
Journal of Computer Science 2 (3): 236-244, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: A. Assi, Department of electrical Engineering, United Arab Emirates University, P.O. Box 17555, Al
Ain, U.A.E., Tel: 971-3- 7133609, Fax: 971-3-7626309

236

Empirical Analysis and Mathematical Representation

of the Path Length Complexity in Binary Decision Diagrams

 1A. Assi, 2P.W.C. Prasad, 2B. Mills and 2A. Elchouemi

1Department of Electrical Engineering, United Arab Emirates University, Al Ain, UAE
2College of Information Technology, United Arab Emirates University, Al Ain, UAE

Abstract: Information about the distribution of path-lengths in a Binary Decision Diagrams (BDDs)
representing Boolean functions is useful in determining the speed of hardware and software
implementations of the circuit represented by these Boolean functions. This study presents expressions
produced from an empirical analysis of a representative collection of Boolean functions. The Average
Path Length (APL) and the Shortest Path Length (SPL) have simple behavior as function of the number
of variables and the number of terms used in the construction of the Sum of Products (SOPs) in
Boolean expressions. We present a generic expression that is uniformly adaptable to each curve of
path-length versus number of terms over all the empirical data. This expression makes it possible to
estimate the performance characteristics of a circuit without building its BDD. This approach applies to
any number of variables, number of terms, or variable ordering method.

Key words: Binary decision diagram, Boolean function, average path length, shortest path length,

evaluation time

INTRODUCTION

 The use of logic verification and optimization
algorithms in VLSI CAD systems requires efficient
representation and manipulation of Boolean functions[1].
During the last two decades, BDDs have gained great
popularity as successful method for the representation
of Boolean functions[2,3]. The ever-increasing
complexity of circuit designs is directly related to the
complexity of parameters that describe the Boolean
function. Over the years, the number of nodes in a BDD
became a major concern since it is proportional to the
complexity of the Boolean circuit[4]. Over the past two
decades most of the problems in the synthesis, design
and testing of combinational circuits, have been solved
using various mathematical methods[5,6]. Researchers in
this area are actively involved in developing
mathematical models that predict the number of nodes
in a BDD in order to predict the complexity of the
design in terms of the time needed to optimize it and
verify its logic.
 Evaluation time is another crucial parameter of the
circuit complexity and it is proportional to the path
length of a BDD and one can use BDD structures to
estimate the evaluation time of the logic function that
represents a circuit[7,8]. Therefore, minimization of the
path length can improve the complexity of the circuit
implementing a Boolean function, which will eventually
enhance the performance of the final implementation. In

general the minimization of the path length in Decision
Diagrams (DDs) is important in database structures,
pattern recognition, logic simulation and software
synthesis[7]. The methods proposed for the minimization
of APL[7-10] reduces the average evaluation time of logic
functions. Most of these methods are based on either
Static variable ordering[11,12] or dynamic variable
ordering techniques[13]. The minimization of APLs leads
to circuits with smaller depth of paths from the root to
the terminal node of the BDD. The resulting circuit will
be optimized for speed on one hand and on the other
hand the number of very long paths in the BDD will be
reduced[14]. The minimization of APL is of great
importance in real time operating system
applications[10,15,16]. The minimization of the LPL
(Longest Path Length) and SPL of a BDD can also
reduce the evaluation time, which is very important for
Pass Transistor Logic (PTL)[7,17,18]. One of the main
problems with pass transistor networks is the presence
of long paths: the delay of a chain of n pass transistors
is proportional to n2. Inserting buffers can reduce the
path length, but this increases the silicon area. So the
minimization of the longest evaluation time will
improve the performance of the circuit[7,18-20]
 Analysis of the BDD methods revealed that the
variable ordering in a given Boolean function plays an
important role in minimizing the size of the BDD graph
as well as minimizing the path length[19,10]. One must go
through a number of simulations to find the suitable

J. Computer Sci., 2 (3):236-244, 2006

 237

variable ordering that leads to the minimum size of the
BDD and minimum Path Length. In this approach we
need to create the whole BDD representing the Boolean
function with the best possible variable ordering.
Building the whole BDD may lead to some complexity
in the design process in terms of the time required to
implement, verify and test the design. It will be useful to
have a kind of estimation of the BDD complexity prior
to make decisions on the feasibility of the design[20]. For
any combinational circuit the only available initial
information is the Boolean function that represents this
circuit and the number of its variables. This information
is usually considered to design and verify circuits using
well known mathematical methods.
There has been a lot of research[21-24] done on the
estimation of combinational and sequential circuit
parameters from the exact Boolean function describing
the circuit. What distinguishes this study and prior
work[20,25-27] by the some of the current authors is the
use of stochastic technique and estimation of parameters
from only partial information about the Boolean
function.
 It is very hard to perform a comparison without
having an idea about the path length size for a given
number of variables. Therefore, it is important to
develop a mathematical model that predicts the path
length, knowing the number of variables and the
number of product terms of the Boolean function
represented by this BDD.
 The main objective of this study is to enhance the
methodologies proposed in[20,25] to estimate the path
length complexity for the Boolean functions represented
by the BDD. First, we present experiments that show
the behaviors of the APL and SPL and then we extract a
unique mathematical model for produced experimental
graphs. This study is organized as follows: First is an
introduction, followed by the necessary terminologies
and definitions of the BDD and path length. . Later we
review the previous work done on the estimation of the
BDD complexity. The proposed method with the
experimental results followed by the mathematical
model is given next. Finally the advantages of this
mathematical model followed by an outline of our
future developments in this research work and
conclusion.

PRELIMINARIES

 Basic definitions for BDDs and path length are
given in[1,3,4,7,10]. In the following we review some of
these definitions.

Definition 1: A BDD is a directed acyclic graph
(DAG). The graph has two sink nodes labeled 0 and 1
representing the Boolean functions 0 and 1. Each non-
sink node is labeled with a Boolean variable v and has
two out-edges labeled 1 (or then) and 0 (or else).

Each non-sink node represents the Boolean function
corresponding to its edge "1" if v = 1, or the Boolean
function corresponding to its edge "0" if v = 0.
Definition 2: An Ordered BDD (OBDD) is a BDD in
which each variable is encountered no more than once
in any path and always in the same order along each
path.

Definition 3: A Reduced OBDD (ROBDD) is an
OBDD which no nodes have equivalent behavior.

Variable ordering: The size of a BDD is largely
affected and its variation can be linear or exponential
depending on the choice of the variable ordering in
building the BDD. Figure 1 illustrates the effect of the
variable ordering [R.E. Bryant, 1986] on the size of
BDDs for the Boolean function (1):

1 2 1 2 3 4 1 3 4f x x x x x x x x x= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ (1)

 (a) 4321 xxxx (b) 4231 xxxx

Fig. 1: Effect of the variable ordering on the size of

BDD

Definition 4: In a BDD, a sequence of edge and nodes
leading from the root node to a terminal node is called
Path. The number of non-terminal nodes on the path is
called the Path Length.

Definition 6: The edge traversing probability, denoted
by)(0ieP (or)(1ieP), is the fraction of all 2n
assignments of values to variables whose path includes

0ie (or 1ie), where 0ie (or 1ie) denotes edge “0” (or the
edge “1”) directed from away node iV [7,8]. Since all
paths include the root node, this node is traversed with
probability 1.00. Since all assignments to values of
variables are equally likely, we can use the following
equation (2) to calculate the)(iVP for the rest of the
nodes:

0 1

()
() ()

2 i i

P vi
P e P e= = (2)

J. Computer Sci., 2 (3):236-244, 2006

 238

Definition 5: The APL is equal to the sum of the node
traversing probabilities of the non-terminal nodes[7,10].
Node traversing probability denoted by)(ivP is the
fraction of all 2n assignments of values to the variables
whose path includes node iv . The APL can be expressed
by the following equation (3):

1

0

()
N

i
i

APL P v
−

=

=� (3)

Where, N is the number of non-terminal nodes.

Definition 6: The Shortest Path Length (SPL) of a
BDD denoted by SPL (BDD), is the Length of the
Shortest Path from the root node to the terminal node.

Example: Consider the BDD graph shown in Fig. 2. In
this example we will compute the APL and the SPL:

Fig. 2: Node Traversing Probability in a BDD

The root node)(0VP is always equal to 1.00.

01 0() () 0.50P V P e= =

02 1() () 0.50P V P e= = .

03 2() () 0.25P V P e= =

4 21() () 0.25P V P e= =

0 15 4 1() () () 0.125 0.25 0.375P V P e P e= + = + =

Finally
5

0

() 2.875i
I

APL P V
=

= =�

1 2 2LPL Shortest Path Length x x= = → =

Previous work: Here, we provide a brief description of
the works done in the area of the estimation of BDD
complexity prior to explaining the proposed method.

Relation between the size of a boolean function and
the ROBDD complexity[20]: The complexity of the
ROBDD mainly depends on the number of nodes
represented by the ROBDD. Analysis of the complexity
variation in ROBDDs i.e. the relation between the
number of product terms and the number of nodes for
any number of variables is discussed in these works, the
experimental graph variation reveals that the complexity
of the ROBDD can be modeled mathematically by
equation (4). Figure 3 indicates that the mathematical
model represented by equation (4) provides a very good
approximation of the ROBDD complexity.

1)(+⋅⋅= ⋅− γβα NPTeNPTNN (4)
 Where, NN is the number of nodes that represents
the complexity of ROBDD, NPT is the number of non-
repeating product terms in the Boolean function,α , β
and γ are three constants. Using curve fitting
techniques, the variations of α, β and γ were
mathematically modeled and represented by the
following equations (5), (6) and (7).

1.51(0.063)0.9855 NVeα ⋅= ⋅ (5)
(0.01551933)

(1.2985)

1.031149

67.2072

NV

NV

e

e

β − ⋅

− ⋅

= ⋅
+ ⋅

 (6)

(0.4187691)

(1.5072)

0.962297281

41.9723

NV

NV

e

e

γ − ⋅

− ⋅

= ⋅

+ ⋅
 (7)

Where, NV is the Number of Variables.

Fig. 3: Experimental/Equation BDD Complexity for

10 variables

Behavior of XOR/XNOR Min-term
Representations[26]: In this work, the complexity
variation in ROBDD for a specific group of
XOR/XNOR min-terms is analyzed. A graph that
represents the ROBDD complexity in terms of number
of nodes with respect to the number XOR/XNOR min-
terms of the Boolean function is then plotted and the
behavior of XOR/XNOR is modeled mathematically by

J. Computer Sci., 2 (3):236-244, 2006

 239

equation (8): Figure 4 show that the mathematical
model represented by equation (8) provides a good
approximation of the experimental ROBDD complexity.

0.52 2() 1NN NXMα β β� �= ⋅ − − +� � (8)

 Where, NN is the number of nodes that represents
the complexity of ROBDD, NXM is the number of
XOR/XNOR min-terms in the Boolean function, β is
2n-2 with n the number of input variables and α =
0.605234.

ANALYSIS OF THE COMPLEXITY OF PATH
LENGTH IN BDDS

Proposed method: An experiment was carried out
using Colorado University Decision Diagram (CUDD)
Package[28] to analyze the complexity variation of SPL
with the number of product terms for any number of
variables. For each variable count n between 1 and 14
inclusive and for each term count between 1 and 2n-1,
100 Boolean functions were randomly generated and
the APL and SPL average was determined by using
CUDD package for specific variable ordering
technique. This process was repeated until the average
size of the APL and SPL complexities became 1. Then
the experimental graphs for APL and SPL complexities
were plotted against the product term count for each
variable count.

.

Fig. 4: Experimental/Equation ROBDD Complexity

for XOR/XNOR Min-terms

Experimental analysis for APL and SPL complexity
variations: Figure 5 and 6 illustrates the APL and SPL
complexity relation for Boolean functions with product
terms having n=10 variables using the Symmetric Sift
reordering technique of the CUDD tool.
 The graph indicates that the complexity (i.e. size)
of the path length in general (APL and SPL) increases
as the number of product terms increases. This is clear
from the rising edge of the curve shown in Fig. 5 and
6. At the end of the rising edge in the graph, the size of

the APL and SPL reaches a maximum
(4.5,73.7 ≅≅ SPLAPL in this case).

Fig. 5: APL size variation for 10 variables using the

symmetric Sift reordering technique

Fig. 6: SPL size variation for 10 variables using the

Symmetric Sift reordering technique

This peak indicates the maximum APL and SPL that
any Boolean function with 10 variables can produce
independently of the number of product terms.
 Apart of that the peak also specifies the number of
product terms (critical limit) of a Boolean function that
leads to the maximum number of APL and SPL for any
Boolean function with 10 variables. The number of
product terms that leads to the maximum APL and SPL
is 66 and 50 respectively. If the number of product
terms increases above the critical limit, as expected, the
product terms starts to simplify and the BDD will
reduce, which will reduce both the path lengths (APL
and SPL) size.
 The APL and SPL complexity graphs shown in
Fig. 5 and 6 indicate that as the number of product
terms increases the complexity of the APL and SPL
decreases in a slower rate and ultimately reaches 0.
Figure 6 illustrates that the falling edge of the SPL
graph behaves a bit different than the other complexity
graphs shown in Fig 2 and 3, where the decrease is with
a roll off, to be independent of the variable count. The

J. Computer Sci., 2 (3):236-244, 2006

 240

APL complexity variation graph is fairly similar to the
Fig. 2, but the roll of is not steeper as the Fig. 2.
The location and height of the peak and the slope of the
logarithm of the roll off varied. Reduction of the APL
and SPL complexity to 0 implies that all the product
terms simplify to logic 1. A simple algebraic expression
for these curves was developed, unifying all the cases.

MATHEMATICAL MODEL FOR THE
PATH LENGTH BEHAVIOR

 Exponentials of rational polynomials fitted the data
well; but, a theoretical precedent was not apparent. On
the other hand,)1()1log(++ tt not only has the
same basic behavior, but is also implicated in other
complexity measures, such as Kolmogorov, Tichner,
Shannon and Lempel-Zif complexity, as well as the
density of the prime numbers. The generic SPL graph
has an initial rise, two peaks and roll off to zero,
suggesting the sum of two formulas, but with horizontal
and vertical scaling and a little peak shaping. We note
here that the second peak is not always a peak of the
curve, but it is a peak of the difference between the
curve and the best affine approximation in that region.
The generic APL graph has an initial rise which is
similar to SPL rise, but with only one peak and a roll off
to 0. Analyzing all the above factors for the behavior of
the APL and SPL graphs, the complexity behavior was
modeled mathematically by the following equations:

2

1

log (1)
1

(log (1))

i

i
i

t
t

α

β
=

� �+= � 	+
 �
� (9)

 Where, t is the number of product terms in the
Boolean function. The (mostly) constantsα and
β parameters affect the shape of the peak.
 For the SPL, the
values 1,7 11 == βα and 102 =α gave a close fit, but

2β taking on two distinct values. 32 =β for 11≤v

and 52 =β for 12≥v . Eventually the following
equation (10) was used in order to calculate the
constant 2β ,

2 (11.5) 2

1.8
3

[] 1ve
β −

� �= +� 	+
 �
 (10)

 It can be inferred from Fig. 6 that the curve has two
peaks, which needs four scaling parameters to define
the locations of the peaks (Fig. 7): i.e.),(11 yx and

),(22 yx .
For the APL, the alues 1 17, 0.7α β= = and 2 10α = gave
a close fit, but 2β also taking on two distinct values.

2 2.1β = for 11≤v and 2 3.5β = for 12v ≥ .
Eventually the following equation (11) was used in
order to calculate the constant 2β for APL.

2 (11.5) 2

1.8
0.7 3

[] 1ve
β −

� �� �
= +� 	� 	+
 �
 �

 (11)

 The final behavior of the APL and SPL curve can
be found by the following single equation (12):

()()�

	
	
	
	

�

�

�
�
�
�

�

+

	
�
�

�

� +

⋅=
=

2

1 1log

1log
1

i

i

i
i

i

x
t

x
t

y

α

β
 (12)

 In this mathematical model, the peaks),(ii yx for
both the APL and SPL curves were found by
performing an empirical fit for each time. Figure 8 and
9 depict the experimental results obtained for APL and
SPL using the CUDD package and the theoretical
results obtained using equation (12). The mathematical
model represented by equation (12) provides a very
good estimation for the APL and SPL complexity
behavior, where the experimental and equational results
produced a match. Further verification of the
mathematical model was done for Boolean functions
with 2 to 15 variables. It can be inferred that the
experimental and mathematical curves are following a
similar pattern for any number of variables. Figure 10-
13 illustrates the experimental and mathematical models
for APL and SPL for variables 8 and 12 respectively.

Fig. 7: Peaks of the SPL complexity behavior

Fig. 8: Experimental/Equation SPL complexity

behavior for 10 variables

J. Computer Sci., 2 (3):236-244, 2006

 241

Fig. 9: Experimental/Equation APL Complexity

behavior for 10 variables

Fig. 10: Experimental/Equation APL Complexity

behavior for 8 variables

Fig. 11: Experimental/Equation APL Complexity

behavior for 12 variables

Fig. 12: Experimental/Equation SPL Complexity

behavior for 8 variables

Fig. 13: Experimental/Equation SPL Complexity

behavior for 12 variables

Fig. 14: APL Complexity Estimation Error for 10

variables

J. Computer Sci., 2 (3):236-244, 2006

 242

Fig. 15: SPL Complexity Estimation Error for 10

variables

Fig. 16: Effect of the reordering methods for SPL and

APL Complexity variations

 Figure 14-15 shows the efficiency of the proposed
mathematical model, which produces complexity
estimation error for APL and SPL. It can be inferred
that the mathematical expression was able to match the
experimental curve with minimum error, which is less
then 01.0± for most of the Product terms.

Effect of the reordering methods on path length
complexity variations: The experiment done earlier
using the Symmetric Sift CUDD reordering method was
extended here to understand the relation of Symmetric
Sift APL and SPL graphs with other reordering
techniques. It was observed that the relation between
the graphs follows the same pattern and it varies only on
the amplitude factor of the curves.
 By analyzing the effect of the reordering methods
on the model, equation (12) can be modified with an
additional amplification factor (µ). The amplification
factor is 1 for the Symmetric Sift, greater than 1 for
methods with lower efficiency and less than 1 for
methods with higher efficiency than the Symmetric Sift.
Equation (13) represents the mathematical model for the
APL and SPL for any reordering method.

()()�

	
	
	
	

�

�

�
�
�
�

�

+

	
�
�

�

� +

⋅⋅=
=

2

1 1log

1log
1

i

i

i
i

i

x
t

x
t

y

α

βµ
 (13)

 The amplification factor was calculated and
depicted in Table 1. Figure 16 shows the comparison
graphs of the APL and SPL behaviors for Symmetric
Sift with two of the other CUDD variable ordering
techniques mainly the Genetic Algorithm and
Window2. These two graphs show that the efficiency of
the reordering method has a definite impact on the path
length complexity; an efficient variables ordering leads
to a reduced number of nodes, which leads to reduced
path lengths.

Table 1: Amplification factor (µ)
Variable Reordering Method Amplification Factor (µ)
Random 1.024
Random Pivot 0.998
Sift 1.001
Symmetric Sift 1.000
Symmetric Sift Converge 0.971
Group Sift 1.006
Group Sift Converge 0.963
Window 2 1.085
Window 3 1.045
Window 4 1.018
Window Converge 2 1.058
Window Converge 3 1.025
Window Converge 4 0.989
Annealing 0.945
Genetic Algorithm 0.942
Exact 0.942

Advantages: The developed mathematical model
represented by equation (10), provides some useful
information on the following, without the need of
building the BDD.
1. The complexity behavior of the APL and SPL,

given the number of product terms of the Boolean
function

2. The number of product terms for which the
maximum possible depth will occur.

3. The maximum complexity of the APL and SPL of
Boolean functions for any number of variables.

CONCLUSION AND FUTURE WORK

 Future work includes minimizing the Complexity
estimation error of the match and to develop
experiments to include larger number of variables. We
are in the process of investigating an automated global
fit for any SPL and APL curves in order to find the
complexity for any number of product terms.
Investigating a mathematical model for other BDD
characteristics (i.e. longest path length and number of
paths) is also considered.
 We have discussed the idea of using BDD to study
and model a relationship between the path lengths and

J. Computer Sci., 2 (3):236-244, 2006

 243

the number of product terms in a Boolean function.
Analyzing the Experimental results, we have introduced
a single and unique mathematical model, which is based
on an empirical fit that can predict valuable information
related to the APL and SPL behaviors without building
the BDD. A great reduction in time complexity for
digital circuits' designs can be achieved and the model
can also offer useful information on the design to
handle the minimization of its evaluation time prior to
its implementation. Our experimental results show good
correlation between the experimental results and those
given by the mathematical model.

REFERENCES

1. Priyank, K., 2000. VLSI Logic Test, Validation

and Verification, Properties & Applications of
Binary Decision Diagrams. Lecture Notes,
Department of Electrical and Computer
Engineering University of Utah, Salt Lake City, UT
84112.

2. Akers, S.B., 1978. Binary decision diagram. IEEE
Trans. Computers, 27: 509-516.

3. Bryant, R.E., 1986. Graph� based algorithm for
boolean function manipulation. IEEE Trans.
Computers, 35: 677-691.

4. Drechsler, R. and D. Sieling, 2001. Binary
Decision Diagrams in Theory and Practice.
Springer-Verlag Trans., pp: 112-136.

5. Jain, A., M. Narayan and A.S. Vincentelli, 1997.
Formal verification of combinational circuits. Proc.
Intl. Conf. on VLSI Design, pp: 218-225.

6. Van Eijk, C.A.J., 1997. Formal methods for the
verification of digital circuits. Ph.D. Thesis,
Eindhoven University of Technology, Netherlands.

7. Nagayama, S. and T. Sasao, 2004. On the
minimization of longest path length for decision
diagrams. Proc. of Intl. Workshop on Logic and
Synthesis (IWLS-2004), pp: 28-35.

8. Liu, Y., K.H. Wang, T.T. Hwang, and C.L. Liu,
2001. Binary decision diagrams with minimum
expected path length. Proceedings of DATE 01, pp:
708-712.

9. Prasad, P.W.C., M. Raseen, S.M.N.A. Senanayake
and A. Assi, 2005. BDD path length minimization
based on initial variable ordering. accepted for
Publication in Journal of Computer Science,
Science Publications, May 2005.

10. Ebendt, R., S. Hoehne, W. Guenther and R.
Drechsler, 2004. Minimization of the expected path
length in BDDs based on local changes. Proc. of
Asia and South Pacific Design Automation Conf.
(ASP-DAC’2004), pp: 866-871.

11. Fujita, M., H. Fujisawa and N. Kawato, 1988.
Evaluation and improvements of boolean
comparison method based on binary decision
diagrams. Proc. Intl. Conf. on Computer Aided
Design (ICCAD)., pp: 2-5.

12. Malik, S., A. Wang, R. Brayton and A.S.
Vincentelli, 1988. Logic verification using binary
decision diagrams in a logic synthesis environment.
Proc. Intl. Conf. on Computer Aided Design
(ICCAD)., pp: 6-9.

13. Rudell, R., 1993. Dynamic variable ordering for
ordered binary decision diagrams. Proc. Intl. Conf.
on Computer Aided Design (ICCAD)., pp: 42-47.

14. Fey, G., J. Shi and R. Drechsler, 2004. BDD circuit
optimization for path delay fault-testability. Proc.
of EUROMICRO Symp. on Digital System Design,
pp: 168-172.

15. Balarin, F., M. Chiodo, P. Giusto, H. Hsieh, A.
Jurecska, L. Lavagno, A.S. Vincentelli, E.M.
Sentovich and K. Suzuki, 1999. Synthesis of
software programs for embedded control
applications. IEEE Trans. CAD., 18: 834-849.

16. Lindgren, M., H. Hansson and H. Thane, 2000.
Using measurements to derive the worst-case
execution time. Proc. 7th Intl. Conf. on Real-Time
Systems and Applications (RTCSA’00)., pp: 5-22.

17. Shelar, R.S. and S.S. Sapatnekar, 2001. Recursive
bipartitioning of BDD's for performance driven
synthesis of pass transistor logic. Proc. of
IEEE/ACM ICCAD., pp: 449 - 452.

18. Bertacco, V., S. Minato, P. Verplaetse, L. Benini
and G.D. Micheli, 1997. Decision diagrams and
pass transistor logic synthesis. Stanford University
CSL Technical Report, No. CSL-TR-97-748.

19. Görschwin, F., S. Junhao and R. Drechsler, 2004.
BDD circuit optimization for path delay fault-
testability. Proc. EUROMICRO Symp. on Digital
System Design, pp: 168-172.

20. Raseen, M., P.W.C. Prasad and A. Assi, 2005. An
efficient estimation of the ROBDD's complexity.
accepted for Publication in Integration - the VLSI
Journal, Elsevier Publication.

21. Nemani, M. and F.N. Najm, 1996. High-level
power estimation and the area complexity of
boolean functions. Proc. of IEEE Intl. Symp. on
Low Power Electronics and Design, pp: 329-334.

22. Dunne, P.E. and W. van der Hoeke, 2004.
Representation and complexity in boolean games.
Proc. 9th European Conf. on Logics in Artificial
Intelligence, LNCS 3229, Springer-Verlag, pp:
347-35.

J. Computer Sci., 2 (3):236-244, 2006

 244

23. Ramalingam, N. and S. Bhanja, 2005. Causal
probabilistic input dependency learning for
switching model in VLSI circuits. Proc. of ACM
Great Lakes Symp. on VLSI, pp: 112-115.

24. Bhanja, S., K. Lingasubramanian and N.
Ranganathan, 2005. Estimation of switching
activity in sequential circuits using dynamic
bayesian networks. Proc. of VLSI Design, pp: 586-
591.

25. Raseen, M., P.W.C. Prasad and A. Assi, 2004.
Mathematical model to predict the number of nodes
in an ROBDD. Proc. 47th IEEE Intl. Midwest
Symp. on Circuit and Systems (MWSCAS), 3: 431-
434.

26. Prasad, P.W.C., M. Raseen and S.M.N.A.
Senanayake, 2005. XOR/xnor functional behavior
on ROBDD representation. Proc. 14th IASTED
Intl. Conf. on Applied Simulation and Modelling
(ASM 2005), pp. 115-119, Spain.

27. Raseen, M., A. Assi, P.W.C. Prasad and A. Harb,
2004. Effect of boolean min-terms on the
complexity of ROBDDs. Proc. Intl. Conf. on
Computational Intelligence (ICCI 2004), pp: 454-
457.

28. Somenzi, F., 2003. CUDD: CU Decision Diagram
Package. <ftp://vlsi.colorado.edu/> pub/.

