
Journal of Computer Science 2 (7): 595-599, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: P.N. Neelakantan, Electrical Engineering, Govt. College of Technology, Coimbatore-641 013, India
595

Single Stuck-At Fault Diagnosing Circuit of Reed-Muller Canonical Exclusive-Or

Sum of Product Boolean Expressions

1P.N. Neelakantan and 2A. Ebenezer Jeyakumar
1Electrical Engineering, Govt. College of Technology, Coimbatore-641 013, India

2Govt. College of Engineering, Salem – 636 011, India

Abstract: A testable design with a universal test set for single stuck-at zero and stuck-at one faults of
Reed-Muller canonical form of Exclusive-OR sum of product logic expressions is proposed. The test
circuit detects almost all the single stuck-at faults and needs only simple modifications for variations in
the circuit under test. The number of test vectors is also quite small compared with the classical
method. The factor of un-identifiability is discussed and a new quantification parameter for the fault
diagnosis has also been introduced. Results of Matlab simulations for a few logic functions are
included.

Key words: Combinational circuits, exclusive-or sum of products, Reed-Muller canonical form,

single stuck-at faults, testability realization, universal test set

INTRODUCTION

 Any arbitrary binary logic function can be
expressed as exclusive-or sum of product Reed-Muller
canonical (ESOP RMC) form which results in minimal
product terms as can be seen from Table 1[1]. The SOP
is the conventional sum of product form while the other
forms are variations of Reed-Muller canonical (RMC)
expressions. The PPRM is the positive-polarity RMC
form, which does not allow any complemented variable
to occur in the expression. For example, x1 ⊕ x2x3 ⊕
x4x5x6 is a PPRM expression, while x1’ ⊕ x2x3 is not.
The FPRM allows negation of any variable, but
throughout the expression the variable should appear
only in the same form, either complemented or
uncomplemented. Thus, x1’ ⊕ x2x3 ⊕ x1’x4 is a
FPRM expression since x1 is appearing as only
complemented variable, whereas the expression x1 ⊕
x2x3 ⊕ x1’x4 is not FPRM as x1 is present in
uncomplemented form in the first term and in
complemented form in the third term. GRM is the
abbreviation for Generalized Reed-Muller form. In this
structure, a variable is free to appear as complemented
or uncomplemented, but should should not result in
same PPRM terms more than once. For instance, x1 ⊕
x2x3 ⊕ x2’x3’ is not a GRM since the term x2’x3’
results in x2x3 when converted into PPRM, which is
already present as the second term. The Exclusive-Or
Sum of Product (ESOP) form, on the other hand, does
not impose any of the restrictions mentioned above and,
in fact, is the most general form of RMC expressions.
Such an expression is of the form f = a0 ⊕ a1x1* ⊕ a2x2*

….. ⊕ anxn* ⊕ an+1x1*x2* ⊕ ….. ⊕ a2n-1x1*x2*…xn*,
where xn* can be xn or its negation and an is either 0
or 1. The main advantage of such a form, apart from
minimal number of product terms, is that it enables a
simple method of diagnosis[2-4]. They also provide a
more efficient realization than conventional AND-OR
functions in many applications such as linear circuits,
arithmetic circuits and telecom networks[5]. Further, a
more compact PLA implementation based on AND-
EXOR form is achievable compared with the AND-OR
circuits[6]. The basic disadvantage of slow speed and
greater chip area of exclusive-or based implementations
has become less prominent, with the abundant
availability of FPGA’s since the last decade[7]. A Reed-
Muller canonical form of CMOS implementation can
be easily tested for stuck-open faults with a universal
test set[8]. Mixed polarity Reed-Muller expressions have
also been useful in classification of Boolean
functions[11]. In spite of the slow speed and larger chip
area of RMC implementations compared to other
others, some of the RMC forms require only a lesser
area and also have been effectively used in the FPGA
based modules of Xilinx, Actel[9].

Table 1: Number of product terms of some arithmetic functions in

different forms
Function SOP PPRM FPRM GRM ESOP
adr4 75 34 34 34 31
log8 123 253 193 105 96
nrm4 120 216 185 96 69
ndm8 76 56 56 31 31
rot8 57 225 118 51 35
sym9 84 210 173 126 51
wgt8 255 107 107 107 58

J. Computer Sci., 2 (7): 595-599, 2006

 596

Literature survey: A classical method of generating
test patterns for very large and complex logic functions
is Linear Feedback Shift Register (LFSR) based
pseudo-exhaustive or pseudo-random type[1]. However,
this does not work well with ESOP form as shown by
Drechsler et al.[10].A PPRM network for detection of
stuck-at faults with a universal test of size n+4, n being
the number of data inputs, was proposed by Reddy[2].
Though quite good for self-testing, the method is
economical only for PPRM form, which obviously has
more number of product terms than the other forms in
most cases. Multiple stuck-at fault detection for ESOP
circuits was carried out by Pradhan[11]. However since
the cardinality is 2n+6+ �nCe, e= 0 to j, the order of
ESOP expression, the test set is not universal and also
is too large to be practical for large input functions.
Stuck-at and bridging faults with a universal test set for
PPRM has also been reported[12]. Multiple fault
detecting GRM realizations was propounded by
Sasao[4]. It was shown that 2n+s+3 test vectors, where s
is the number of product terms in the logic function are
required for single stuck-at fault detections in GRM
circuit while 2n+s vectors are required for detection of
and/or bridging faults in GRM/ESOP circuits[13]. Here
too, the test set is not universal as it depends on s, the
number of product terms of the function. Kalay et al.[1]
described an ESOP implementation with a universal
test set of size n+6 for single faults. A robust and
universal sequence has been proposed for stuck-open
type of faults in GRM/ESOP cmos transistor
implementations[14]. Zhongliang[15] demonstrated that
the single stuck-at fault detection can be achieved with
only n+5 test vectors. Apart from a small modification
in his circuit, two methods, each with minor
modifications in his scheme, are proposed in this paper
and results of matlab simulations for a few specific
functions comparing the detectability of the faults have
been included. Further, the concept of
indistiguishability index has also been introduced and
compared for the illustrative functions.

Network structure: The network structure of the
proposed scheme is similar to that proposed by
Zhongliang[15] and is shown in Fig.1. It comprises
literal-complementing xor block, an AND block, an xor
function tree block, which implements the required
logic function as also two additional outputs o1 and o2
obtained through a separate AND and an OR gate. The
actual data inputs to the system are x1, x2, …. xn.
Additionally, the scheme requires four control inputs c0
to c3. The literal-complementing block produces the

complements of the literals used in the function. Only
those literals appearing in complemented form require
an xor gate in this block. The literals of each product
term are combined through an AND gate and hence the
number of AND gates required is the same as the
number of product terms in the logic function. Further,
each of the AND gates of this block may have an
additional input from one of the control lines depending
on the number of gates used in the xor tree block
producing the final function f. For a function requiring
seven xor gates as shown in Fig. 2, the eight AND gates
connected to the eight input lines of the xor tree will
receive additional control lines respectively from c3, c1,
c1, c2, c1, c2, c2 and c3 respectively. All the product
terms are the passed on to the function xor tree block,
which generates the required logic function f. Finally,
all the data and control inputs are applied to a separate
AND gate and an OR gate, producing auxiliary outputs
o1 and o2, to aid in the detection of faults which cannot
be differentiated by the main function output f alone.

Fig. 1: Generalized network structure

Fig. 2: An ex-or tree

Test vectors: Zhongliang[15] proposed a test matrix for
the detection of single stuck-at faults. Each of its rows
is an n+4 long vector, n being the number of data
inputs. The first four columns of the matrix represent

J. Computer Sci., 2 (7): 595-599, 2006

 597

the control inputs c0 to c3 while the remaining n
columns that of the data inputs x1 to xn. The first test

Fig. 3: Circuit for f = x1 ⊕ x2x3 ⊕ x2’x3’

vector is an all-zero vector. The second vector has only
c0 and c1 as zero, while in the third vector only c0 and c2
are zero valued. The next vector consists of all 1’s
except for c0. The next n vectors are made up of
‘walking zero vectors’. Finally the last vector is an all-
zero one except for the first element. The test matrix is
the same for any logic function in Reed-Muller ESOP
form provided that the number of data inputs is the
same.

PROPOSED MODIFICATIONS AND
SIMULATION RESULTS

 Instead of the second and third vectors with
‘walking zero vectors’ (or ‘weezee vectors’ to be short)
fixed in columns c1 and c2, two modifications are now
proposed: In one, which I prefer to call as ‘AC weezee’
method, all the control inputs participate in the ‘zero
walk’. The second method, which may be called as
‘Alternative Vector Method’ suggests c2 and c3 for
‘weezee’ instead of c1 and c2. The network structures
and the test matrices for the reference method[15] as well
as the now proposed modifications were simulated in
matlab. The single stuck-at faults of type s-a-0 and s-a-
1, at each of the data and control inputs, the literal-
complementing xor gate outputs, the AND block
outputs as also the function xor tree gate outputs were
simulated by redefining the corresponding variable to
zero or one. The test vectors were applied as the values
of the simulated logic variables and the resulting
outputs f, o1 and o2, each as a vector of n+5 elements
(for the reference method and Alternative Vector
method) or n+6 elements (for AC weezee method) were
then converted to the equivalent decimal values and
tabulated for convenience and easy comparison. The
simulation results are as follows:

Example1: (n=3) f = x1 ⊕ x2x3 ⊕ x2’x3’

f= Output of the function xor tree block
o1= Output of the separate AND gate
o2= Output of the separate OR gate

Reference method[15]

No fault => { f, o1, o2 }= { 118, 112, 127 }

Single stuck-at fault at one of control inputs c0 to c3, or
data inputs x1 to x3:
Total number of possible faults: 7 x2= 14

Table 2: Decimal equivalents of the outputs for s-a-0 fault at each

of input and control inputs for the reference method
 c0 c1 c2 c3 x1 x2 x3
f 118 118 120 14 32 86 86
o1 112 112 112 112 0 0 0
o2 126 127 127 127 127 127 127

Table 3: Decimal equivalents of the outputs for s-a-1 fault at each

of input and control inputs for the reference method
 c0 c1 c2 c3 x1 x2 x3
f 46 118 119 118 126 118 118
O1 0 112 112 112 20 116 114
o2 255 127 127 127 255 255 255

Single stuck-at fault at one of intermediate gate outputs:

zl1, zl2: Outputs of literal-complementing xor

gates; zl1 equivalent to the complement x2’
and zl2 for x3’ given in the function.

za1, za2, za3: Outputs of the AND block gates; za1 for
the first product term x1c2, za2 for the
second term x2x3c3 and za3 for the last
term x2’x3’c2

zx1, zx2: Outputs of the function xor tree gates; zx1

with za1 and za2 as inputs, while zx2 (=f)
with zx1 and za3 as inputs producing the
final output.

Total number of possible faults: (2+3+2) x 2 = 14

Table 4: Decimal equivalents of the outputs for s-a-0 fault at each

of gate outputs for the reference method
 zl1 zl2 za1 za2 za3 zx1 zx2 (=f)
f 46 46 32 14 46 88 0
o1 0 0 112 112 112 112 112
o2 127 127 127 127 127 127 127

Table 5: Decimal equivalents of the outputs for s-a-1 fault at each

of gate outputs for the reference method
 zl1 zl2 za1 za2 za3 zx1 zx2 (=f)
f 114 116 223 241 209 167 255
o1 112 112 112 112 112 112 112
o2 255 255 127 127 127 127 127

Comments:
* Gross Total of possible single s-a-0 / s-a-1 faults:
 14 + 14 = 28.
* Identical outputs for 'No fault' , sa0 / sa1 @ c1and

J. Computer Sci., 2 (7): 595-599, 2006

 598

 sa1 @ c3 { f= 118, o1= 112 and o2= 127}
� 3 / 28 = 10.71% completely unidentifiable
* Same outputs for the following faults:
 sa0 @ x2 / x3 {f, o1, o2}= {86, 0, 127 }
 sa0 @ zl1 / zl2 {f, o1, o2}= {46, 0, 127 }
 sa0 @ c3 / za2 {f, o1, o2}= {14, 112, 127 }
� 6 / 28 = 21.43 % indistinguishable

Proposed method: (Alternative vector method)

No fault => { f, o1, o2 }= { 86, 0, 127 }

Single stuck-at fault at one of control inputs c0 to c3, or data
inputs x1 to x3: Total number of faults: 7 x2= 14

Table 6: Decimal equivalents of the outputs for s-a-0 fault at each

of input and control inputs for the proposed method
 c0 c1 c2 c3 x1 x2 x3
f 86 86 88 14 96 54 54
o1 0 0 0 0 0 0 0
o2 126 127 127 127 127 127 127

Table 7: Decimal equivalents of the outputs for s-a-1 fault at each

of input and control inputs for the proposed method

 c0 c1 c2 c3 x1 x2 x3
f 110 86 87 118 94 86 86
o1 16 0 0 0 0 0 0
o2 255 255 255 255 255 255 255

Single stuck-at fault at one of intermediate gate outputs: Total
number of possible faults: (2+3+2) x 2 = 14

Table 8: Decimal equivalents of the outputs for s-a-0 fault at each

of gate outputs for the proposed method

 zl1 zl2 za1 za2 za3 zx1 zx2 =f
f 110 110 96 14 110 56 0
o1 0 0 0 0 0 0 0
o2 127 127 127 127 127 127 127

Table 9: Decimal equivalents of the outputs for s-a-1 fault at each

of gate outputs for the proposed method
 zl1 zl2 za1 za2 za3 zx1 zx2 (=f)
f 82 84 159 241 145 199 255
o1 0 0 0 0 0 0 0
o2 127 127 127 127 127 127 127

Comments:
* Gross total of possible single s-a-0 / s-a-1 faults:
 14 + 14 = 28.
* Identical outputs for 'no fault', sa0 @ c1
 { f, o1, o2} = { 86, 0, 127 }
 � 1 / 28 = 3.57 % completely unidentifiable fault
* Same outputs for
 sa0 @ c4/za2 (14,0,127)
 sa0 @ x1/za1 (96,0,127)
 sa0 @ x2/x3 (54,0,127)
 sa1 @ c2/x2/x3 (86,0,255)
 sa0 @ zl1/zl2/za3 (110,0,127)
 � 12 / 28 = 42.86 % indistinguishable

Table 10: Comparison of simulation results for a few logic functions
Example No. of Data Total Reference Proposed Methods
No. inputs faults Method[15] ---
 Reference AC weezee Alternative
 Method Vector Vector Vector
 %U %I %U %I %U %I %U %I
1 3 28 10.71 21.43 3.57 46.43 3.57 42.86 3.57 42.86
2 3 28 10.71 21.43 3.57 50 3.57 46.43 3.57 46.43
3 3 30 7.14 20 7.14 50 7.14 42.86 7.14 42.86
4 4 32 9.38 21.88 3.13 43.75 3.13 40.63 3.13 40.63
5 5 38 2.63 23.68 NIL 55.26 NIL 44.74 NIL 44.74
6 6 38 10.53 28.95 2.63 52.63 2.63 50 2.63 50
7 7 40 7.5 35 2.5 47.5 2.5 42.5 2.5 45
8 8 54 NIL 35.19 NIL 44.44 NIL 44.44 NIL 44.44
9 9 52 1.92 34.62 NIL 46.15 Nil 46.15 NIL 48.08

U -- Unidentifiable I -- Indistinguishable
Example No. 1: f= x1 ⊕ x2x3 ⊕ x2’x3’
Example No. 2: f= x1 ⊕ x1x2x3 ⊕ x2’x3’
Example No. 3: f= x1’ ⊕ x1’x2’ ⊕ x2x3’
Example No. 4: f= x1x2x3 ⊕ x2x3x4 ⊕ x2'x3'x4'
Example No. 5: f= x1x5 ⊕ x1x2x3 ⊕ x2x3x4 ⊕ x2'x3'x4'
Example No. 6: f= x1x2x6’ ⊕ x2x3x4 ⊕ x3’x4’x5’
Example No. 7: f= x1x2x7’ ⊕ x3x4x5 ⊕ x4’x5’x6’
Example No. 8: f= x1x2x8’ ⊕ x3x7’x6’ ⊕ x4’x5’ ⊕ x1’x2’x3’
Example No. 9: f= x1x2x8’ ⊕ x3x7’x6’ ⊕ x4’x5’x9 ⊕ x1’x2’x3’

J. Computer Sci., 2 (7): 595-599, 2006

 599

 A similar procedure is adopted for the reference
method vector[15] as well as ‘AC weezee’ method, with
proposed modified circuit. The results for the above as
also a few additional examples are shown in Table 10.

CONCLUSION

 Three test set schemes for detection of single
stuck-at faults for logic functions have been proposed
and the simulation results show that the proposed
schemes reduce the possibility of unidentifiable faults.
Further an additional index, the indistiguishability of
faults, which is different from unidentifiability has also
been proposed and compared for the example functions.

REFERENCES

1. Kalay, U., D.V. Hall and M.A. Petrowski, 2000. A

minimal universal test set for self-test of EXOR-
Sum-of-Products circuits. IEEE Trans. Computers,
49: 267-276.

2. Reddy, S.M., 1972. Easily testable realizations for
logical functions. IEEE Trans. Computers, 21:
1183-1188.

3. Saluja, K.K. and S.M. Reddy, 1975. Fault detecting
test set for Reed-Muller canonic networks. IEEE
Trans. Computers, 24: 995-998.

4. Sasao, T., 1997. Easily testable realizations for
Reed-Muller expressions. IEEE Trans. Computers,
21: 709-716.

5. Aborhey, S., 2001. Reed-Muller tree-based
minimization of fixed polarity Reed-Muller
expansions. IEE Proc. Comput. Digit. Tech., 148: 2.

6. Sasao, T. and P. Besslich, 1990. On the complexity
of mod-2 sum PLAs. IEEE Trans. Computers, 39:
262-266.

7. Wu, H. et al., 1996. Generalized partially-mixed-
polarity Reed-Muller expansion and its fast
computation. IEEE Trans. Computer, 45: 1084-
1088.

8. Das, D.K., S. Chakraborty and B.B. Bhattacharya,
2003. Universal and robust testability of stuck-
open faults in Reed-Muller canonical cmos circuits.
Intl. J. Electron., 90: 1-11.

9. Wu, H. et al., 1996. Generalized partially-mixed-
polarity Reed-Muller expansion and its fast
computation. IEEE Trans. Computer, 45: 1084-
1088.

10. Drechshler, R. et al., 1997. Testability of 2 level
AND/EXOR Circuits. Proc. European Design and
Test Conf.

11. Pradhan, D.K., 1978. Universal test sets for
multiple fault detection in AND-EXOR arrays.
IEEE Trans. Computers, 27: 181-187.

12. Bhattacharya, B.B. et al., 1985. Testable design of
RMC networks with universal tests for detecting
stuck-at and bridging faults. IEE Proc., 132 Part E:
155-161.

13. Zhongliang, P., 2003. Bridging fault detections for
testable realizations of logic functions. Proc. of
Intl. Conf. on VLSI Design, pp: 423-427.

14. Rahaman, H., D.K. Das and B.B. Bhattacharya,
2004. Testing of stuck-open faults in generalised
Reed Muller and EXOR sum of products cmos
circuits. IEEE Proc. Comput. and Digit. Tech., 151:
1.

15. Zhongliang, P., 2002. Testable realizations of
ESOP expressions of logic functions. Proc. of 11th
Asian Test Symposium (ATS”02), IEEE Computer
Society.

