new definition of 
the temporal multilevel secure database. We declare the 
apparent key, the tuple access class and the valid time 
to be the primary key. So the new key constraint 
definition is as follows: 
 R satisfies the key integrity if and only if for every 
Rc we have for all Ai, VT, TC → Ai. that means that 
the user specified primary key AK in conjunction with 
the valid time, the tuple classification attribute TC 
functionally determines the values of Ai attribute.  
 

MODEL IMPLEMENTATION 
 
 A prototype implementing the concepts presented 
in this study has been developed. TMSDB, the new 
developed prototype was used to create and manipulate 
temporal multilevel secure databases. It was 
implemented using Powerbuilder 9.0 for application 
development and Sybase Adaptive Server Anywhere as 
a DBMS. TMSDB is a GUI application that works as a 
front end to a relational DBMS. It translates temporal 
multilevel secure SQL statements into standard SQL 
statements.   

 TMSDB is a software application that provides the 
user with the functionalities of creating and 
manipulating a temporal multilevel secure database. 
Using TMSDB the user can create a database, its tables 
and define primary key and foreign key constraints on 
these tables. At the physical level, newly created 
records are time stamped with valid time periods by 
adding two additional attributes to the table “valid time 
start” and “valid time end”. As for multilevel security a 
third additional attribute is added to the table, the TC 
attribute. This attribute is used to record the tuple 
classification.  
 Moreover, TMSDB supports temporal query 
language ATSQL2. ATSQL2 is an extension to SQL 
and it supports temporal SQL statements and queries, 
temporal inserts, update and delete statements. The user 
can query and update the created database using 
ATQL2. As for queries, the retrieved data will be 
filtered according to the time flags specified in the 
temporal SQL statements.  
 TMSDB also supports multilevel security by the 
use of a security system that requires the user to login 
to the system using a login in name and an encrypted 
password. The login name and password are used to 
determine the access level of the user. The user access 
level is used to determine the tuple classification of 
newly inserted tuples and the filtering criteria to use 
when returning the results of executed queries. 
 We provide a list of example queries executed 
using TMSDB. These queries and their results are listed 
below. 
 
Example 1: To create the “officer” table the SQL 
presented below was executed in the TMSDB 
application.  
 
CREATE TABLE officer 
 (officer_code varchar(3) not null, officer_f_name 
varchar(20), officer_l_name varchar(20), primary 
key(officer_code)) AS VALIDTIME 
 
Example 2: The SQL presented below was used to 
insert a new officer record in the “officer” table. This 
SQL was executed by an S-user. The result of this SQL 
is the tuple presented in Table 12. 
 
VALIDTIME PERIOD [1990/01/01-2001/01/01)  
INSERT INTO "officer"   
("officer_code","officer_f_name", "officer_l_name")   
VALUES ( '40', 'Thomas', 'Johnson’); 
 
Table 12: The results of example 2 
code f_name l_name Valid Time TC 
40 Thomas Johnson [1990/01/01-2001/01/01] S 

 
Example 3: The SQL presented below was used to 
insert a new officer record in the “officer” table. This 
SQL was executed by a U-user. So now we have two 
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Officers with the same officer code in the Officer table. 
The two officers’ records were inserted by users with 
different access levels. The table records are presented 
in Table 13.  
VALIDTIME PERIOD [1992/01/01-2006/01/01)  
INSERT INTO "officer" 
("officer_code","officer_f_name", "officer_l_name")   
VALUES ('40', 'John', 'Frank’); 
 
Table 13: The results of example 3 
code Of_name l_name Valid Time TC 
40 Thomas Johnson [1990/01/01-2001/01/01] S 
40 John Frank [1992/01/01 -2006/01/01] U 

 
Example 4: The SQL presented below was used to 
insert a new officer record in the “officer” table. This 
SQL was executed by an S-user. The table records of 
Officer table are presented in Table 14.  
 
VALIDTIME PERIOD [2002/01/01-Forever)  
INSERT INTO "officer"   
("officer_code","officer_f_name", "officer_l_name")   
VALUES ('50', 'Fred', 'Wagner’); 
 
Table 14: The results of example 4 
code Of_name l_name Valid Time TC 
50 Fred Wagner [2002/01/01 – Forever] S 
40 Thomas Johnson [1990/01/01-2001/01/01] S 
40 John Frank [1992/01/01 -2006/01/01] U 

 
Example 6: A U-user logs on to the TMSDB 
applications and executes the following SQL query: 
 
VALIDTIME PERIOD [beginning – forever) 
SELECT   *  
FROM officer  
The Results of the executed SQL query are presented in 
Table 15. The Only record that will be visible for the U-
User is the officer John Record. 
 
Table 15: The results of example 6 
code Of_name l_name Valid Time TC 
40 John Frank [1992/01/01 -2006/01/01] U 

 
Example 7: An S-user logs on to the TMSDB 
applications and executes the same previous SQL 
query: 
 The Results of the executed SQL query are 
presented in Table 16. The Only record that will be 
visible for the U-User is the officer John Record. 
 
Table 16: The results of example 7 
code Of_name l_name Valid Time TC 
50 Fred Wagner [2002/01/01 – Forever] S 
40 Thomas Johnson [1990/01/01-2001/01/01] S 
40 John Frank [1992/01/01 -2006/01/01] U 

 
Example 8: The S-User wants to modify the Officer 
“Fred Wagner” family name to “Fred Steinberg”. 
Today’s date is ‘2005/05/04’, the result of this update is 

presented in Table 17. A new tuple is inserted for the 
officer ‘Fred’ with the same apparent primary key and  
same first name, the last name has been changed to 
‘steinberg’, the valid time start is set to today’s date and 
the validtime end value is set forever (to say that the 
data in this record is valid until changed). The old 
record for the officer ‘Fred’ is not modified except for 
the value of the valid end time which is set to 
yesterday’s date.  
 
VALIDTIME PERIOD [2003/01/01 – forever) 
UPDATE officer SET  officer_l_name = ‘Steinberg’   
where officer_code = ‘50’ 
 
Table 17: The results of example 8 
code f_name l_name Valid Time TC 
50 Fred Wagner [2002/01/01 – 2005/05/03] S 
40 Thomas Johnson [1990/01/01-2001/01/01] S 
40 John Frank [1992/01/01 -2006/01/01] U 
50 Fred Steinberg [2005/05/04 – Forever] S 

 
CONCLUSION 

 
 In this study we introduced a new database model 
the temporal mulltilevel secure relational data model. It 
is a model that combines the characteristics of the 
temporal database model and the multilevel secure 
database model. In multilevel secure databases the main 
concern are mandatory access control, polyinstantiation 
and secure transaction processing, while in temporal 
databases the main concern is the addition of time 
support to record historical, present and future data. The 
temporal multilevel secure database model is a model 
that meets all of these concerns combined. In this study, 
we present an overview of the research and 
development efforts in both the area of temporal 
databases and multilevel secure databases, a definition 
of the new suggested model, the update operations that 
can take place in a temporal multilevel secure database 
and the integrity constraints that we need to meet in a 
temporal multilevel secure database in order to make 
sure that all the data inserted in the database is 
consistent, meaningful, historical and secure. A 
prototype of this model has been implemented. A 
detailed description and some of the example queries 
executed using this prototype are also presented in this 
study  
 More work is still to be done in this area. The 
temporal database used in this model is a validtime 
database; therefore the developed temporal multilevel 
secure database model was a validtime temporal 
multilevel secure model. In this model the only time 
attribute added to the model was the validtime interval. 
Much more interesting work remains to be done in the 
area of bitemporal multilevel secure database model, a 
model that will support the recording of both the 
transaction time and the validtime interval and the 
transaction-time temporal multilevel secure model, that 
will support only the recording of the transaction time. 
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