
Journal of Computer Science 2 (2): 201-204, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Rachid Boudour, Department of Computer Science, University of Annaba, Bp. 12, Annaba, Algeria
Tel / Fax: 213-38-87-24-36

201

From Design Specification to SystemC

Rachid Boudour and Mohamed T. Kimour
Department of Computer Science, University of Annaba, Bp. 12, Annaba, Algeria

Abstract: In this paper, we present a framework for transforming the design model into SystemC code.
Such a framework uses as input UML state machine and object diagrams, which are more and more
used as design models in embedded systems. To do this, we have firstly used Poseidon tool for editing
the design model and generating the XMI representation, and secondly integrated a transformation
module leading to SystemC code. The mapping to SystemC code offers not only a system-level
executable specification, but also a means to facilitating the system partitioning in hardware and
software parts.

Keywords UML 2.0, SystemC, MDA, XMI, Codesign, Embedded Systems

INTRODUCTION

Embedded systems are currently used in the most
diverse contexts from automobiles and aeronautics to
home appliances, medical equipment, multimedia and
communication devices [1,2,3]. Such systems are
typically characterized by their dedicated function, real-
time behavior, and high requirements on reliability and
correctness. The interest in formal methods aiming at
verifying embedded systems has increased recently due
to the important role of correctness in such systems.

Embedded systems development requires more and
more severe requirements such as, product quality,
security, and time-to-market. They are more and more
complex and a great number of functionalities are to be
conceived [4]. However, nowadays, designers have a
few tools to help them in satisfying these requirements.
In embedded systems, different tasks are generally
defined and distributed to different computers,
requiring specific languages to describe their
functionalities. Recently, SystemC [5] has been
introduced as a language that offers description
mechanisms for both hardware and software parts.

Typically, a development process in embedded
systems according to MDA approach [6] firstly defines
PIM models which are transformed to PSM models
using appropriate mapping rules (Fig. 1). On the other
hand, UML artifacts [7] are widely used in most existing
MDA based development processes for embedded
systems [8,9,10]. UML State machines and object
diagrams are usually used as design model artifacts.

In this paper, we present a transformation process
for the two UML models that, from a design
specification (PIM), generate a corresponding SystemC
code, after using Poseidon UML tool [8]. Precisely, we
have added some extensions to the models in order to
obtain a precise transformation leading to a SystemC as
en executable model.

The rest of the paper organized as follows: section
2 presents the uses of UML in embedded system
modeling as well as the MDA approach in that area.
Section 3 is concerned with our transformation process.
Finally, we conclude our work and give some
perspectives in section 4.

EMBEDDED SOFTWARE DEVELOPMENT
PROCESS

Generally, embedded system development is
performed according to different variants and concerns
a specific application or project. Recently, MDA and
UML are being more and more used in this area.

MDA

MDA is a software development framework where
models are the artifacts of the first class, having as main
objectives the automatic code generation. The main
purpose of this approach is consequently, to reduce the
gap between system-level models and the code [10].
MDA is based on the definition of platform
independent models (PIM) using high-level
specification language, especially UML.

Fig.1: MDA architecture

The objective is to obtain sufficiently precise
models leading to automatic code generation. Such a
code depends, naturally, on the platform and exhibits a
sound synchronization with the PIM models [10].
Furthermore, direct model transformation into the code

PIM

PSM

Mapping rules

J. Computer Sci., 2 (2): 201-204, 2006

 202

facilitates the iterative and incremental development,
which is a fundamental principle of RUP process [11].
Essentially, MDA is based on UML, MOF and XMI
technologies.

UML

Initially, proposed as a unified notation for OO
software, UML is the main models used in MDA.
Semantics of UML diagrams allow designers for
defining platform independent description. Various
UML tools are available such as IBM’s Rational
Toolset [11], Poseidon [9], and I-Logix’s Rhapsody [12].
Models interchange between these tools is allowed
thanks to XMI standard [13]. XMI is based on XML
representation to describe UML diagrams, which are
comprehensible by the machine. Most of UML tools
can automatically generate XMI representation we use
in this work as a basis of our model transformation
approach. Furthermore, UML is associated with a
semantic which is based on Time Petri nets [14], leading
to an executable model centered on the object
concurrent actions. This property may be integrated in a
distributed execution.

pressButton

requestUpdate

cabMoving

cabineSelection

requestHandling

Fig. 2: Example of SystemC

On the other hand, an object oriented system is
composed of a set of related objects. UML allows to
represent such system according different views
expressed with diagrams. Those diagrams allow to
represent both structural aspects (classes, objects,
relationships) and behavioral aspects.

Among these different views, statecharts (Fig. 2)
allow to illustrate the object behavior according to the
interactions exhibited between the system components.

This diagram is composed of nodes and edges. The
former represents states and the latter represents
transitions. This automaton type may be associated with
a class in order to model the instances behavior.

Such instances may be considered as active objects.
An automaton may also be used to specify the class
protocol. It therefore describes the rules that govern the
object utilization and the behaviour an object set.

The use of action semantics of UML constitutes a
decisive step upon the widely use of MDA. This allows
to not only precisely building the models but also to
verify and test them before code generation [15].

SystemC

SystemC has a notion of container class, called
module. A module can be instantiated within other
modules, enabling structural design hierarchies to be
built. It provides the ability to encapsulate structure and
functionality of both hardware and software parts for
partitioning a design of a system. Each module may
contain variables as simple data members, ports for
communication with the outside environment and
processes for performing modules’ functionality and
expressing concurrency in the system. Commonly used
data types include single bits, bit vectors, characters,
integers, floating point numbers, vectors of integers,
etc.

SystemC is an open standard controlled by an
international steering group involved in the Electronic
Design Automation (EDA) consortium. It is one of the
most promising system-level design languages that
support the description and validation of complex
systems in an environment based on C++ analysis
techniques have been introduced to overcome this
problem.

Concurrent behaviors are modeled using processes.
The simple SystemC example (Fig. 3) consists of a
module with two processes. The system starts by
passing on the control to the module where computation
is done every tenth cycles. A process can be thought of
as an independent thread of control which resumes
execution when some set of events occur or some
signals change.

Process 1 Process 2
init
while(true) {

for i=0,10 {
wait(e1)
F4();
port1.write
e2.notify
}

}

init
while(true) {

for i=0,10 {
F1();
e1.notify;
F2();
wait until(e2,3);
…=port1.read;
F3();
}

}

Fig. 3: Example of SystemC Module with two
Processes

Processes run concurrently in the design and may
be sensitive to events which are notified by channels.

J. Computer Sci., 2 (2): 201-204, 2006

 203

Since processes execute concurrently and may suspend
and resume execution at user-specified points, SystemC
process instances generally require their own
independent execution stack. (An equivalent situation
in the software world arises in multi-threaded
applications—each thread requires its own execution
stack).

To model communication and synchronization
between the processes, SystemC provides mechanisms
of ports, channels, interfaces and events. A port of a
module is a proxy object through which the process
accesses to a channel interface. The interface defines
the set of access functions (methods) for a channel.

The channel is an object that provides the
implementation of these functions to serve as container
to encapsulate the communication and synchronization
of blocks. Channels implement one or more interfaces.
There are two kinds of channels: primitive channels and
hierarchical channels. Primitive channels do not exhibit
any visible structure, do not contain processes, and
cannot directly access other primitive channels.

A hierarchical channel is a module, i.e., it can have
structure and can contain processes. It also can directly
access other channels. An event is a flexible, low-level
synchronization primitive that is used to construct other
forms of synchronization.

Unlike signals, an event does not have a type and
does not transmit a value. Events only transfer control
from one thread of execution to another. Also, an event
notification always causes sensitive processes to be
resumed, while an assignment to a signal only causes
sensitive processes to be resumed if the new signal
value is different from the previous value.

Since processes execute concurrently and may
suspend and resume execution at user-specified points,
SystemC process instances generally require their own
independent execution stack. (An equivalent situation
in the software world arises in multi-threaded
applications—each thread requires its own execution
stack).

Fig. 4: SystemC code generation process.

FROM UML TO SYSTEMC

Our objective is to allow building reliable software
by assembling and integrating components while
validating and evaluating functional and non-functional
requirements. In this context, the engineering process
defines mainly analysis phases and specification.
Indeed, today’s, software development processes are
model-driven. MDA (Model Driven Architecture)
prescribes separation of concerns, that is, models are
transformed from PIM step (Platform Independent
Model) to the PSM one (Platform Specific Model) in
order to lead to an executable code automatically
obtained from that models. Therefore, we are
considering a transformation process in the software
life cycle.

Different model transformation engines exist and
are used in various software development process,
however, the presents some drawbacks in the code
generation components.

Our approach starts from the UML model in
particular, the statechart diagram and the object
diagram, to derive automatically a systemC source code

Our transformation approach uses as input state
machine and object diagrams. To facilitate the
transformation process, we have defined an
intermediate representation for the resulted XMI model
of the design that it is introduced using Poseidon.

Transformation steps

Fig. 4 illustrates our transformation process. It
depicts the following steps:

a) The state machine diagram is edited using
Poseidon, which allows generating the corresponding
XMI file.

b) XMI uses an XML predefined attributes and
elements to specify states, events and actions.

c) XMI file is used to build a dependency state
matrix. The row contains the following attributes:
<st_sink, st_target, evt, guard, action> that model a
dependency between two states, where dependency,
st_sink and st_target represent respectively the sink
state number and the target state number.

d) Using the obtained matrix and a specific
SystemC template we generate the corresponding
SystemC code by applying the appropriate mapping
rules.

CONCLUSION

In this paper, we have given a transformational
approach from a design model expressed in UML to
SystemC in the area of embedded systems. The
approach used as input two UML diagrams, that is,
statecharts and object diagram, and produces a systemC
source code. Also, an intermediate representation is
defined in order to facilitate the transformation process
and verify its correctness. Such transformation has

State machine, object
diagram

XMI

XMI generator

generator

SystemC Code

SystemC
template

J. Computer Sci., 2 (2): 201-204, 2006

 204

many practical implications, such as automatic code
generation and better quality system.

Currently, we are in the process of implementing a
tool support, and we plan to complete our approach to
deal with other important UML diagrams especially the
sequence diagram in order to automatically generate
test cases.

REFERENCES

1. Gomaa H. 2000. Designing Concurrent,
Distributed, and Real-Time Applications with
UML. Addison-Wesley.

2. Graaf B., Lormans M., Toetenel H.. 2003.
Embedded Software Engineering: the State of the
Practice. IEEE Software, pp. 61-69.

3. Hsiung P.-A 1999. Hardware-Software
Coverification of Concurrent Embedded Real-Time
Systems. in Proc. Euromicro RTS, pp. 216-223.

4. Douglass B. P. 2000. Real-Time UML: Developing
Efficient Objects for Embedded Systems. Object
Technology, Addison-Wesley, 2nd edition.

5. Groetker T., Liao S., Martin G., Swan S.. 2002.
System Design with SystemC. Kluwer Academic
Publishers.

6. MDA: OMG. 2006. Model-Driven Architecture,
www.omg.org/mda,.

7. UML™ 2, OMG. 2003. UML™ 2.0
Superstructure. Final Adopted Specification,
www.omg.org/technology/documents/modeling_

 8. GentleWare.. 2004. .Poseidon for UML.
www.gentleware.com/products,

9. J. Warmer and A. Kleppe. 2003. The Object
Constraint Language, Second Edition: Getting
Your Models Ready for MDA.: Addison-Wesley.

10. D. Frankel. 2003. .Model Driven Architecture:
Applying MDA to Enterprise Computing: OMG
Press.

11. Rational-IBM. 2006.
 www-306.ibm.com/software/rational.
12. Ilogix. 2006. www.ilogix.com/rhapsody/rhaps.
13. OMG. 2006. www.omg.org/technology/xml..
14. Peterson J. L. 1981. Petri Net Theory and the

Modeling of Systems. Englewood Cliffs: Prentice
Hall.

15. Jerraya A.and Wolf W. 2005.
Hardware/Software Interface Codesign for
Embedded Systems. Computer, 2(38).

