
Journal of Computer Science 2 (6): 542-549, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Yogesh Karandikar, Department of Computer and Information Science, Purdue University School of
Science at Indianapolis, Indiana 46202, USA

542

An Effective Key Management Approach to Differential Access Control in

 Dynamic Environments

Yogesh Karandikar, Xukai Zou and Yuanshun Dai
Department of Computer and Information Science,

Purdue University School of Science at Indianapolis, Indiana 46202, USA

Abstract: Applications like e-newspaper or interactive online gaming have more than one resource and
a large number of users. There is a many-to-many relationship between users and resources; each user
can access multiple resources and multiple users can access each resource. The resources are
independent and each resource needs to be encrypted by a different Resource Encryption Key (REK).
Each REK needs to be distributed to all subscribers of the resource and each subscriber must get all the
REKs he/she subscribes to. Also this environment is very dynamic in terms of subscription changes by
users and resource changes by service providers. We term this as the problem of key management for
Differential Access Control (DIF-AC) in dynamic environments. Conventional ways of access control
are not sufficient for this problem of DIF-AC key management. In this study we propose a novel
approach of keys management to enforce DIF-AC in highly dynamic environments, based on Secure
Group Communication framework.

Key words: Access control, secure group communication, dynamic conferencing, key management

INTRODUCTION

 Group communication can be defined as a process
where a group of n users can communicate with each
other. Improvements in IP multicast have expanded the
horizons of the group communication oriented
applications. Applications like video conferencing, pay-
per-view broadcasts, e-newspaper are representatives of
the growing trend. Multicast networks are built in such
a way that anyone joining a multicast group can have
access to the group communication. As a result, the
entire multicast based applications face the problem of
security of data over the multicast network.
 The problem of securing group communications is
well studied. A primary method of limiting access to the
information is through encryption and selective
distribution of encryption key[1]. Various centralized[2,3],
decentralized[4] and distributed[5,6] key management
schemes are proposed in literature. Access control in all
these schemes depends upon possession of the group
key, which is termed as the Traffic Encryption Key
(TEK). Users who have the TEK can access the group
communication.
 The field of broadcasting has existed for a long
time. The digital cable television provided to us via set-
top boxes is the best example of data broadcasting.
Cable television companies provide option of choosing
various channels and they tune the set-top boxes for
each user accordingly. The problem of broadcast
encryption is well studied[7-10]. The limiting factor in

broadcast encryption of digital Cable services is the
capability of the set-top boxes in terms of memory and
processing power.
 In this study we are focusing on applications like e-
newspaper, pay-per-view broadcasts over Internet,
newsgroups, real-time email lists, interactive online
gaming. In applications like these there is one service
provider, which can be considered as the Central
Controller, who provides various resources like various
sections of an e-newspaper. There are a large number of
users registered with the Central Controller. Typically
the number of users is many times the number of
resources, as an example consider any newspaper, the
number of resources (sections) offered are like say 30
whereas the number of users is in millions.
 Not all million users are interested in all the
sections offered. If we convert our newspaper into e-
newspaper, then it is possible to give a customized copy
of the paper to every user. By customized we mean, we
can give only those sections to a user that he/she wants
and is willing to pay for. This is like the pay-per-view
cable idea where you pay only for those channels which
you want to see, you do not get to see all available
channels unless you are willing to pay for them and at
the same time you are not charged for channels that you
never watch. The pay-per-view idea can also be used for
multicasting of various events in the form of audio
and/or video data over the Internet. We can have many
types and qualities of multicasts and users can have a
choice about the event and quality. Suppose there are
m resources on offer to n users,

J. Computer Sci., 2 (6): 542-549, 2006

 543

Fig. 1: Relation between m resources and n users

 Fig. 1 shows the relation between the resources and
users.
 In the applications discussed above we can not
assume a hierarchical relation between various sections
of an e-newspaper or various quality multicasts. If a
user subscribes for political section of the e-newspaper,
there is no way to assume that he/she would subscribe
to sports section. It is not correct to force any
hierarchical relation between resources. In this study we
propose a scheme based on the general assumption that
the resources are independent with no hierarchical
relation between them. Even if some applications have
some inherent hierarchy between resources, it can be
considered as a special case and our scheme is generic
enough to be easily extended for those applications.
 As each resource is independent, it must be
encrypted by a unique key[11]. Thus all the m resources
must be encrypted by one unique key each, giving rise
to m Resource Encryption Keys (REKs). We have one
set of users associated with each resource, giving rise to
m sets, which we term as m Resource Lists (RLs). The
users in these RLs can overlap as different users
subscribe to different combinations of resources. We
term the type of access control required for this
complex scenario as Differential Access Control (DIF-
AC). The DIF-AC comes with an even bigger problem
and that is of distributing the different REKs to various
subsets of users (RLs), because if a user subscribes to j
resources, he/she is a member of j RLs and must get j
REKs. Also in a truly dynamic environment, users can
add or drop subscriptions and Central Controller can
add or drop services.
 In order to find a generic solution we need to
consider the fact that some applications can have users
communicating with each other like in newsgroups or
online gaming. The service provider may need to
communicate with all or a part of the users like
promoting new services to all existing users or sending
some confidential information only to registered users
or giving some special discounts only to some users. In

either case a secure communication medium between
users is required. The most efficient and scalable way to
distribute keys is considered to be construction of Key
Distribution Trees[2]. Hence, a good solution to solve
the problem of key distribution for DIF-AC in dynamic
environments should be based on key tree scheme like
‘The efficient key tree scheme for Bursty Operation”[3].
 A lot of work has been done in the area of access
control. Access control policies and principles are well
described in[12,13]. Also there are a number of schemes
for Hierarchical Access Control[14-16]. The dual
encryption protocol for SGC[4] assumes one sender and
multiple receivers. It should be noted that there is not
much work done for DIF-AC which arises due to the
many-to-many relationship between users and
resources.
 The only literature that deals with the problem of
key management for DIF-AC scenario is the scheme
proposed by Sun et al.[17]. They assume m resources and
denote list of resources as {r1, r2, … , rm}. With each
resource a Data Group (DG) is associated, thus they
have m DGs as { D1, D2, ... , Dm}. They also have
service groups SGs as {S1, S2, … , Sn} where n = 2m - 1.
Basically each SG represents a unique possible
combination of resources that can be subscribed by any
user. Members in different DGs can overlap, but
members in different SGs can not overlap. Each
resource is to be encryped by a separate key[18] i.e. one
key is associated with each DG. For example if S2
represents a SG with combination of resources {r1, r3,
r4} then all users in S2 must have keys of {D1, D3, D4}.
Each Di contains a list of members that subscribe to the
resource ri and all those users must get the key of Di.
Thus if resource r1 is part of S1, S2, S10 all members in
those SGs must have key of D1.
 Figure 2 shows the steps followed in the scheme. In
the first step, one key tree is created for each SG for a
total of n = 2m - 1 trees. These trees have users at leaf
nodes and SG keys at their roots. Then in the second
step m trees are created, one for each DG. In the DG
trees SG keys are at leaf nodes and the roots of DG trees
are the DG keys. Then all these are integrated to get a
Key Graph by forcing hierarchy.
 This scheme is inefficient and far from practical. It
is required to create m trees for DGs and 2m - 1 trees for
SGs. The procedure to create trees for DG is
complicated as each resource can be a part of 2m -1 SGs
and each DG tree must contain all the SGs as its leaf
nodes. Procedure to merge the trees to get one
integrated Key Graph is quite complex and seems
impossible to automate. If m is a large number say 10,
we will have 210 - 1 = 1023 SG trees and 10 DG trees.
Each resource will be a part of (29 = 512) SGs, so each
DG tree requires to have 512 leaf nodes. Creating all
these trees and merging them in one integrated tree
graph are going to be really complex and seems far
from practical. As a matter of fact, even for the toy
example with 2 resources shown in Fig. 2 the procedure
to merge trees is not clear.

J. Computer Sci., 2 (6): 542-549, 2006

 544

Fig. 2: Scalable Hierarchical Access Control Scheme
 for SGC, Yan Sun et.al.

 To add to this complexity just imagine what
happens if the service provider wants to add or remove
a resource. For example, let there be 5 resources. The
number of SGs will be 31 and hence the number of SG
trees is 31 and number of DG trees is 5. Each DG tree
will have 16 leaf nodes. Now, if the service provider
wants to add 2 resources, the entire graph needs to be
redone. The reason is that the number of SGs with 7
resources will be 128 and there are combinations that
were not present with 5 resources. Or consider a case
where a resource is revoked. It is equally worse to deal
with. Also since SGs present all possible combinations
of resources, not all SGs will have some users in them
all the times. Even if there are no users present in an
SG, that SG must still be present in the DG tree. Overall
this scheme is too complex and far from practical.
 Our proposed Scheme is very generic in the sense
that it does not force any resource or user hierarchies
that are not present. Our scheme provides a secure
communication channel between users. Our scheme will
have only m + 1 key trees at maximum making it
efficient and will be completely dynamic in terms of
users and resources. In the next section we describe the
key tree based SGC and SDC schemes. Although we are
using the binary key tree based scheme to illustrate our
scheme, it is not a restriction. Our scheme can be
deployed with any n-ary key tree as well.

Key tree based secure dynamic conferencing: The
Tree based key management scheme (called Key Tree)
is a well-known, efficient and scalable solution for the
SGC key management problem[2,3,19, 20,]. Based on the
Key Tree Scheme and the SDC scheme we propose a
new Scheme for DIF-AC key management in dynamic
environments. We make use of ”Efficient Key Tree
based Scheme with Bursty operations”[3] for finding

secure communication channels (i.e., the internal nodes)
covering users and distributing the REKs. The key tree
based SDC scheme[21], will be used to decide REKs. The
Key Tree Scheme and the SDC scheme are explained in
this section.

Key tree scheme: There is a centralized group
controller (GC), which maintains the group and
manages a virtual tree (Fig. 3).

Fig. 3: A typical key tree with members at leaf nodes

 The members of the group are placed at leaf nodes
of the tree. Every node in the tree is associated with a
key. Every member is assigned the keys along the path
from its leaf to the root. The key at the root, called as
the traffic encryption key (TEK), is shared by all the
members and is used for encrypting all group messages.
All other keys are called key encryption keys (KEKs).
When a member joins or leaves, all the keys from the
root to the parent of the member will be changed by the
GC (from bottom up). Every changed key will be
encrypted with its children’s keys and broadcast to all
members. When the key tree is a binary tree, the
number of keys which need to be changed for a join or a
leave is O(log(n)) where n is the number of members in
the group.
 In the domain considered for this study, this kind of
scheme is ideal as there is one Central Service Provider
with many registered users associated. The Service
Provider can be seen as the Group Controller and
registered users as the members of the Key Tree. In
applications like e-newspaper or pay-per-view
broadcasts, the users may not want to communicate with
each other but the Key Tree based scheme provides a
framework for sending all the material targeted
for all registered users to be encrypted with TEK and
broadcast. So if the service provider wants to send some
special offers or some news only to the registered users,
the provider can encrypt that offer message by TEK and
broadcast it. In applications like online-gaming or
newsgroup users need to communicate with each other
and hence a SGC framework is required.

Secure dynamic conferencing: If a subset of members,
of the group, want to have a conference

J. Computer Sci., 2 (6): 542-549, 2006

 545

Fig. 4: Conference members are covered under nodes

among them, a conference key needs to be
distributed among the conference members securely
and efficiently. We have a simple and efficient scheme
to accomplish conference key distribution[21]. If the
conference members happen to exactly be covered
under a single node in the key tree, the key on the node
will be the conference key.
 For example, in Fig. 4, m0 initiates a conference
containing {m0, m1, m2, m3} which are exactly covered
under node k0-3. So, k0-3 will be used as their conference
key. This is one case. In the second case, two steps will
be performed: (1) The conference initiator determines
(the indices of) the keys in the key tree which exactly
cover the conference members, randomly selects a new
conference key CK, encrypts CK with its leaf key, and
sends the encrypted CK along with the key indices to
the GC; (2) the GC decrypts CK, picks up the keys
corresponding to the indices, encrypts CK with each of
these keys, and broadcasts to the group.
 Let us see an example from Fig. 4 again. Suppose
m2 initiates a conference containing {m2, m3, m5, m6,
m27} (dotted boxes in the figure). The nodes which
exactly cover these members are k2-3, k5; k6-7. m2 will
encrypt a randomly selected new CK with its leaf key k2
and sends it along the key indices ({2-3, 5, 6-7}) to the
GC. The GC decrypts CK using k2, encrypts CK with
k2-3, k5, and k26-7 respectively, and broadcasts the
encrypted CKs. Thus m3, m5, m6 and m7 can decrypt the
CK after receiving the broadcast.
 We modify and extend the SDC idea to use it in the
domain of the paper. We view the members of a RL as
the members in a conference. Thus for m RLs we have
m conferences. We assume that the GC initiates all the
conferences and finds CK and distributes to the
conference members, making use of the established Key
Tree. In case the number of keys that cover a
conference is large (worst case scenario where members
of conference are dispersed) the GC can create a tree
with cover keys at the leaf nodes and CK at the root for
that conference. Based on this SGC framework, we will
propose our new efficient key management scheme for
DIF-AC in dynamic environments.

Differential access control scheme: In the domain
considered, the factors to be considered are 1) A central
Service provider offers a number of resources; 2) There
are large number of users, who are registered with the
service provider; 3) There should be a secure
communication medium between users to make the
scheme generic; 4) Each user can subscribe to any
number of resources from none to all. Also each user
can subscribe to any combination of resources from all
the available resources; 5) There may not be any
hierarchical relation between resources and in order to
maintain many-to-many relationship no hierarchy can
be forced; and 6) The most important point is that it is
completely dynamic. A user can switch from
subscription of one resource to another if he/she is not
violating access control policies. The other dynamic
part is the Central Service Provider can add or revoke a
resource at any point of time without affecting the entire
key distribution scheme.

System description and initialization: Let there be m
resources in the system {r1, r2,…, rm}. We will have a
resource list associated with each resource, so there will
be m resource lists as {RL1, RL2, …, RLm}. Let there be
n users registered with the GC. The GC will create and
manage a Key Tree for these n users and efficient
algorithms proposed in[3] will be implemented to allow
bursty join and/or leaves. The nodes of the Key Tree
will be numbered as follows: The root is numbered 0.
For the rest of the nodes, node number of left child of
any node is obtained by left shifting the parent node
number by 1-bit and adding one to it. Similarly node
number of right child is obtained by adding one to
parent node number and then left shifting by one bit.
For example if parent node number is 2, then its left
child is 2 << 1 + 1 i.e. 5 and right child is (2+1) << 1
i.e. 6 (Fig. 5). Due to this indexing scheme, indices of
the left children nodes are odd and indices of the right
children are even. The GC will maintain the m
resource lists (RLs) for m resources. Each RL will have
a list of members who have subscribed for that resource.
The RLs will be initialized to be empty at the start when
system is being set up. Every subscription request will
be kept in an appropriate RL. Thus m RLs will be
created in a time interval and maintained by the GC.
These m RLs correspond to m conferences.
 At the end of time interval the GC will run the
algorithm to determine key indices of a conference (Fig.
6) for each RL. This algorithm starts by sorting the IDs
of users in a conference (RL). In the first pass, pairs of
users covered under the same node are identified and
sorted in an array. In the next pass, the algorithm checks
if two pairs are covered under one node. This continues
until all the cover keys are identified.
 To identify if two users are covered under one
node, the indexing scheme is helpful. If the first user’s

J. Computer Sci., 2 (6): 542-549, 2006

 546

index is even, that means that that user will not share a
key with any other user since he/she is on a right

Fig 5: Binary indexing of keys

Fig. 6: An efficient recursive algorithm for

determining the key indices for any RL

branch. Thus that user’s index is put on the cover key
list and that users key is one of the cover keys. If the
user’s index is odd, next user’s index is checked to see
if they share the key. After the first pass, the same
operations are done but on pairs of users identified in
first pass. Next passes are similar and they either
identify pairs that share node keys or are separate and
hence cover keys. We can apply some more
optimization techniques here like if k RLs are identical
then the same REK can be used for all k RLs.
 For example, consider an e-newspaper offering 3
sections: sports, politics and stocks. Assume 8 members
are registered with the GC and the GC maintains a Key
Tree as in Fig. 5. If all the members subscribe for sports
section (resource 1) then they are covered under the
root key, hence the REK for sports is the root. If
members m0 and m1 subscribe to resource 2, i.e.,
politics, they will be put in RL2. Now, members in RL2
are also covered by a single key (K3) which will be the
REK for politics. Finally, if members m3,m6 and m7
subscribe to stocks (resource 3), the GC will find the

cover keys K10 and K6. The GC will generate a REK for
resource 3 and send it using the cover keys. If the
number of members in a RL is really large, which
results in a large number of cover keys, a tree can be
constructed to distribute REK. The tree constructed for
distributing REK can be similar to the central Key Tree
in terms of structure and algorithms and hence will be
efficient and scalable. In the worst case we will have m
trees for m resources and 1 central Key Tree. The
decision to create a tree for REK distribution is based
on the number of cover keys and we can have a
threshold value for that.
 The basic idea behind our scheme is the fact that
User subscriptions to a resource can be viewed as a
special case of SDC. Although SDC was proposed for a
different domain, it can be used efficiently for the
domain of the paper. The many-to-many relation
between users and resources makes it really complex
and discourages use of forced hierarchies. Allowing
users to change subscriptions and the GC to change
resources makes the Environment very dynamic. Once
the central Key Tree and all the m Resource Lists (RLs)
are set-up, the GC just has to maintain user joins and
leaves and subscription changes. The next subsection
describes the dynamic operation handling.

System Dynamics and Maintenance: We will assume
that the GC will have a pre-defined time interval and all
updates will be done only at the end of time interval.
The time interval chosen should be large enough to
avoid frequent updates and small enough to avoid loss
of revenue. Choosing the time interval is application
dependent. We will first deal with dynamics of
subscription to resources. There are 3 possible cases:
* A member subscribes to one or more new resources

to which he has not already subscribed.
* A member un-subscribes from one or more

resources already subscribed.
* A member changes from subscribed resources.
 To handle the subscription dynamics, the GC will
have temporary RLs called as TRLs which will be
initialized to be copies of corresponding RLs at the start
of a time interval. These TRLs will be mapped to RLs
at the end of time interval. To handle the first case,
whenever the GC gets a subscription request from a
registered member, the GC puts that member in the
TRLs for the requested resources. Similarly for un-
subscription requests, the GC just has to delete the
member from the TRLs of the resources requested. To
change subscription, the GC has to simply delete
member from the TRLs of the resources where he/she
wants to unsubscribe and put him/her in the TRLs of the
resources requested. For example, if a member sends a
request to the GC for change of subscription from {ri,
rj} to {rk, rl}. The GC will delete that member from
{TRLi, TRLj} and add him/her to {TRLk, TRLl}.

J. Computer Sci., 2 (6): 542-549, 2006

 547

 At the end of time interval the GC will run the
efficient algorithm to find REK (Fig. 6) for each TRL
where there was a change. One dirty bit per RL will help
us detect the lists that were modified. All the changed
TRLs will be mapped to corresponding RLs. The new
cover keys will not differ from the original cover keys
as most of the users will be same. This can be seen as a
special case of some members leaving and joining from
an ordinary Key Tree. The mapping process can be
executed with the efficient algorithms for Key tree
updates discussed in Section 3. In the maintenance
operations described it is assumed all the legal and
technical formalities related to subscription, un-
subscription and changes are taken care of.
 Now let us describe resource dynamics. There are
also only three possible cases:
* Adding one or more resources, like an e-newspaper,

adding a soccer news section.
* Revoking a resource, like a broadcaster, revoking a

56Kbps quality broadcast.
* Changing a resource, like a broadcaster changing

the 56Kbps quality broadcast to 128kbps.
 Our scheme makes it really simple to incorporate
these resource dynamics. To add a resource, the GC just
has to add a new Resource List RL corresponding to
that resource to the existing RLs. To revoke a resource,
the GC just deletes the corresponding RL. To change a
resource, the GC does not have to do anything at all, as
RLs are just like interfaces in the Object Oriented world
and it is fine to change implementation as far as
interface is same. Thus if a broadcaster wants to change
a 28Kbps quality resource to 56Kbps resource, he/she is
free to do so without affecting the subscribers and the
system, or if an e-newspaper wants to replace a section
like politics by world politics, only the resource changes
and not any other part of the system.
 In case a user wants to un-subscribe from all
resources and leave the system all together, he/she can
send a leave request to the GC. The GC will delete that
leaving member from the RLs that he was part of and
remove him/her from the central Key Tree updating all
affected keys. This is like a normal leave from any Key
Tree scheme with extra operation of deleting from RLs.

DISCUSSION

 We will discuss various performance and security
issues[11] of our scheme in this section. We will discuss
the best, worst, and average case scenarios of finding
the Resource Encryption Keys (REK) for each resource,
followed by issues of scalability, number of keys and
dynamics in terms of user join/leave and resource
addition and revocation.
 The Best Case of finding REKs is when all the
users in a RL are covered under one key. Then that key

from the efficient key tree for SGC becomes the REK.
In the best case it is not required to construct a tree for
distributing the REK. The Worst Case of finding REK is
when we have n=2 members in a RL in such a way that
there is no shared key between any two members.

Fig 7: Comparing number of shared keys with Navg

In this case, the algorithm to find key cover returns n=2
keys. In this case, it may be more efficient to construct a
separate key tree with all the cover keys at leaf nodes
and the REK at the root. In the average case, we will
have more than one and less than Navg=2 keys. Where,
Navg is the average number of keys to be changed in the
batch rekeying scheme described in Chapter 3 of the
book SGC over Data Networks[22].

where n is the total number of members in a key tree, h
the height of the tree, and m the number of the changed
members. Navg gives the total number of keys to be
changed from the root to leaves of changed members. In
our case, we just need to find the keys shared by
members in a RL, hence the average number of keys is
bound to be less than Navg/2. We are not concerned with
all keys till the root.
 We ran an experiment with the height h of a tree as
12 and the total number n of members as 4096. We
changed the number (m) of members in subset from 8 to
4000. We calculated Navg using the formula described
above and the shared keys using the algorithm described
in Fig. 6. The results are plotted in Fig. 7. As it can be
seen from the figure, the average number of shared keys
is far less than the expected value of Navg /2. Let us
discuss the number of trees created. In the worst case, it
will be m + 1, which is equal to the number of resources
+1 for the central key Tree, which is lot better than the
number of trees created with the scheme proposed by

J. Computer Sci., 2 (6): 542-549, 2006

 548

Sun et.al[17]. In the average case the number of trees will
be less than m + 1, as some REKs will be either from a
central key tree or without a need to create a tree.
 We can have a threshold value for the number of
cover keys and we can construct a key tree for
distributing REK if the number of cover keys exceeds
the threshold. Thus our scheme is far better in
terms of the number of trees constructed than
existing schemes.
 In terms of the number of keys, all the members
will have log2n keys for the central Key Tree. Besides
that all members will have the REKs for the resources
they subscribe. For example, if a member subscribes for
i resources, he/she will have i REKs. In case some REKs
are distributed by creating trees, all members
subscribing to those resources will have keys from REK
distribution trees. As we showed earlier, the worst case
number of leaf nodes of a REK distribution tree is n/2.
Hence, if a resource has a key tree associated with it, in
the worst case a member must have log2(n/2) keys for
that resource. Also it is possible to monitor the
Resource Lists (RLs) and if some RLs have exactly the
same members, we can have the same REK for all such
resources.
 Let us consider the number of rekeying messages in
our scheme. As the central tree implements efficient
algorithms for SDC, the number of rekeying messages
are low. Moreover, we create a tree for distributing
REKs when needed in order to minimize the number of
messages. As a result, the number of messages flying
across the system is minimal.
 The scheme is certainly scalable, since the central
key tree for SDC can be used for any number of users.
Also there can be any number of resources in the system
as the GC just maintains a list of users subscribing to
each resource and then uses the efficient recursive
algorithm discussed in Section 4. The number of trees is
just m + 1 and not 2m - 1 + m as in other schemes[17].
Scalability of our scheme stems from the fact that the
number of trees is linearly proportional to the number of
resources, whereas other schemes[13] have exponential
number of trees.
 Compactness of our scheme due to linear relations
makes it practical. Also our scheme is simple and can
be completely automated. There are no complexities
and ambiguities involved as in other Schemes.

CONCLUSION

 We proposed a new yet effective scheme for key
management for Differential Access Control in
Dynamic Environments, based on principles of SGC
Key Management and SDC. We compared our scheme
with existing schemes, as a matter of fact there are not
many schemes for the domain of this paper. We
discussed the efficiency and scalability of our scheme in
terms of number of trees, keys and rekeying messages,

comparing with other schemes. Our scheme is compact,
efficient, practical, and generic. The scheme scales
better in a dynamic scenario when users change
subscriptions or service providers add or revoke
resources. The average number of shared keys found
experimentally is far less than the one found
theoretically. The scheme can be easily extended for
resources with hierarchy. The future work includes 1)
Checking system performance with a real large number
of users and resources; 2) Testing the effect of user
joins and leaves in a bursty manner on the system; and
3) Using n-ary tree instead of the binary tree used for
illustration. The goal is to figure out the best value for n
so that the Key Tree is efficient.

ACKNOWLEDGEMENT
 This work was partially supported by the U.S. NSF
grant CCR-0311577.

REFERENCES

1. Rafaeli, S. and D. Hutchison, 2003. A survey of

keymanagement for secure group communication.
ACM Computing Surveys (CSUR). 35: 309-329.

2. Wong, C.K., M. Gouda and S.S. Lam, 1998.
Secure group communications using key graphs.
SIGCOMM ’98, Also University of Texas at Austin,
Computer Science Technical report TR 97-23, pp: 68-79.

3. Zou, X., B. Ramamurthy and S. Magliveras, 2002.
Efficient key management for secure group
communication with bursty behavior. Proc. Intl.
Conf. on Communication, Internet and Information
Technology (CIIT), pp: 148-153.

4. Dondeti, L.R., S. Mukherjee and A. Samal, 1999.
A dual encryption protocol for scalable secure
multicasting. In 4th IEEE Symp. on Computers and
Communications, pp: 2-8.

5. Steiner, M., G. Tsudik, and M. Waidner, 1996.
Diffie-hellman key distribution extended to group
communication. ACM Conf. on Computer and
Communications Security (ACM CCS 1996), New
Delhi, India, pp: 31-37.

6. Zou, X. and B. Ramamurthy, 2004. A block-free
tgdh key agreement protocol for secure group
communications. Proc. Intl. Conf. on Parallel and
Distributed Computing and Networks, Innsbruck, Austria, pp:
288-293.

7. Abdalla, M., Y. Shavitt and A. Wool, 2000. Key
management for restricted multicast using
broadcast encryption. IEEE/ACM Trans. on
Networking (TON), pp: 443-454.

8. Attrapadung, N., K. Kobara and H. Imai, 2003.
Broadcast encryption with short keys and
transmissions. Proc. 2003 ACM Workshop on
Digital Rights Management, pp: 55-66.

9. Tzeng, W.G., 2002. A time-bound cryptographic key
assignment scheme for access control in a hierarchy.
IEEE Trans. on Knowledge and Data Engineering, pp:
182-188.

J. Computer Sci., 2 (6): 542-549, 2006

 549

10. Wool, A., 2000. Key management for encrypted
broadcast. ACM Trans. on Information and System
Security (TISSEC), pp: 107-134.

11. Moyer, M.J., J.R. Rao and P. Rohatgi, 1999. A
survey of security issues in multicast
communications. IEEE Network, pp: 12-23.

12. Sandhu, R.S. and P. Samarati, 1994. Access control:

Principles and practice. IEEE Commun. Mag., pp: 40-48.

13. Zhang, X., J. Park, F. Parisi Presicce and R.
Sandhu, 2004. A logical specification for usage
control. Proc. 9th ACM Symp. on Access control
Models and Technologies, pp: 1-10.

14. Birget, J.C., X. Zou, G. Noubir and B.
Ramamurthy, 2001. Hierarchical access control in
distributed environments. IEEE Intl. Conf. on
Commun. (ICC), pp: 101-140.

15. Chang, C.C., C.-H. Lin, W. Lee and P.-C. Hwang,
2004. Secret sharing with access structures in a
hierarchy. 18th Intl. Conf. on Advanced
Information Networking and Applications
(AINA’04), Vol. 2.

16. Zou, X., B. Ramamurthy and S. Magliveras, 2001.
Chinese remainder theorem based hierarchical
access control for secure group communications.
Lecture Notes in Computer Science (LNCS),
Springer-Verlag (Intl. Conf. on Information and
Communication Security), pp: 381-385.

17. Sun, Y. and K.J.R. Liu, 2004. Scalable hierarchical
access control in secure group communications.
Proc. IEEEINFOCOM.

18. Eskicioglu, A.M., S. Dexter and E.J. Delp, 2003.
Protection of multicast scalable video by secret
sharing: Simulation results. Proc. SPIE Security
and Watermarking of Multimedia Content V, Santa
Clara, CA, USA.

19. Caronni, G., K. Waldvogel, D. Sun and B. Plattner.
1998. Efficient security for large and dynamic
multicast groups. Proc. 7th IEEE Intl. Workshop on
Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE ’98) (Cat.
No.98TB100253). Los Alamitos, CA, USA.

20. Noubir, G., 1998. Multicast security. European
Space Agency, Project: Performance Optimization
of Internet Protocol Via Satellite.

21. Zou, X., S. Magliveras and B. Ramamurthy, 2004.
Key tree based scalable secure dynamic
conferencing schemes. to appear in proceedings of
International Conference on Parallel and
Distributed Computing and Systems (PDCS 2004),
MIT Cambridge, MA, USA.

22. Zou, X., B. Ramamurthy and S. Magliveras, 2004.
Secure Group Communication Over Data Network.
Springer.

