
Journal of Computer Science 2 (6): 505-512, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author : Hiroyuki Okamura, Department of Information Engineering, Hiroshima University, Japan
505

Optimal Rejuvenation Scheduling of Distributed Computation

Based on Dynamic Programming

Hiroyuki Okamura, Kazuki Iwamoto and Tadashi Dohi
Department of Information Engineering, Hiroshima University

1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

Abstract: Recently, a complementary approach to handle transient software failures, called software
rejuvenation, is becoming popular as a proactive fault management technique in operational software
systems. In this study, we develop the optimal scheduling algorithms to trigger software rejuvenation in
distributed computation circumstance. In particular, we focus on two different computation circumstances in
terms of detection of failures. Based on the dynamic programming, we derive the optimal software
rejuvenation schedule which minimizes the expected total time of computation. In numerical examples, we
examine the sensitivity of model parameters characterizing the failure phenomenon to the resulting optimal
rejuvenation schedule.

Key words: Software aging, software rejuvenation, distributed computation, dynamic programming

INTRODUCTION

 It has been recognized for a long time that software
system never deteriorates in operational phases.
However, the phenomenon called software aging[1,2], is
often observed in actual software like operating systems
and widely-used applications. The software aging
affects adversely the software performance and
eventually causes a system failure. Huang et al.[3] report
this phenomenon in a telecommunication billing
application where over time the application experiences
a crash or a hang failure. The aging phenomenon in a
telecommunication switching software is observed in
Avritzer and Weyuker[4], where the effect manifests as
gradual performance degradation. Garg et al.[5],
Shereshevsky et al.[6] and Vaidyanathan et al.[7] carry
out empirical researches to measure memory resource
exhaustion and its associated aging phenomena in
software systems. In fact, the software aging occurs by
unexpected software faults and causes the performance
degradation such as memory leaks, heap corruption and
fragmentation.
 Our common experience suggests that almost all
the software failures caused by the software aging are
transient in nature[8]. Since transient failures are not
recaptured even if the same operation is retried later, it
is quite difficult to detect the software fault causing the
transient failure and the software aging. Therefore, the
software aging phenomenon and its related transient
software failures have to be tolerated in operational
phases. Usual strategies to deal with transient failures
are passive in nature; they consist of actions taken after
failures. A complementary approach to handle transient
software failures, called software rejuvenation, is

becoming popular[9]. Software rejuvenation is
preventive and proactive solution that is particularly
useful for counteracting the phenomenon of software
aging. It involves stopping the running software
occasionally, cleaning its internal state and restarting it.
Cleaning the internal state of a software might involve
garbage collection, flushing operating system kernel
tables, reinitializing internal data structures, etc. An
extreme, but well-known example of rejuvenation is a
hardware reboot. Apart from being used in an ad-hoc
manner by almost all computer users, the software
rejuvenation has been used in high availability and
mission critical systems[10]. The most vivid example of
aging in safety critical systems is the Patriot's
software[3], where the accumulated roundoff errors lead
to the failure that resulted in loss of human life.
 Software rejuvenation typically takes an overhead
and the system cannot provide the service during the
operation of rejuvenation. However, in general, the
overhead cost caused by a scheduled downtime is
expected to be much lower than that caused by an
unexpected downtime. This is true on the overhead
costs of failure and rejuvenation. In terms of cost
performance, it is important to perform the occasional
software rejuvenation for preventing more severe
failures. From the above point of view, many authors
consider the rejuvenation scheduling problems under a
variety of dependability measures. Huang et al.[9]
propose a continuous-time Markov chain model with
random software rejuvenation. Rinsaka and Dohi[11]
extend Huang’s et al. model[9] to a fault-tolerant
software system with a redundant component. Dohi et
al.[12,13], Suzuki et al.[14,15] generalize the same model to
semi-Markov models with different dependability

J. Computer Sci., 2 (6): 505-512, 2006

 506

measures and develop the computation methods of the
optimal software rejuvenation schedule. As an
alternative modeling approach, Garg et al.[16] model a
transaction-based software system involving arrival and
service processes and evaluate the effect of transient
failures on the time-based rejuvenation schedule.
Recently, this model is extended by Okamura et al.[17] to
a communication network system with burst arrival and
rejuvenation.
 In this study, we consider a software rejuvenation
scheduling problem in a distributed computation
circumstance. First we suppose that a distributed
software system is composed of a number of processes
that can communicate with exchange of messages. It is
assumed that all the messages are delivered without
time loss and that the communication is synchronous.
That is, any process always receives a positive or
negative acknowledgment message after sending a
message to another process. In such a circumstance, the
transient failure is defined as a process deadlock which
is caused by competition of resources. In the
synchronous communication, the process deadlock can
be detected by timeout of acknowledgments. That is, if
a process does not receive an acknowledgment in a
specified time period, the process can detect the failure.
Also, in order to prevent the process deadlock, it would
be useful to execute an occasional software rejuvenation
such as garbage collection and re-scheduling of
transmitted messages. In such a distributed computation
circumstance, we propose rejuvenation scheduling
algorithms based on the dynamic programming (DP)
and minimize the expected total time of computation.
The similar but somewhat different problem is
considered by Garg et al.[18], where the authors consider
a minimization problem of the job completion time in a
non-distributed computation with checkpointing and
rejuvenation.

NOTATION

C : computation time (r.v.),
}Pr{)(tXtG ≤= : probability distribution function for

computation time C,
X : transient failure time (r.v.),

}Pr{)(tXtF ≤= : probability distribution function for
transient failure time X,

},,{ 1 Ntt �=π : rejuvenation schedule,

it : the i-th rejuvenation time,

Rµ : expected overhead time of rejuvenation,
)(tρ : expected time for recovery operation,

T : deadline of computation,
N : the number of scheduled rejuvenation points,

)(1+ii tCT : the expected total time to computation after
the i-th rejuvenation, provided that the (i+1)-st
rejuvenation time is 1+it ,

*

iv : the minimum expected total time to computation
after the i-th rejuvenation.

ASSUMPTIONS

* A distributed computation is completed at time C.
* The computation fails at time X.
* The failed computation has to be retried after a

recovery operation with time)(tρ .
* N rejuvenations are performed at scheduled time

sequence },,{ 1 Ntt �=π .
* The computation has to be retried with a recovery

operation just after deadline T.
* In Model I, the transient failure is immediately

detected.
* In Model II, the detection of failure is executed at

the same time as rejuvenation.

MODEL DESCRIPTION

 In the distributed computation circumstance, we
suppose that a process starts a distributed computation
at t=0 and completes at a random time C. The
computation time C has the probability distribution
function G(t) (t>0). The computation occasionally fails
due to a process deadlock, but in general, the failed
computation can be recovered by restarting the
computation, i.e., the failure is transient. In this study,
we focus on such a transient failure, which occurs at a
random time X having the probability distribution
function F(t) (t>0). After detecting the transient failure,
the process executes recovery operation; for example, it
broadcasts messages of retry to the other
communicative processes. Then, the computation
undergoes the recovery operation and retry, where the
expected time required for recovery operation is given
by)(tρ (t>0) and t means the total time length of
computation just before the failure. In many situations,
the recovery operation takes a long overhead time. Thus,
to prevent the transient failure, the process checks the
condition of computation. This operation corresponds to
the software rejuvenation. In our model, the
rejuvenation is triggered at scheduled times

},{ 21 �tt=π . At each rejuvenation time jt (j=1, 2,

�), for example, the messages of rejuvenation are
delivered to the other processes. The expected time
length of rejuvenation is assumed to be Rµ (>0). After
completing the rejuvenation, the rate of transient failure
becomes as good as one at the beginning of
computation. If the computation does not complete by

J. Computer Sci., 2 (6): 505-512, 2006

 507

the deadline of computation T, then the process has to
execute both recovery operation and retry immediately.
 Generally speaking, the detection of transient
failure is a difficult problem in the distributed
computation circumstance. In this study, we consider
two models with different failure-detection procedures.
In the first model, the process is always monitoring an
acknowledgment of passing messages. Thus the failure
can be detected immediately at the same time as its
occurrence. In the second model, the failure detection is
executed at the rejuvenation time. This implies that the
process is not always monitoring the acknowledgment,
but it tries to check the computation and
acknowledgments from the other processes periodically.
In practice, the difference between the first and second
models is essentially whether the process waits for an
acknowledgment from the other processes or not. That
is, the first model corresponds to the system with
sequential tasks. The second model represents the
system with completely parallel and distributed tasks.
We call the first and second models as Model I and
Model II, respectively.
 Figures 1 and 2 illustrate the possible realizations
of distributed computation with rejuvenation for
respective models. The arrows located at the upper parts
in both figures indicate non-failed computations. At
each rejuvenation time marked by a dot, the rate of
transient failure is renewed. The time required by
rejuvenation operation is the expected overhead time

Rµ . After the failures which are pointed by stars, the
computations are retried from the beginnings of
computation (the arrows located at the lower parts) with
the recovery overheads)(2 Xt +ρ and)(3tρ . Note that
the detection of failure is delayed in Model II. Finally,
on the lower arrows, the computations are completed at
the time pointed by boxes.

Fig. 1: Possible realization of distributed computation

with rejuvenation (Model I)

Fig. 2: Possible realization of distributed computation

with rejuvenation (Model II)

OPTIMAL REJUVENATION SCHEDULING

 Consider the following two software rejuvenation
schedules:

Periodic rejuvenation: The time intervals of
successive rejuvenations are given by a constant τ (>0),
i.e., the rejuvenation schedule is denoted by

},3,2,{ �τττπ = .

Non-periodic rejuvenation: The rejuvenation is
triggered at non-constant time sequence but the number
of rejuvenations until the completion of computation is
fixed as N (1≥). Then the software rejuvenation
schedule is given by },,,{ 21 Nttt �=π .
 Under these two policies, we discuss the optimal
scheduling algorithms for software rejuvenation to
minimize the expected total time to computation.

Model I
Periodic rejuvenation policy: Let)(τiCT denote the
expected total computation time from the i-th
rejuvenation under the periodic rejuvenation schedule.
Since the transient failure causes retry of the
computation, we have

(1)

J. Computer Sci., 2 (6): 505-512, 2006

 508

 (2)
where N is the maximum integer which satisfies τnT >
and in general)(1)(⋅−=⋅ ψψ . Also,)|(⋅⋅G is the
conditional probability distribution:

)(/)(1)|(xGsxGxsG +−= (3)
 In both Eqs. (1) and (2), the first term corresponds
to the event where a failure occurs before the
completion of computation and where the completion
precedes the operation of rejuvenation. The second term
indicates that the computation is completed before
occurance of failure and execution of rejuvenation. The
third and fourth terms mean that a failure occurs before
both completion of computation and rejuvenation and
that the rejuvenation is executed, respectively. Then the
problem is to find the optimal time interval *τ which
minimizes)(0 τCT . Since the function)(0 τCT is a non-
linear function of τ , we can apply any numerical
optimization method such as the Newton's method.

Non-periodic rejuvenation policy: Next consider the
optimal non-periodic software rejuvenation schedule

},,{ **

1
*

Ntt �=π which minimizes the expected total
time to computation. Define

)(1+ii tCT : expected total time to computation after the i-
th rejuvenation, provided that only the (i+1)-st
rejuvenation can be chosen as *

21

*

++ ≤≤ iii ttt and the
others are strictly scheduled on the optimal time
sequence of rejuvenations, i.e., *π .

*

iv : minimum expected total time to computation after
the i-th rejuvenation.

 From the principle of optimality, we have the
following optimality equations.

 (3)

 (4)

and

(6)

(7)
where 00 =t . In particular, when F(t) and G(t) are
absolutely continuous probability distribution functions,
Eqs. (6) and (7) can be simplified in the following
forms:

 (8)

 (9)
where

 (10)
 By solving the above optimality equations, we can
derive the optimal rejuvenation schedule *π .
 To develop an algorithm to compute the optimal
rejuvenation schedule, we rewrite Eqs. (8) and (9) as
functions of it , 1+it and *

1+iv , namely,

 (11)
and

J. Computer Sci., 2 (6): 505-512, 2006

 509

 (12)
 Then we derive the following DP algorithm to
compute the optimal rejuvenation schedule for Model I.

DP-based algorithm for scheduling rejuvenation:
Step 1: Let 0=k .
Step 2: Give the initial values

 (13)
 (14)

and the expected times to computation)0(

iw , i = 1, � ,
N.
Step 3: Calculate

 (15)

 (16)

 (17)

 (18)

 (19)
 (20)

Step 4: For all Ni �,1= , if ε<−+ ||)()1(k

i

k

i tt , stop the
algorithm, where ε is an error tolerance, otherwise, let

1: += kk and go to Step 3.

Model II
Periodic rejuvenation policy: In Model II, the
function)(τiCT can be rewritten as follows:

 (21)

 (22)

 The problem is to find the optimal time interval *τ
which minimizes)(0 τCT and can be solved by the
bisection method or the Newton's method.

Non-periodic rejuvenation policy: Consider the
optimization problem in Model II. In this case, using

)(1+ii tCT and *

iv , we have the optimality equations for
the rejuvenation schedule:

 (23)
 (24)

where

 (25)

 (26)

 Similar to Eqs. (8) and (9), when F(t) and G(t) are
continuous probability distribution functions, Eqs. (25)
and (26) can be simplified in the following forms:

 (27)

 (28)

where)(⋅r is the failure rate function of)(⋅G :

 (29)

J. Computer Sci., 2 (6): 505-512, 2006

 510

 In a fashion similar to Model I, we can define the
function),,|(22 ++ iiii vtttWT corresponding to Eqs. (11)
and (12):

(30)

(31)
 The DP-based algorithm for Model II is the similar
scheme to Model I. That is, substituting the above
functions iWT into the DP-algorithm for Model I yields
a DP-based algorithm for the optimal rejuvenation
scheduling in Model II.

NUMERICAL EXAMPLES

 In this section, we present numerical examples for
the non-periodic software rejuvenation schedule and
investigate the dependence of the optimal software
rejuvenation schedule on failure time distribution)(⋅F ,
computation time distribution)(⋅G and rejuvenation
overhead Rµ .
 Suppose that the failure time distribution and the
computation time distribution are given by the Weibull
distributions:

 (32)
 (33)

respectively, where fm (>0) and gm (>0) are shape

parameters which characterize the aging properties of
distributions. Also, the parameters fη (>0) and gη (>0)

are scale parameters. If the shape parameter and its
mean value in the Weibull distribution are given, then
the scale parameter is uniquely determined from the
shape parameter and the mean value. Thus we give
shape parameters and mean values in the following
three different cases.
Case 1: 2=fm , 15]E[=X , 2=gm , 10]E[=C ,

Case 2: 2=fm , 15]E[=X , 5=gm , 10]E[=C ,

Case 3: 2=fm , 5]E[=X , 2=gm , 10]E[=C .

Case 1 is defined as the basic parameter set. Compared
with Case 1, the variance of computation time in Case 2
decreases. On the other hand, Case 3 corresponds to a
failure-prone case. To investigate the effect of failure
and computation times, the other model parameters are
fixed as 0=Rµ and 0.11.0)(+= ttρ . In these cases,
we calculate the optimal rejuvenation schedules with

20,5,2,1=N .
 Figures 3 to 5 show the results on the optimal non-
periodic rejuvenation policy. In the bottom parts of
figures, we illustrate the optimal rejuvenation schedules
with N = 1, 2, 5, 20, where each dot indicates the
scheduled rejuvenation time. In addition, each arrow
indicates its associated minimum expected time to
computation. Also, in the upper parts of figures, we
depict the failure time density functions and the

Fig. 3: Optimal rejuvenation scheduling in Model I

(Case 1)

Fig. 4: Optimal rejuvenation scheduling in Model I

(Case 2)

Fig. 5: Optimal rejuvenation scheduling in Model I

(Case 3)

computation time density functions. Comparing Fig.3
with Fig. 4, we can see that the time intervals of
rejuvenation in Case 2 become shorter than those in
Case 1. On the other hand, there is no remarkable
difference between Case 1 and Case 3 in terms of the
rejuvenation schedules. These results tell us that the
optimal schedule of software rejuvenation is strongly
affected by the computation time probability density
rather than the failure time probability density. Next, we
focus on the minimum expected time to computation. It
is found that the expected time to computation in Case 3

J. Computer Sci., 2 (6): 505-512, 2006

 511

Fig. 6: Optimal rejuvenation in Model II (Case 1)

Fig. 7: Optimal rejuvenation in Model II (Case 2)

Fig. 8: Optimal rejuvenation scheduling in Model II

(Case 3)

is relatively longer than those in the other cases,
because the probability of failure is higher. However,
the minimum expected completion time to computation
i s c l o se to 10]E[=C a s the to t a l numb er o f
rejuvenation points increases. Therefore, we observe
that the software rejuvenation is quite effective even in
such case. Figures 6 to 8 illustrate the results on the
optimal non-periodic rejuvenation policy in Model II.
Comparing the results of Model I and Model II, there is
no remarkable difference in Cases 1 and 2. However,
the rejuvenation timings of Model II in Case 3 are
slightly shorter than those of Model I. In particular, the
expected minimum expected time to computation
becomes longer in Model II. This is because the

Fig. 9: Dependence of the optimal rejuvenation

schedule on rejuvenation overheads in Model I
(Case 1)

Fig. 10: Dependence of the optimal rejuvenation

schedule on rejuvenation overheads in Model
II (Case 1)

detection of failure is delayed in Model II, so that the
computation times of Model II tend to be longer than
those of Model I.
 Next we investigate the dependence of the optimal
rejuvenation schedule on rejuvenation overheads.
Figures 9 and 10 illustrate the optimal rejuvenation
sequences in Model I and Model II with varying
rejuvenation overheads, 5.0,,0.0 �=Rµ , respectively,
where N=5 and the other model parameters are the same
as Case 1. From these results, in both models, time
intervals of the optimal rejuvenation sequences become
longer as the rejuvenation overheads increase. The
expected minimum times to computation are also longer
as the overheads increase, but the increments of the
expected minimum times to computation are not so
large. Comparing the result of Model I with that of
Model II, we can observe that the increments of the
time intervals in Model I are larger than those in Model
II. That is, the optimal rejuvenation sequences are more
sensitive to the rejuvenation overheads in the case of the
immediate fault-detection circumstance.

J. Computer Sci., 2 (6): 505-512, 2006

 512

CONCLUSION

 This study has considered the optimal scheduling
problems with software rejuvenation in the distributed
computation. Based on the dynamic programming, we
have developed the iterative algorithms to calculate the
optimal software rejuvenation schedule minimizing the
expected time to computation. In numerical examples,
the dependence of the optimal rejuvenation schedule on
the failure time and computation time probability
distributions has been investigated. As a result, it has
been concluded that the optimal software rejuvenation
schedule is strongly affected by the computation time
distribution rather than the failure time distribution. In
future, we will develop an online algorithm to estimate
the optimal software rejuvenation sequence based on
the Bayesian estimation. Furthermore, we will apply the
Monte Carlo simulation to evaluate the effectiveness of
the rejuvenation algorithms in a distributed computation.

ACKNOWLEDGMENTS

 This research was partially supported by the
Ministry of Education, Science, Sports and Culture:
Grant-in-Aid for Young Scientists (B), Grant No.
15700060 (2003-2004) and Exploratory Research,
Grant No. 15651076 (2003-2005).

REFERENCES

1. Adams, E., 1984. Optimizing preventive service of

the software products. IBM J. Res. and
Development, 28: 2-14.

2. Castelli, V., R.E. Harper, P. Heidelberger, S.W.
Hunter, K.S. Trivedi, K. Vaidyanathan and W.P.
Zeggert, 2001. Proactive management of software
aging. IBM J. Res. and Development, 45:311-332.

3. Marshall, E., 1992. Fatal error: How Patriot
overlooked a scud. Science, 3: 1347.

4. Avritzer, A. and E.J. Weyuker, 1997. Monitoring
smoothly degrading systems for increased
dependability. Empirical Software Eng., 2: 59-77.

5. Garg, S., A. Van Moorsel, K. Vaidyanathan and K.
S. Trivedi, 1998. A methodology for detection and
estimation of software aging. Proc. 9th Intl. Symp.
on Software Reliab. Eng., pp: 282-292.

6. Shereshevsky, M., B. Cukic, J. Crowel and V.
Candikota, 2003. Software aging and
multifractality of memory resources. Proc. Intl.
Conf. on Dependable Systems and Networks,
pp: 721-730.

7. Vaidyanathan, K. and K.S. Trivedi, 1999. A
measurement-based model for estimation of
resource exhaustion in operational software
systems. Proc. 10th Int'l Symp. on Software Reliab.
Eng., pp: 84-93.

8. Gray, J. and D.P. Siewiorek, 1991. High-
availability computer systems, IEEE Computer, 24:
39-48.

9. Huang, Y., C. Kintala, N. Kolettis and N.D. Fulton,
1995. Software rejuvenation: Analysis, module and
applications. Proc. 25th Intl. Symp. on Fault
Tolerant Computing, pp: 381-390.

10. Tai, A.T., L. Alkalai and S.N. Chau, 1999. On-
board preventive maintenance: A design-oriented
analytic study for long-life applications.
Performance Evaluation, 35: 215-232.

11. Rinsaka, K. and T. Dohi, 2005. Behavioral analysis
of a fault-torellant software system with
rejuvenation. Proc. 7th Intl. Symp. on Autonomous
Decentralized Systems, pp: 159-166.

12. Dohi, T., K. Goseva-Popstojanova and K.S.
Trivedi, 2001. Estimating software rejuvenation
schedule in high assurance systems. The Computer
J., 47: 473-485.

13. Dohi, T., H. Suzuki and K.S. Trivedi, 2004.
Comparing software rejuvenation policies under
different dependability measures. IEICE Trans. on
Information and Systems (D), E87-D: 2078-2085.

14. Suzuki, H., T. Dohi, K. Goseva-Popstojanova and
K.S. Trivedi, 2002. Analysis of multistep failure
models with periodic software rejuvenation. In
Advances in Stochastic Modelling (J.R. Artalejo
and A. Krishnamoorthy, Eds.), Notable
Publications, Inc., pp: 85-108.

15. Suzuki, H., T. Dohi, N. Kaio and K.S. Trivedi,
2003. Maximizing interval reliability in operational
software system with rejuvenation. Proc. 14th Intl.
Symp. on Software Reliab. Eng., pp: 246-256.

16. Garg, S., S. Pfening, A. Puliafito, M. Telek and
K.S. Trivedi, 1998. Analysis of preventive
maintenance in transactions based software
systems. IEEE Trans. on Comput., 47: 96-107.

17. Okamura, H., S. Miyahara and T. Dohi, 2005.
Effect of preventive rejuvenation in communication
network system with burst arrival. Proc. 7th Intl.
Symp. on Autonomous Decentralized Systems, pp:
151-158.

18. Garg, S., Y. Huang, C. Kintala and K.S. Trivedi,
1996. Minimizing completion time of a program by
checkpointing and rejuvenation. Proc. ACM
SIGMETRICS Conf., pp: 252-261.

