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Abstract: Recently, a complementary approach to handle transient software failures, called software 
rejuvenation, is becoming popular as a proactive fault management technique in operational software 
systems. In this study, we develop the optimal scheduling algorithms to trigger software rejuvenation in 
distributed computation circumstance. In particular, we focus on two different computation circumstances in 
terms of detection of failures. Based on the dynamic programming, we derive the optimal software 
rejuvenation schedule which minimizes the expected total time of computation. In numerical examples, we 
examine the sensitivity of model parameters characterizing the failure phenomenon to the resulting optimal 
rejuvenation schedule. 
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INTRODUCTION 

 
 It has been recognized for a long time that software 
system never deteriorates in operational phases. 
However, the phenomenon called software aging[1,2], is 
often observed in actual software like operating systems 
and widely-used applications. The software aging 
affects adversely the software performance and 
eventually causes a system failure. Huang et al.[3] report 
this phenomenon in a telecommunication billing 
application where over time the application experiences 
a crash or a hang failure. The aging phenomenon in a 
telecommunication switching software is observed in 
Avritzer and Weyuker[4], where the effect manifests as 
gradual performance degradation. Garg et al.[5], 
Shereshevsky et al.[6] and Vaidyanathan et al.[7] carry 
out empirical researches to measure memory resource 
exhaustion and its associated aging phenomena in 
software systems. In fact, the software aging occurs by 
unexpected software faults and causes the performance 
degradation such as memory leaks, heap corruption and 
fragmentation. 
 Our common experience suggests that almost all 
the software failures caused by the software aging are 
transient in nature[8]. Since transient failures are not 
recaptured even if the same operation is retried later, it 
is quite difficult to detect the software fault causing the 
transient failure and the software aging. Therefore, the 
software aging phenomenon and its related transient 
software failures have to be tolerated in operational 
phases. Usual strategies to deal with transient failures 
are passive in nature; they consist of actions taken after 
failures. A complementary approach to handle transient 
software failures, called software rejuvenation, is  
 

becoming popular[9]. Software rejuvenation is 
preventive and proactive solution that is particularly 
useful for counteracting the phenomenon of software 
aging. It involves stopping the running software 
occasionally, cleaning its internal state and restarting it. 
Cleaning the internal state of a software might involve 
garbage collection, flushing operating system kernel 
tables, reinitializing internal data structures, etc. An 
extreme, but well-known example of rejuvenation is a 
hardware reboot. Apart from being used in an ad-hoc 
manner by almost all computer users, the software 
rejuvenation has been used in high availability and 
mission critical systems[10]. The most vivid example of 
aging in safety critical systems is the Patriot's 
software[3], where the accumulated roundoff errors lead 
to the failure that resulted in loss of human life.  
 Software rejuvenation typically takes an overhead 
and the system cannot provide the service during the 
operation of rejuvenation. However, in general, the 
overhead cost caused by a scheduled downtime is 
expected to be much lower than that caused by an 
unexpected downtime. This is true on the overhead 
costs of failure and rejuvenation. In terms of cost 
performance, it is important to perform the occasional 
software rejuvenation for preventing more severe 
failures. From the above point of view, many authors 
consider the rejuvenation scheduling problems under a 
variety of dependability measures. Huang et al.[9] 
propose a continuous-time Markov chain model with 
random software rejuvenation. Rinsaka and Dohi[11] 
extend Huang’s et al. model[9] to a fault-tolerant 
software system with a redundant component. Dohi et 
al.[12,13], Suzuki et al.[14,15] generalize the same model to 
semi-Markov models with different dependability 
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measures and develop the computation methods of the 
optimal software rejuvenation schedule. As an 
alternative modeling approach, Garg et al.[16] model a 
transaction-based software system involving arrival and 
service processes and evaluate the effect of transient 
failures on the time-based rejuvenation schedule. 
Recently, this model is extended by Okamura et al.[17] to 
a communication network system with burst arrival and 
rejuvenation.  
 In this study, we consider a software rejuvenation 
scheduling problem in a distributed computation 
circumstance. First we suppose that a distributed 
software system is composed of a number of processes 
that can communicate with exchange of messages. It is 
assumed that all the messages are delivered without 
time loss and that the communication is synchronous. 
That is, any process always receives a positive or 
negative acknowledgment message after sending a 
message to another process. In such a circumstance, the 
transient failure is defined as a process deadlock which 
is caused by competition of resources. In the 
synchronous communication, the process deadlock can 
be detected by timeout of acknowledgments. That is, if 
a process does not receive an acknowledgment in a 
specified time period, the process can detect the failure. 
Also, in order to prevent the process deadlock, it would 
be useful to execute an occasional software rejuvenation 
such as garbage collection and re-scheduling of 
transmitted messages. In such a distributed computation 
circumstance, we propose rejuvenation scheduling 
algorithms based on the dynamic programming (DP) 
and minimize the expected total time of computation. 
The similar but somewhat different problem is 
considered by Garg et al.[18], where the authors consider 
a minimization problem of the job completion time in a 
non-distributed computation with checkpointing and 
rejuvenation.  
  
 

NOTATION 
 

C : computation time (r.v.), 
}Pr{)( tXtG ≤= : probability distribution function for 

computation time C, 
X : transient failure time (r.v.), 

}Pr{)( tXtF ≤= : probability distribution function for 
transient failure time X, 

},,{ 1 Ntt �=π : rejuvenation schedule, 

it : the i-th rejuvenation time, 

Rµ : expected overhead time of rejuvenation, 
)(tρ : expected time for recovery operation, 

T : deadline of computation, 
N : the number of scheduled rejuvenation points, 

)( 1+ii tCT : the expected total time to computation after 
the i-th rejuvenation, provided that the (i+1)-st 
rejuvenation time is 1+it , 

*

iv : the minimum expected total time to computation 
after the i-th rejuvenation. 
 

ASSUMPTIONS 
 

* A distributed computation is completed at time C. 
* The computation fails at time X.  
*  The failed computation has to be retried after a 

recovery operation with time )(tρ . 
* N rejuvenations are performed at scheduled time 

sequence },,{ 1 Ntt �=π . 
* The computation has to be retried with a recovery 

operation just after deadline T. 
* In Model I, the transient failure is immediately 

detected. 
* In Model II, the detection of failure is executed at 

the same time as rejuvenation. 
 

MODEL DESCRIPTION 
 

 In the distributed computation circumstance, we 
suppose that a process starts a distributed computation 
at t=0 and completes at a random time C. The 
computation time C has the probability distribution 
function G(t) (t>0). The computation occasionally fails 
due to a process deadlock, but in general, the failed 
computation can be recovered by restarting the 
computation, i.e., the failure is transient. In this study, 
we focus on such a transient failure, which occurs at a 
random time X having the probability distribution 
function F(t) (t>0). After detecting the transient failure, 
the process executes recovery operation; for example, it 
broadcasts messages of retry to the other 
communicative processes. Then, the computation 
undergoes the recovery operation and retry, where the 
expected time required for recovery operation is given 
by )(tρ  (t>0) and t means the total time length of 
computation just before the failure. In many situations, 
the recovery operation takes a long overhead time. Thus, 
to prevent the transient failure, the process checks the 
condition of computation. This operation corresponds to 
the software rejuvenation. In our model, the 
rejuvenation is triggered at scheduled times 

},{ 21 �tt=π . At each rejuvenation time jt  (j=1, 2, 

� ), for example, the messages of rejuvenation are 
delivered to the other processes. The expected time 
length of rejuvenation is assumed to be Rµ  (>0). After 
completing the rejuvenation, the rate of transient failure 
becomes as good as one at the beginning of 
computation. If the computation does not complete by 
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the deadline of computation T, then the process has to 
execute both recovery operation and retry immediately. 
 Generally speaking, the detection of transient 
failure is a difficult problem in the distributed 
computation circumstance. In this study, we consider 
two models with different failure-detection procedures. 
In the first model, the process is always monitoring an 
acknowledgment of passing messages. Thus the failure 
can be detected immediately at the same time as its 
occurrence. In the second model, the failure detection is 
executed at the rejuvenation time. This implies that the 
process is not always monitoring the acknowledgment, 
but it tries to check the computation and 
acknowledgments from the other processes periodically. 
In practice, the difference between the first and second 
models is essentially whether the process waits for an 
acknowledgment from the other processes or not. That 
is, the first model corresponds to the system with 
sequential tasks. The second model represents the 
system with completely parallel and distributed tasks. 
We call the first and second models as Model I and 
Model II, respectively.  
 Figures 1 and 2 illustrate the possible realizations 
of distributed computation with rejuvenation for 
respective models. The arrows located at the upper parts 
in both figures indicate non-failed computations. At 
each rejuvenation time marked by a dot, the rate of 
transient failure is renewed. The time required by 
rejuvenation operation is the expected overhead time 

Rµ . After the failures which are pointed by stars, the 
computations are retried from the beginnings of 
computation (the arrows located at the lower parts) with 
the recovery overheads )( 2 Xt +ρ and )( 3tρ . Note that 
the detection of failure is delayed in Model II. Finally, 
on the lower arrows, the computations are completed at 
the time pointed by boxes. 
 

 
Fig. 1: Possible realization of distributed computation 

with rejuvenation (Model I) 
 
 

 
Fig. 2: Possible realization of distributed computation 

with rejuvenation (Model II) 
 

OPTIMAL REJUVENATION SCHEDULING 
 

 Consider  the following two software rejuvenation 
schedules: 
 
Periodic rejuvenation: The time intervals of 
successive rejuvenations are given by a constant τ  (>0), 
i.e., the rejuvenation schedule is denoted by 

},3,2,{ �τττπ = .  
 
Non-periodic rejuvenation: The rejuvenation is 
triggered at non-constant time sequence but the number 
of rejuvenations until the completion of computation is  
fixed as N ( 1≥ ). Then the software rejuvenation 
schedule is given by },,,{ 21 Nttt �=π .  
 Under these two policies, we discuss the optimal 
scheduling algorithms for software rejuvenation to 
minimize the expected total time to computation. 
 
Model I 
Periodic rejuvenation policy: Let )(τiCT  denote the 
expected total computation time from the i-th 
rejuvenation under the periodic rejuvenation schedule. 
Since the transient failure causes retry of the 
computation, we have 
 
 

(1) 
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 (2) 
where N is the maximum integer which satisfies τnT >  
and in general )(1)( ⋅−=⋅ ψψ . Also, )|( ⋅⋅G  is the 
conditional probability distribution: 

)(/)(1)|( xGsxGxsG +−=  (3) 
 In both Eqs. (1) and (2), the first term corresponds 
to the event where a failure occurs before the 
completion of computation and where the completion 
precedes the operation of rejuvenation. The second term 
indicates that the computation is completed before 
occurance of failure and execution of rejuvenation. The 
third and fourth terms mean that a failure occurs before 
both completion of computation and rejuvenation and 
that the rejuvenation is executed, respectively. Then the 
problem is to find the optimal time interval *τ  which 
minimizes )(0 τCT . Since the function )(0 τCT  is a non-
linear function of τ , we can apply any numerical 
optimization method such as the Newton's method. 
 
Non-periodic rejuvenation policy: Next consider the 
optimal non-periodic software rejuvenation schedule 

},,{ **

1
*

Ntt �=π  which minimizes the expected total 
time to computation. Define 
 

)( 1+ii tCT : expected total time to computation after the i-
th rejuvenation, provided that only the (i+1)-st 
rejuvenation can be chosen as *

21

*

++ ≤≤ iii ttt  and the 
others are strictly scheduled on the optimal time 
sequence of rejuvenations, i.e., *π .  

*

iv : minimum expected total time to computation after 
the i-th rejuvenation. 
 
 From the principle of optimality, we have the 
following optimality equations. 
 

 (3) 
 

  (4) 
 

and 
 

(6) 
 

(7) 
where 00 =t . In particular, when F(t) and G(t) are 
absolutely continuous probability distribution functions, 
Eqs. (6) and (7) can be simplified in the following 
forms: 

 
  (8) 

 (9) 
where 

  (10) 
 By solving the above optimality equations, we can 
derive the optimal rejuvenation schedule *π .  
 To develop an algorithm to compute the optimal 
rejuvenation schedule, we rewrite Eqs. (8) and (9) as 
functions of it , 1+it  and *

1+iv , namely, 

  
  (11) 
and 
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 (12) 
 Then we derive the following DP algorithm to 
compute the optimal rejuvenation schedule for Model I. 
 
DP-based algorithm for scheduling rejuvenation: 
Step 1: Let 0=k . 
Step 2: Give the initial values  

 (13) 
 (14) 

and the expected times to computation )0(

iw , i = 1, � , 
N. 
Step 3: Calculate 
 
 

 (15) 

  (16) 

  (17) 

  (18) 

  (19) 
  (20) 
 
Step 4: For all Ni �,1= , if ε<−+ || )()1( k

i

k

i tt , stop the 
algorithm, where ε  is an error tolerance, otherwise, let 

1: += kk  and go to Step 3.  
 
Model II 
Periodic rejuvenation policy:  In Model II, the 
function )(τiCT  can be rewritten as follows: 
 

 
  (21) 
 

 (22) 

 
 The problem is to find the optimal time interval *τ  
which minimizes )(0 τCT  and can be solved by the  
bisection method or the Newton's method. 
 
Non-periodic rejuvenation policy: Consider the 
optimization problem in Model II. In this case, using 

)( 1+ii tCT  and *

iv , we have the optimality equations for 
the rejuvenation schedule: 
 

 (23) 
  (24) 

where 

 (25) 

 (26) 
 
 Similar to Eqs. (8) and (9), when F(t) and G(t) are 
continuous probability distribution functions, Eqs. (25) 
and (26) can be simplified in the following forms: 

 (27) 

 (28) 
 
where )(⋅r  is the failure rate function of )(⋅G : 

  (29) 
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 In a fashion similar to Model I, we can define the 
function ),,|( 22 ++ iiii vtttWT  corresponding to Eqs. (11) 
and (12): 

(30) 

(31) 
 The DP-based algorithm for Model II is the similar 
scheme to Model I. That is, substituting the above 
functions iWT  into the DP-algorithm for Model I yields 
a DP-based algorithm for the optimal rejuvenation 
scheduling in Model II. 
 

NUMERICAL EXAMPLES 
 
 In this section, we present numerical examples for 
the non-periodic software rejuvenation schedule and 
investigate the dependence of the optimal software 
rejuvenation schedule on failure time distribution )(⋅F , 
computation time distribution )(⋅G  and rejuvenation 
overhead Rµ . 
 Suppose that the failure time distribution and the 
computation time distribution are given by the Weibull 
distributions: 

  (32) 
  (33) 

respectively, where fm  (>0) and gm  (>0) are shape 

parameters which characterize the aging properties of 
distributions. Also, the parameters fη  (>0) and gη  (>0) 

are scale parameters. If the shape parameter and its 
mean value in the Weibull distribution are given, then 
the scale parameter is uniquely determined from the 
shape parameter and the mean value. Thus we give 
shape parameters and mean values in the following 
three different cases. 
Case 1: 2=fm , 15]E[ =X , 2=gm , 10]E[ =C , 

Case 2: 2=fm , 15]E[ =X , 5=gm , 10]E[ =C , 

Case 3: 2=fm , 5]E[ =X , 2=gm , 10]E[ =C . 

Case 1 is defined as the basic parameter set. Compared 
with Case 1, the variance of computation time in Case 2 
decreases. On the other hand, Case 3 corresponds to a 
failure-prone case. To investigate the effect of failure 
and computation times, the other model parameters are 
fixed as 0=Rµ  and 0.11.0)( += ttρ . In these cases, 
we calculate the optimal rejuvenation schedules with 

20,5,2,1=N .  
 Figures 3 to 5 show the results on the optimal non-
periodic rejuvenation policy. In the bottom parts of 
figures, we illustrate the optimal rejuvenation schedules 
with N = 1, 2, 5, 20, where each dot indicates the 
scheduled rejuvenation time. In addition, each arrow 
indicates its associated minimum expected time to 
computation. Also, in the upper parts of figures, we 
depict the failure time density functions and the  

 
 
Fig. 3: Optimal rejuvenation scheduling in Model I 

(Case 1) 

 
Fig. 4: Optimal rejuvenation scheduling in Model I 

(Case 2) 
 

 
Fig. 5: Optimal rejuvenation scheduling in Model I 

(Case 3) 
 
computation time density functions. Comparing Fig.3 
with Fig. 4, we can see that the time intervals of 
rejuvenation in Case 2 become shorter than those in 
Case 1. On the other hand, there is no remarkable 
difference between Case 1 and Case 3 in terms of the 
rejuvenation schedules. These results tell us that the 
optimal schedule of software rejuvenation is strongly 
affected by the computation time probability density 
rather than the failure time probability density. Next, we 
focus on the minimum expected time to computation. It 
is found that the expected time to computation in Case 3  
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Fig. 6: Optimal rejuvenation in Model II (Case 1) 
 

 
Fig. 7: Optimal rejuvenation in Model II (Case 2) 
 

 
Fig. 8: Optimal rejuvenation scheduling in Model II 

(Case 3) 
 
is relatively longer than those in the other cases, 
because the probability of failure is higher. However, 
the minimum expected completion time to computation 
i s  c l o se  to  10]E[ =C  a s  the  to t a l  numb er  o f 
rejuvenation points increases. Therefore, we observe 
that the software rejuvenation is quite effective even in 
such case. Figures 6 to 8 illustrate the results on the 
optimal non-periodic rejuvenation policy in Model II. 
Comparing the results of Model I and Model II, there is 
no remarkable difference in Cases 1 and 2. However, 
the rejuvenation timings of Model II in Case 3 are 
slightly shorter than those of Model I. In particular, the 
expected minimum expected time to computation 
becomes longer in Model II. This is because the  

 
Fig. 9: Dependence of the optimal rejuvenation 

schedule on rejuvenation overheads in Model I 
(Case 1) 

 
 

 
Fig. 10: Dependence of the optimal rejuvenation 

schedule on rejuvenation overheads in Model 
II (Case 1) 

 
 
detection of failure is delayed in Model II, so that the 
computation times of Model II tend to be longer than 
those of Model I. 
 Next we investigate the dependence of the optimal 
rejuvenation schedule on rejuvenation overheads. 
Figures 9 and 10 illustrate the optimal rejuvenation 
sequences in Model I and Model II with varying 
rejuvenation overheads, 5.0,,0.0 �=Rµ , respectively, 
where N=5 and the other model parameters are the same 
as Case 1. From these results, in both models, time 
intervals of the optimal rejuvenation sequences become 
longer as the rejuvenation overheads increase. The 
expected minimum times to computation are also longer 
as the overheads increase, but the increments of the 
expected minimum times to computation are not so 
large. Comparing the result of Model I with that of 
Model II, we can observe that the increments of the 
time intervals in Model I are larger than those in Model 
II. That is, the optimal rejuvenation sequences are more 
sensitive to the rejuvenation overheads in the case of the 
immediate fault-detection circumstance.  
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CONCLUSION 
 
 This study has considered the optimal scheduling 
problems with software rejuvenation in the distributed 
computation. Based on the dynamic programming, we 
have developed the iterative algorithms to calculate the 
optimal software rejuvenation schedule minimizing the 
expected time to computation. In numerical examples, 
the dependence of the optimal rejuvenation schedule on 
the failure time and computation time probability 
distributions has been investigated. As a result, it has 
been concluded that the optimal software rejuvenation 
schedule is strongly affected by the computation time 
distribution rather than the failure time distribution. In 
future, we will develop an online algorithm to estimate 
the optimal software rejuvenation sequence based on 
the Bayesian estimation. Furthermore, we will apply the 
Monte Carlo simulation to evaluate the effectiveness of 
the rejuvenation algorithms in a distributed computation.  
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