
Journal of Computer Science 2 (8): 646-659, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Samuel Pierre, Department of Computer Engineering, École Polytechnique de Montréal, C.P.
6079, Succ. Centre-Ville, Montréal (Québec), Canada H3C 3A7

 Tel: +1 (514) 340-4711, Fax: +1 (514) 340-4658
646

A Network Management Framework Using Mobile Agents

Jonathan Lefebvre, Steven Chamberland and Samuel Pierre

Department of Computer Engineering, École Polytechnique de Montréal, C.P. 6079
Succ. Centre-Ville, Montréal (Québec), Canada H3C 3A7

Abstract: Network management of heterogeneous networks is still hard to achieve automatically and
efficiently. In this study, we present a framework that has the ability to perform network management
tasks on heterogeneous networks using mobile agents. This framework handles the inability of many
network devices to run mobile agents. While the main focus of the project is the framework, we
present an example of mobile agents that are able to locate a fixed set of network failures and detect
the possible causes accurately. Experimental results show that some network management tasks can be
more easily executed by mobile agents. In particular, search and diagnostic mobile agents are able to
find more precisely a cause of a network failure by finding alternate paths to gather more data about
the failure.

Key words: Network management, mobile agents, network diagnosis, fault location

INTRODUCTION

 Network management of heterogeneous networks
is still hard to achieve automatically and efficiently.
Indeed, since one network management system is
typically used per technology and per vendor, it is
difficult to perform simple network management tasks
such as fault location and service provisioning.
 Considering the flexibility and scalability
limitations of the centralized network management[1,2],
in the last decade, a lot of research has been done for
using mobile agents efficiently for network
management. Mobile agents decentralize management
tasks and distribute load over the network. They also
provide a fast and flexible way to create solutions for
fast-evolving environments and enable the possibility to
automate management tasks efficiently. For a survey of
the potential uses of the mobile agents in network
management, see[3].
 Several network management solutions using
mobile agents have been proposed in the network
management literature. The MAMAS (Mobile Agents
for the Management of Applications and Systems)
environment, proposed in[4], is a secure and open
mobile agent environment for the management of
networks, services and systems. An implementation is
proposed. However, no performance analysis is done.
The objective of the JAMES project[5] is to create an
efficient mobile agent platform mainly used for
network management. It provides many optimizations
in comparison to commercial mobile agent platforms
that are mandatory to achieve efficiency and high
performance in the domain of network management.
The Network Management and Artificial Intelligence

Laboratory of Carleton University[6] is doing research
on many applications and models to bring mobile
agents to network management. They have studied
many aspects of the subject such as the need for a
uniform management interface, the use of the simple
network management protocol (SNMP)[7] and mobile
agents[8].
 Novel architectures inspired by simple life
organisms have been proposed. One such architecture is
called ECOMOBILE[9]. It uses mobile agents to execute
task objectives, but these agents are not by themselves
network tasks. They have a life, compete with each
other, exchange and take or leave task objectives at any
time. This architecture offers an interesting way to
regulate its mobile agent population while achieving
network management tasks. ANTNET[10] is another
architecture in that field. It was introduced at first to use
mobile agents for adaptive routing. However, it has
inspired a lot of research[8,11,12]. The common point of
this research is the accomplishment of complex
objectives using simple mobile agents. On the concept
of proximity, a research group[1] has studied efficient
ways to place mobile agents on a network combining
both mobility and remote monitoring. Monitoring is one
part of network management and may be used for fault
management as well. Recently in[13], a performance
management system based on mobile agents for virtual
home environment has been proposed. However, this
system is limited to performance management.
 New approaches using active nodes and
lightweight agents, such as Weaver[14] and
Chameleon[15], have been proposed in the literature.
These systems are highly-scalable but, in general, they
can not be utilized on existing networks since the

J. Computer Sci., 2 (8): 646-659, 2006

 647

majority of commercial routers do not permit the
execution of user-supplied code. However,
workarounds can be used, for instance, by attaching to
each router a single-board computer[14] or by using
shared proxies.
 The first objective of this study is to create a
network management framework using mobile agents
to investigate the utility of them in real networks. Even
though the concept of using mobile agents for network
management has been considered before, it is the first
time that such framework is implemented and tested
using a heterogeneous network (containing, among
other equipments, internet protocol (IP) routers,
asynchronous transfer mode (ATM) switches and
several management stations) in various environments.
The proposed framework can also be used to manage
elements that cannot receive mobile agents. The second
objective of the study is that the framework can be
utilized on existing networks.

THE FRAMEWORK

 The proposed model suggests using one or two
agents per network management task. This allows us to
limit inter-agent communications that can be costly if
the framework tends to use small and inefficient agents.
By inefficient, we mean agents that cannot act
autonomously. In[16] and[2], it was shown that using only
one mobile agent for one task increases the task
response time, but lowers the total traffic on the
network. A study presenting a real configuration task[17]
provides a performance evaluation of using one mobile
agent against using parallel mobile agents for one task.
In fact, communication and synchronization between
multiple agents slows the whole task to a point where a
single agent performs better in both areas. It is therefore
impossible to give an optimal choice for every
topology, network size and management task. Our
choice to use few mobile agents for one task is based
on[17] and on our motivation to limit the network load
and agent building complexity. For tasks where there
are few dependencies between each device, we suggest
using multiple instances of the same mobile agent to
divide the task.
 Network management is done using network tools
already available. The advantage of using existing
protocols such as SNMP is pointed out by[18]. They are
already widely supported and implemented in network
devices and limit the effort involved in building a
network management framework. Also, mobile agents
tend to use these tools more efficiently.

Management table: The management table is the only
knowledge of the network that the framework provides.
Any other knowledge is taken from the network as
needed by mobile agents. This table keeps links
between network elements and network management
stations. One important utility of this table is to manage

elements that cannot receive mobile agents. For our
experiments, associations in this table were static,
meaning that one management station was bind
permanently to one or many elements. The association
is based on proximity. Proximity may be determined by
a wide selection of factors. In our case, it is simply the
number of hops between the station and the element.
Static associations do not mean that an element is
always managed by the same station. It only tells the
mobile agent the preferred management station for a
particular element. The framework could use a dynamic
update for this table and a way to adapt to network
modifications made on topology. One research study[1]
offers interesting ideas on how this aspect could be
improved.
 For optimization purposes, these tables are
installed on each management station, freeing the
mobile agent’s memory to save bandwidth. This also
allows local optimizations when it is not clear whether
a central element must be managed by one station or
another depending on the point of view.

Network Management Interface: Uniform interfaces
are key parts of many mobile agent systems[19-22].
However, our framework is not tied to uniform
interfaces. This lets us introduce two kinds of mobile
agents, general agents and specialized agents. The
general agent will mostly use uniform interfaces,
managing the network with limited functionality. The
specialized agent is able to do a lot more tasks and use
specialized features.

Stationary agent: Stationary agents are used to
implement network management code that has to be
dynamic, but may be totally inefficient to move with
mobile agents. By dynamic, we mean that they could
keep a state, be modified easily; keep local information
in cache for fast and efficient retrieving. This code is
moved once and stays permanently on the station.
 Stationary agents implement a set of uniform
management interfaces. The management table that
keeps references between management stations and
elements also keeps a set of network management
abilities for an element. Such abilities could be an
operating system application programming interface
(API), a protocol like SNMP or any other way to
manage an element. These stationary agents look like
interface agents found in[23], but fill a wider range of
functionalities and utilities.

Intelligence: Mobile agents need a great load of
intelligence to be able to manage networks of
heterogeneous devices. Although the framework uses
uniform interfaces, it is still difficult to give agents
sufficient intelligence to let them manage these
networks confidently. Some research tends to use
artificial intelligence or collective intelligence[8,10-12].
Our focus was to use an expert system, but the

J. Computer Sci., 2 (8): 646-659, 2006

 648

framework is not limited to a specific form of
intelligence. The network tasks implemented using our
framework aim to use proven procedural instructions
that are best implemented by an expert system.

Security and fault-tolerance: For networks where
agents should move on user stations, the framework
suggests, but does not yet implement, letting only the
approved mobile agent’s code to get back from user
stations. For confidentiality purposes, mobile agents
should give up sensible information from the network
before entering a user station. Quotas may also be used
to counter flooding.
 Since the framework is on top of any network
management system, it does not interfere with these
systems and is not needed for management. Fault
management mobile agents described later are able to
tell if the network management system is faulty, but
they cannot recover completely from such a failure.

Global view of the framework: Two logical networks
are present: the management network and the normal
network. The management network is essentially the
management stations and the links between them. The
normal network is the part assigned to useful
applications. Both logical networks may be the same,
have some devices and links shared or be completely
different networks. In Fig. 1, we see a general view
with a network device that can accept a mobile agent
(active node) and a device that cannot (passive node).
Each passive node must have an associated
management station (management node) to be
managed. Mobile agents on the network are depicted as
a person icon. We also see the composition of a
management mobile agent which is mainly its data, its
execution state, its intelligence and its abilities. Each
management station runs a mobile agent platform and
installs basic elements and stationary agents used by
mobile agents. Mobile agents can migrate in selected
private networks and are not allowed to migrate on
public networks unless it is in a strictly controlled
manner. This requirement serves the minimal security
model explained earlier. Management stations are
detailed in Fig. 2.
 Each management station of the framework runs a
mobile agent platform that can receive and launch
mobile agents. A station contains a network
management mobile agent bank that stores each mobile
agent that may be needed to accomplish a task. These
mobile agents, through stationary agents, may access
local operating system functions and any ability
installed on this station.

IMPLEMENTATION

 We first describe all technologies used in the
framework and in mobile agents. We have already
presented key elements of the framework earlier.
Implementation of management tables, uniform

interfaces, stationary agents and communication
between agents are explained here. Then, we present in
detail mobile agents that were used to validate the
framework. We have implemented two mobile agents
that are able to find a set of network failures in a
network. These mobile agents never claim to be able to
find all possible errors. The first mobile agent, called
Diagnostic, tries to go as far as possible in a network to
find a failure cause. The diagnostic capability of this
agent could be reproduced by a stationary agent. The
second agent, named Search, is used to pinpoint more
precisely the cause of a network failure.

Technology used: To implement the framework, we
used both Java and C++ programming languages. Java
is used for almost all aspects of the framework. The
C++ language is used to implement some advanced
functions that are accessed using JNI (Java Native
Interface). It also demonstrates the framework’s ability
to use multiple technologies and therefore use virtually
any management functionalities in a heterogeneous
network. Each mobile agent is implemented only in
Java and interacts with Java modules. Mobile agents are
built using the Grasshopper platform and API
(Application Program Interface)[24]. Grasshopper was a
natural choice because of its simplicity, maturity and
supported operating systems and implemented
standards. To access elements using SNMP, we used
AdventNet easy-to-use classes[25] and Java Beans. The
management information base of type II (MIB-II) has
been used.

Implementation of the management tables:
Management tables are placed on each network
management station. The current implementation does
not require that a management table be installed on
each station, but strongly suggests it. Mobile agents
find and access these tables by creating a proxy to the
table. We give more information on this type of
communication later. The management table
implementation uses a hash map to link the
management station to network devices. The key of the
map is a unique identifier (Table 3), therefore allowing
a management station to manage any devices and
restrict a device to having only one management station
assigned per table.

Communication, interfaces and stationary agents:
The main communication medium between agents in
our framework is done using remote procedure calls
(RPCs) instead of KQML (Knowledge Query
Manipulation Language) or ACL (Agent
Communication Language), to have a better control of
the communication mechanisms. We use the
Grasshopper proxy communication mechanism to
enable communication between agents. The framework
favors local communications between mobile agents

J. Computer Sci., 2 (8): 646-659, 2006

 649

Management station

and device to manage
(active node)

Management station
(management node)

Device to manage
(passive node)

Management
station

Network device

Management
station

Normal link

Management link

Private network

Public network

Mobile
agent

platform

OS
Libraries

Technologies

Interface
Control

Database
State

Functionalities

Data
Execution state

Abilities : basic, technologic
and communication
Expert system and
intelligence (task)

Management link

Network device

Fig. 1: Global view of the framework

Management station

Mobile agent platform

Operating
system

Available access
and management

technologies

Operating
system
libraries

Network
management
mobile agent

bank

Execution environment
(virtual machine)

Device to manage (if applicable)

Fig. 2: Detailed view of a management station

and stationary agents on the same place to use as few
network resources as possible.
 Mobile agents that have to manage the network
with a global view use proxy communications to access
technologies and functionalities that are hidden inside
the stationary agents. They therefore lower their need to
carry technology dependent code. The framework
favors an installation of these agents on each relevant
management station. To see how proxy
communications are implemented for the framework,
we refer the reader to Fig. 3.
 Access to a stationary agent works like a lookup
mechanism. For example, let’s say that a mobile agent
has to manage a device named A. It also knows the

interfaces needed for this network management task.
The mobile agent then tries to find a stationary agent
that implements the interface and has the ability to
manage the device A. To do so, it uses a basic set of
tests on each stationary agent installed locally.
One test allows the mobile agent to test if a
stationary agent is able to manage the device. A
management station should at least provide one
implementation of each interface for each device
it has to manage. Otherwise, some devices may not
be manageable. Interfaces and functions offered by the
framework are given in Table 1. This table is not
exhaustive, but is a good snapshot of the abilities of
the framework.

J. Computer Sci., 2 (8): 646-659, 2006

 650

Table 1: Interfaces and functions of the framework

Functions

ManagementStationAvailable

Functions

Ping

VerifyService

Functions

GetCongestion

GetUtilization

Functions

NextComponents

NextComponent

Functions

GetInterfaceAddresses

GetInterfaceInformation

GetInterfaceIndex

GetValue

IsDeviceAnswering

Base

Performance

Routing

Parent ability for all interfaces

Description

Tell if a component management system is active and
may be managed using a given technology

Description

Ping a network address

Returns the interface number given a network address

Returns the value of a variable or a state

Try to reach the device and return true if it's a success

Description

Returns all addresses of an interface

Returns useful information about the interface and its state

Interrogation

Description

Return the next components physically connected to
the device

Return the next component physically connected to the
device to join a given destination

Verify that a given service is available

Returns the congestion rate

Returns the utilization rate

Description

Table 2: Stationary agents of the framework and implemented

interfaces
Stationary management agents Implemented interfaces
SSnmp Interrogation

Performance
Routing

SBase Base
SWindows Query

Performance
Routing

Table 3: Management table used for all tests
Device Management station
Router Montreal Montreal
Router Vancouver Vancouver
Router Boston Boston
Switch Fidji Montreal
Management station Montréal Montreal
Management station Vancouver Vancouver
Management station Boston Boston

 We used three stationary agents in our framework.
These agents are listed in Table 2.
 A stationary agent SBase implements server-side
functions that are not dependent on the device
management technologies. SSnmp is used for network
devices and SWindows is used to manage Windows

workstations that run mobile agent platforms and are
considered as a part of the network to manage.

Diagnostic Agent: One fact is that a network failure
could cause many alarms and cause many direct or
indirect failures. The diagnostic mobile agent is used
when a failure occurs between a source and a
destination. It is informed of these two parameters, as
well as the port used and nothing more.
 The diagnostic agent never stops on the first
failure. For this reason, its first task is not to diagnose,
but accumulate a series of proofs containing facts and
places where these proofs are found. Then, at the end of
the proof finding phase, it can establish a diagnostic.
The proof finding phase ends when the diagnostic agent
is unable to move further has moved on or near the
destination or has no clues on how to continue
(management system down or no route to host). Before
terminating, it may try to launch a search agent that
returns with an alternate path to the next element. If this
agent is slow, a timeout tells the diagnostic agent to
continue without waiting longer. The last phase is
called the diagnostic phase.

Journal of Computer Science 2 (8): 646-659, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Samuel Pierre, Department of Computer Engineering, École Polytechnique de Montréal, C.P.
6079, Succ. Centre-Ville, Montréal (Québec), Canada H3C 3A7

 Tel: +1 (514) 340-4711, Fax: +1 (514) 340-4658
646

Management station

Network management mobile agent

Mobile agent must
interrogate
device A

This agent knows
Interrogation

interface.

Device A can be
managed by

technologies B
and C

A stationary agent
of technology C
implements the

Interrogation
interface and can
manage device A

Local search

Proxy generation

Search of a
stationary agent

implementing this
interface and one of
theses technologies

Find a compatible agent

Agent
C

found

Return proxy to agent C

Fig. 3: Lookup mechanism to find a stationary agent

yes

Current device
analysis

Diagnostic agent
launch

Current device is
destination?

no

Migration to
management

station managing
this device

Diagnostic

yes

Give diagnostic to
manager

Next device?

Yes

None

Migration
problem?

no Can manage on
current station?yes

Search agent
launch (if enabled)

Search agent find
a new path?

no

Diagnostic agent
use this path

yes

no

Back to source
(if possible)

Fig. 4: Diagnostic agent global algorithm

J. Computer Sci., 2 (8): 646-659, 2006

 652

Performance
analysis

Interface state
analysis

First device?

Current interface =
In interface

Current interface =
Out interface

yes

no

Current interface is out
interface or current device is

destination?
End of analysisyes

no

Analysis start

Fig. 5: Detailed analysis phase

Proof analysis to
spot current

problem

Previous results
review

(refinement)

Take a problem in
the known

problem list of the
diagnostic agent

Problem
found? yes

no

End of list? no

Present results

yes

Does this result
allow agent to

conclude?
no

yes

Fig. 6: Detailed diagnostic phase

Start of search
mobile agent

Get the next
devices*

Is there any
other next unvisited

devices?

Send a clone to
each next

unvisited devices.

End of search
mobile agent

no

yes

Current device
analysis

Search agent is in
return home

mode

Have we reached
the destination?

For each clone

noyes

Is there a next
device?**

** Search agent uses routing table
and source device to choose its
route

* Search agent uses routing table
to know all devices next to current
device

Search agent
moves to the next

device
yes

Search agent has
reached the other

end
no

Search agent
return home using

alternative path

Search agent
communicate its

finding to
diagnostic agent

Fig. 7: Search agent algorithm

J. Computer Sci., 2 (8): 646-659, 2006

 653

Table 4: Specification of main element of test networks

Description Manageable Operating system Interfaces Mobile agent platform
Intel Pentium 4 1.7Ghz
256meg

yes Windows 2000 SP3 1x100 Mbit/s GrassHopper 2.2.4b
JRE 1.3.1

Intel Pentium 4 1.7Ghz
256meg

yes Windows 2000 SP3 1x100 Mbit/s
GrassHopper 2.2.4b
JRE 1.3.1

Intel Pentium 4 1.7Ghz
256meg

yes Windows 2000 SP3 1x100 Mbit/s
GrassHopper 2.2.4b
JRE 1.3.1

Router Cisco 3640 yes IOS 12.2
1x100 Mbit/s
1x10 Mbit/s
1xATM155Mbit/s

not applicable

Router Cisco 3640 yes IOS 12.1
1x100 Mbit/s
2x10 Mbit/s

not applicable

Router Cisco 3640 yes IOS 12.2
1x100 Mbit/s
1x10 Mbit/s
1xATM155Mbit/s

not applicable

Switch Cisco Catalyst 8500 yes IOS 12.0 2xATM 155Mbit/s not applicable
Hub 4 ports no not applicable 4x100 Mbit/s not applicable

Table 5: Results of Test 1 for all three cases

Failure cause Solution Response time (s)
Source Destination unique identified near rating 1 2 3

1 Mtl Bos Link ATM0/0/1 1 1,2,3 best 70.87 2.26 3.26
2 Mtl Bos Link ATM0/0/0 1 1,2,3 best 66.74 63.45 41.17
3 Mtl Bos Interface ATM0/0/1 on Fidji (admin down) 1 1,2,3 best 68.89 3.13 2.14
4 Mtl Bos Interface ATM0/0/0 on Fidji (admin down) 1,2,3 1,2,3 same 69.06 64.09 40.62
5 Mtl Bos Interface ATM3/0.1 on Bos (admin down) 1 1 2.3 best 60.80 63.48 40.46
6 Mtl Bos Link Bos station to Hub 1,2,3 same 85.87 37.97 18.84
7 Mtl Bos Interface ATM3/0.1 on Mtl (admin down) 1,2,3 1,2,3 same 67.97 3.61 2.36
8 Mtl Van Link Van router to Mtl 1 1,2,3 best 26.94 3.45 2.38
9 Mtl Van Interface E0/0 on Mtl (admin down) 1,2,3 1,2,3 same 50.30 2.41 2.09

10 Mtl Van Interface E0/1 on Van (admin down) 1 1 2.3 best 67.32 61.69 39.11
11 Mtl Van Router Van crashed 1,2,3 best* 14.73 2.28 3.16
12 Mtl Van Service to reach not started on Van station 1,2,3 1,2,3 same 9.37 7.52 6.96
13 Mtl Van Van station crashed 1,2,3 same 141.18 39.23 14.58
14 Mtl Van Link Van station to Van router 1,2,3 same 69.45 29.80 7.22
15 Van Mtl Interface E0/0 (admin down) 1 1,2,3 best 70.03 62.30 39.94
16 Van Mtl Crash 1 best 51.45 67.21 40.65
17 Van Bos Interface E0/0 on Van (admin down) 1,2,3 1,2,3 same 55.62 5.34 2.06
18 Van Bos Interface F2/0 on Bos (admin down) 1,2,3 1,2,3 same 96.29 30.07 6.02
19 Bos Van Interface E0/0 on Bos (admin down) 1,2,3 1,2,3 same 57.65 2.66 2.44
20 Bos Mtl Link Mtl station to Mtl router 1,2,3 same 87.56 28.88 6.09

Network failureSession Management station

 These phases are detailed in Fig. 4, where a white
box inside a gray box indicates the start of the
algorithm while a white box inside a white one
indicates a possible end. Grayed boxes indicate
algorithm portions that are detailed later in Fig. 5 and 6.
 The proof finding phase starts when the algorithm
starts, it ends when the Diagnostic phase is reached and
it may be suspended when the mobile agent uses an
alternate path given by the search agent. The first thing
that the diagnostic agent does is a full analysis of the
current device. It then tries to know which device is
next on the path between source and destination. By
asking the management table, the mobile agent can
know which management station is responsible for this
device and it tries to migrate on that station. If it is a
success, the mobile agent restarts its analysis on the
current device and the new management station. If it’s
not, it tries to manage the device from its current
management station. If successful, the algorithm

restarts to perform analysis. If not, this tells the
diagnostic agent that it has reached a point where it
cannot obtain more information. It then has the option
of establishing a diagnostic or launching a mobile agent
to help find an alternate route (search agent will be
explained later). The analysis step is described in Fig. 5.
This phase is dependent on which network failures we
want to be able to find. The mobile agent does a series
of tests without trying to diagnose. A possible
optimization here would be to limit the mobile agents to
run superfluous tests. For now, this phase has no
intelligence.
 The analysis phase examines a series of facts.
These facts are collected in a proof list which is inserted
in a path list. The path list is built by collecting
information on each interface on the real path between
the source and destination. The next detailed phase is
the diagnostic phase presented in Fig. 6.

J. Computer Sci., 2 (8): 646-659, 2006

 654

 The mobile agent intelligence is mostly
concentrated in this phase. It tries, using refinement and
testing known cause with collected proofs, to know the
best location and possible cause that fit current facts
about the network. This diagnostic is usually more
precise if more facts are found about the problem. It
never assumes that the last fact collected is the more
relevant for the location or the problem.

Search agent: The search agent clones itself on each
route it finds on a given node. Its goal is to find the
destination using another path in the network that
routing tables may not contain. When it finds the
destination, it then tries to come back to the source
using routing tables. When it finds a point where it
cannot move using these tables, this lets it know that
this may be the other end that the diagnostic agent was
trying to reach. It then reuses the alternate path to come
back to the place where the diagnostic agent is, to give
it the extra information. The diagnostic agent then
suspends its proof finding phase to move to the element
found by the search agent using the alternate path.
Arrived at destination, it restarts its proof finding phase.
This is a summary of the complete algorithm found in
Fig. 7.
 In case the search agent never returns, the
diagnostic agent is still able to give a good estimation
of the problem just like a remote management solution.
The Search agent is an addition that takes advantage of
multi-path networks. To limit its spawn, a hop counter
is implemented to terminate itself after too many jumps.
This maximum hop value should be set carefully
according to network scale and desired precision and
performance.

Interactions: To clearly see how the search and
diagnostic mobile agents works together, let’s look at a
brief example illustrated in Fig. 8.
 In this case, the link between devices A and B is
broken. Normally, this will cause one network interface
on each of these devices to be automatically deactivated
(the operational down state). If the diagnostic mobile
agent is used alone, it will see only one deactivated
interface. Knowing that the other side is also
automatically deactivated will help conclude that
something between these two interfaces has gone
wrong. If that other interface has been deactivated
manually, it becomes apparent that only this interface is
the problem. In our case, being able to find an alternate
path enables the diagnostic agent to collect more facts
about the failure and gives a better diagnostic. This path
finding is handled by the search agent. In Fig. 8, the
diagnostic agent is stopped at device A. It launches a
search agent that finds an alternative route using
devices D and E. The search agent comes back to
inform the mobile agent of this alternate path. The
diagnostic agent may then use this alternate path to
pursue its analysis phase on the other end of the failure.

It is important to note that on this alternate path, the
diagnostic agent does not collect information about
devices D and E.

Fine tuning: Our framework leaves mobile agent code
on each management station. The mobile agent code is
implemented in a class. The real mobile agents that
move on the network inherit this class without
implementing any new functions. This way, we can tell
Grasshopper to only move that lighter inheriting class
and install the real code on each management station as
core classes. Grasshopper never moves core elements
such as its own platform classes and java native classes.
What is then moved is only data and execution state and
this increases the responsiveness of the system and
limits traffic. One drawback is that mobile agent code
cannot be updated dynamically. This technique was
inspired by the JAMES[5] architecture which uses a
more complex system. It uses version checking and
only downloads mobile agent’s code as needed.
 Another important technique that we used was to
make sure to drop useless data before each movement.
This practice is strongly suggested. By useless data, we
mean information that is not used anymore, redundant
or easy to get at a later time. For instance, after a
correlation of alarms, some of those can be typically
dropped.

EXPERIMENTAL RESULTS

Tests: In our preliminary tests, it became apparent that
using the diagnostic agent in conjunction with the
search agent was an improvement in diagnostic
precision, but had two serious side-effects: high
response time and high total traffic on the network. We
then chose to use two test networks to run our tests. The
first one was used to show how easily the combination
of the search and the diagnostic agent could locate and
diagnose network fault. The easiness was based on the
ability of mobile agents to enhance diagnostic precision
over stationary mobile agents even if it comes at a high
price. This first test network, shown in Fig. 9, offers
alternate paths.
 This test network also has a second goal: evaluate
qualitatively the advantages of using management
mobile agents in real networks. It unravels areas where
mobile agents are better suited than remote
management: path finding and searching. This
evaluation will be part of our analysis.
 On this test network, we made a first test (Test 1)
involving twenty random single faults. These twenty
faults were simulated for the three following cases:
diagnostic and search mobile agents (Case 1),
diagnostic mobile agent alone (Case 2) and stationary
diagnostic agent alone (Case 3). In each case, we
evaluated the precision of the diagnostic and we
measured the response times. We also ran a test (Test 2)

Journal of Computer Science 2 (8): 646-659, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Samuel Pierre, Department of Computer Engineering, École Polytechnique de Montréal, C.P.
6079, Succ. Centre-Ville, Montréal (Québec), Canada H3C 3A7

 Tel: +1 (514) 340-4711, Fax: +1 (514) 340-4658
646

Path list
1

2

3

4

Proof list

Proof list Management station A
Management station B

Device A
Device B

Device C
1

2 3

4

Device D
Device E

Fig. 8: Simple example using search and diagnostic agents

Router (Montreal)

Router (Boston)

Router (Vancouver)

Management station
(Montreal)

Workstation

Management station
(Vancouver)

ATM 0/0/1

ATM 0/0/0

ATM3/0

E0/0

E0/0

E0/0

E0/1

F2/0

NET:192.168.50.0

NET:192.168.51.0

NET:192.168.4.0
100 Mbps
C02

NET:192.168.5.0
100 Mbps

NET:192.168.3.0
100 Mbps
C01

F1/0

F1/0

192.168.5.1

192.168.3.1

192.168.4.1

Cisco Catalyst
8500 (8540MSR)

Cisco 3640

Cisco 3640

155 Mbps

10 Mbps

10 Mbps

155 Mbps

192.168.50.1

192.168.51.1

192.168.50.2

192.168.51.2

ATM3/0.1

Management station
(Boston)

Hub

C03

C04
ATM3/0.2 192.168.10.3 (Gestion)

192.168.12.1 (Transport)

ATM3/0

ATM3/0.1

ATM3/0.2 192.168.10.1 (Management)

192.168.11.1 (Transport)

1/100

1/33

1/101

1/50

0/100

0/101192.168.1.100
(Management)

1/100 ��0/100

1/101 ��0/101

1/33 ��1/50

ATM 0

Paths
1/50

1/33

Switch ATM (Fidji)

Fig. 9: First test setup

Router (Montreal) Router (Vancouver) Router (Boston)

Management station
Montreal

C01

Management station
Vancouver

C02

Management station
Boston

C03

Hub

Workstation
C04

Fig. 10: Second test setup

to demonstrate that the diagnostic agent (mobile or not)
was able to know that the management system was in
failure. This test is important to be able to discriminate
between a network failure involving a loss of service
and a management system failure. Another simple test
(Test 3) was run to ensure that the diagnostic agent does

not mistakenly report network failure in a fully
operational network.
 The second test network’s goal was to evaluate
mobile agents in terms of raw performance. While
this test has already been done for various applications
including network management,

J. Computer Sci., 2 (8): 646-659, 2006

 656

Table 6: Special case experiments (Test 2 and Test 3)

Response Cause

Source Destination time (s) found

1 Mtl Bos None 12.09 None
2 Mtl Van None 7.86 None
3 Van Mtl None 12.40 None
4 Van Bos None 6.69 None
5 Bos Mtl None 10.02 None
6 Bos Van None 8.34 None
7 Mtl Bos Fidji management system disabled 189.24 Yes
8 Mtl Van Mtl management system disabled 194.02 Yes
9 Van Bos Bos management system disabled 195.08 Yes

10 Bos Mtl Bos management system disabled 195.56 Yes
11 Bos Van Van management system disabled 203.43 Yes

Network failureSession
Management Station

it was important to know how our framework rates
against an equivalent remote approach. To achieve this,
we built a test setup that enabled the mobile agent to be
the closest possible to the device to manage. It is
obvious that being closer to devices should lower the
total traffic on the network while load balancing the
charge on many devices. What is less obvious is
calculating the penalty of moving network management
code from one place to another[20]. The second test
network uses a restrained version of the first test
network. The result of this subset is a network with
only one route from one host to another. The mobile
agent can manage each device from the closest
management station. This test network makes it easier
to test the performance of mobile agents against
stationary agents. The last test (Test 4) was limited to
failures that imply at least one migration for the mobile
diagnostic agent. It does not use the search agent to
provide a fair comparison. The mobile agent returns to
the source to show its diagnostic, even if it has the
ability to do its diagnostic at the destination. The
stationary agent uses the same diagnostic algorithm, but
is limited to no mobility at all.
 All tests were made with static routing and single
failure scenario. These choices were made to lower the
complexity of algorithms and mobile agents. Therefore,
mobile agents presented in this study are built for this
type of scenario only. It is a limitation for our test, but it
still shows possibilities of mobile agents for more
typical scenarios. By single failure scenario, we mean
that the tests are conducted with only one failure, but
this failure may cause more than one alarm and more
than one consequence on the network.
 The content of the management table described is
shown in Table 3 and the specifications of the main
elements of test networks are shown in Table 4.
 By reviewing the elements in Table 4, it appears
clearly that the focus was on using different types of
devices and different transport and management
technologies. Our test network can be classified as a
heterogeneous network.

Results: The results of the first test are shown in Table
5. The results are for the three cases already stated
which are: diagnostic and search mobile agents (Case
1), diagnostic mobile agent alone (Case 2) and
stationary diagnostic agent alone (Case 3).
 Here, each table shows the best results for each
session in bold. The solution rating column is based on
a comparison of Case 1 against the two other cases. It is
interesting to note that Case 2 and Case 3 gave the same
precision but not the same response times. Session 11
gave the same precision for each case, but we still rate
the solution of Case 1 as best because it returned more
relevant information about the problem than other
cases. The failure cause found is separated in three
columns. The first one, denoted unique, indicates that
the exact cause of the failure was found and presented
as the unique cause. This is the ideal diagnostic for a
network administrator. The second one, noted
identified, indicates that the cause was identified but
lies among a series of other relevant but not exact
causes. It may also indicate that the cause was not
found precisely, but the right device was found. The
last one, called near, indicates that the diagnostic was
wrong, but near the cause of the failure. By using the
search and diagnostic mobile agents, we always got a
better or equivalent precision against the diagnostic
agent alone, mobile or not. However, by using the
search mobile agent, we significantly increased the
response time and the total traffic on the network. The
total traffic was not measured for each session but tends
to be, on average, eight times greater when the search
agent is used.
 The next two tests are shown in Table 6. As we can
see, the diagnostic mobile agent behaved like expected.
The diagnostic agent is able to see a difference between
a network failure and a management system failure.
Also, it behaved as expected in sessions without any
network failure.
 All results we have shown until now on were to
evaluate mobile agent technology advantages over
remote solutions and stationary agents. The next results

J. Computer Sci., 2 (8): 646-659, 2006

 657

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6

Session

T
ra

ffi
c

(b
yt

es
)

Mtl

Van

Bos

Fig. 11: Traffic measurements for diagnostic mobile

agent (Test 4)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

1 2 3 4 5 6

Session

R
es

po
n

se
 t

im
e

(s
)

Fig. 12: Response time for diagnostic mobile agent

(Test 4)

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6

Session

Tr
af

fi
c

(b
yt

es
)

Mtl

Van

Bos

Fig. 13: Traffic measurements for diagnostic

stationary agent (Test 4)

give a better idea of the load imposed on networks by
mobile agents against stationary agents.
 The traffic measurements are shown in Fig. 11 and
12 for the diagnostic mobile agent and in Fig. 13 and 14
for the diagnostic stationary agent. Both agents provide
the same identification precision.
 Figures 11 to 14 show that the stationary agent
always got a better response time. It also generates less
total traffic in each case and less traffic around almost
all routers.
 Fig. 15 shows total traffic value for mobile and
stationary agents for each session and Fig. 16 compares
each traffic value for each router. To measure traffic
values around router, we used out bytes value on each
interface of a given router.
 Fig. 15 still shows a performance advantage for the
stationary agent, but with one session being almost
equal (Session 4 with less than 2% of variation) and

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 2 3 4 5 6

Session

R
es

po
ns

e
tim

e
(s

)

Fig. 14: Response time for diagnostic stationary

agent (Test 4)

00

50000

100000

150000

200000

250000

1 2 3 4 5 6

Session

To
ta

l t
ra

ffi
c

(b
yt

es
)

Mobile agent

Stationary agent

Fig. 15: Total traffic for each session (Test 4)

0

20000

40000

60000

80000

100000

120000

140000

160000

Mtl Van Bos Total

Router

T
ra

ffi
c

(b
yt

es
)

Mobile agent

Stationary agent

Fig. 16: Average traffic for each router and overall

(Test 4)

two sessions with small variation (sessions 3 and 6).
Fig. 16 shows interesting statistics when we look at
average values. The stationary agent only produces
18.5% less traffic on average for all sessions. Also, on
router Montreal, the diagnostic mobile agent has a clear
advantage over the stationary agent that is not seen in
other routers.

ANALYSIS AND DISCUSSION

 At first glance, the stationary agent seems to be a
better solution if we only consider performance. But,
we still think that mobile agents will be a better solution
even in this area of comparison considering the small
test network used. We base our statement on the
following findings: the total traffic value for hardest
network tasks is almost the same for diagnostic
stationary and mobile agents (Fig. 15) and the average

J. Computer Sci., 2 (8): 646-659, 2006

 658

network load on the first router is high for the stationary
agent (Fig. 16). By hardest network tasks, we mean
tasks that involve lots of information querying. Sessions
3, 4 and 6 are good examples. In these cases, the
diagnostic agent needs more information about the
network and the cost of movement is attenuated by the
heavier network management traffic. By contrast,
Session 5 of Test 4 (Fig. 15) involves few information
querying. It is also the worst performance of the
diagnostic mobile agent against the stationary agent
because the cost of movement is high compared to the
network management traffic involved. In a small
network, the cost of remote management is not high
enough to switch to mobile agent management. But our
results let us think that mobile agents will unveil a
better performance on bigger networks with most
demanding and many simultaneous network tasks[26,27].
Another point of interest is the network load imposed
on equipment near the remote management station.
Fig. 16 shows that if we would like to execute more
than one management task at the same time, the first
router may become a bottleneck. It is now a fact, that
mobile agents have a higher response time and may
create more traffic overall. However, one main interest
about them is their potential of repartition of the
network load on the whole network. One bad point
about our results is the high traffic variation of 54.8%
imposed by mobile agents on the Vancouver router.
This is mainly due to the diagnostic agent having to
return home and may be optimized further by only
sending a report to the source if the result is needed at
the source.
 From here, we did a performance analysis. We are
also interested, in the mobile agent domain of research,
to find tasks that are enabled only by mobile agents. So
far, it seems that there is no such task. However, what
we saw in our experiments are tasks that are more
easily executed by mobile agents. For example, we
have demonstrated that the search and diagnostic
mobile agents were able to find more precisely a cause
of a network failure by finding alternate paths to gather
more data about the failure (Table 5). In seven of the
twenty random failures, they were able to find a better
solution. In these seven cases, mobile agents were able
to gain access easily to interesting information about
the failure that remote management was not able to see.
This precision seems to be related to the number of
alternate paths a network offers. Also, another point of
interest is that diagnostic mobile agents can still work
efficiently in an unreliable network whereas its remote
counterpart may have a hard time doing the same task.
Finally, they offer ways to use existing network
management utilities and facilities by their ability to
access local resources directly and efficiently.

CONCLUSION

 In this study, we proposed, after a brief
introduction, a network management framework using
mobile agents and we have presented important parts of
that framework. Next, we have presented
implementation remarks and finally, experimental
results have been performed. Experimental results show
that some network management tasks can be more
easily executed by mobile agents. In particular, search
and diagnostic mobile agents are able to find more
precisely a cause of a network failure by finding
alternate paths to gather more data about the failure.
Moreover, the two objectives presented in the
introduction were reached. The first one is to create a
network management framework using mobile agents
in order to investigate the utility of them in real
networks and applications and the second one is that the
created framework can be utilized on existing networks.
 Our framework has many limitations that must be
overtaken before using mobile agents for real
applications. Security and fault-tolerance are probably
the greatest issues that mobile agent systems must face.
The framework is also still limited in its management
capabilities. It only offers a small set of management
functions that should be improved before it could be
ready to be used by mobile agents for any network task.
The projected performance improvement is not yet
proven for mobile agents of our framework. The
diagnostic mobile agent is also limited in the kind of
network and errors it can handle.
 Limitations stated in the last paragraph can all
constitute future ways to improve the current
framework. In[28], Borselius offers an overview of
security issues and measures for mobile agent systems.
The set of management functionalities that it can handle
could be enhanced. By enhancing this set, it would
become possible to build mobile agents that execute
network management tasks other than network fault
localization and diagnostic. Mobile agents presented in
this study could still be improved in many ways. For
example, the diagnostic could handle much more failure
causes and could be adapted for dynamic routing
protocols. The diagnostic algorithm could learn from
past errors instead of being tied to a deterministic
expert system. Even the expert system can be improved
using better expert system techniques, scripts and rules.
Network fault location and diagnostic are two tasks that
network administrators would want to be automated
efficiently and confidently. Since mobile agents we
presented are limited, there is still a lot of work to do
only in that area.

REFERENCES

1. Liotta, A., G. Pavlou and G. Knight, 2002.

Exploiting agent mobility for large-scale network
monitoring. IEEE Networks, 16: 7-15.

J. Computer Sci., 2 (8): 646-659, 2006

 659

2. Rubinstein, M.G., O. Duarte and G. Pujolle, 2002.
Scalability of a network management application
based on mobile agents. J. Communications and
Networks, 5: 240-248.

3. Bieszczad, A., B. Pagurek and T. White, 1998.
Mobile agents for network management. IEEE
Communications Surveys, 1: 1.

4. Bellavista, P., A. Corradi and C. Stefanelli, 2003.
An open secure mobile agent framework for
systems management. J. Network and System
Management, 7: 323-339.

5. Silva, L.M., P. Simoes, G. Soares, P. Martins, V.
Batista, C. Renato, L. Almeida and N. Stohr, 1999.
JAMES: A platform of mobile agents for the
management of telecommunication networks. Proc.
Intl. Workshop on Intelligent Agents for
Telecommunications Applications, IATA’99,
Springer-Verlag, pp: 77-95.

6. Carleton University, The Network Management
and AI Laboratory. <http://www.sce.carleton.ca>.

7. Pagurek, B., Y. Wang and T. White, 2000.
Integration of mobile agents with SNMP: Why and
how. Proc. IEEE/IFIP Network Operations and
Management Symposium, NOMS’00, pp: 609-622.

8. White, T. and B. Pagurek, 1998. Towards multi-
swarm problem solving in networks.
<http://dsp.jpl.nasa.gov/members/payman/swarm/
white98-icmas.pdf>Proc. Intl. Conf. on Multi-
Agent Systems, ICMAS '98, pp: 333-340.

9. Rossier, D. and R. Scheurer, 2002. An ecosystem-
inspired mobile agent middleware for active
network management. Proc. Intl. Workshop on
Mobile Agents for Telecommunication
Applications, MATA’02, pp: 73-82.

10. Di Caro, G. and M. Dorigo, 1998. Ant colonies for
adaptive routing in packet-switched
communications networks. Proc. Parallel Problem
Solving from Nature, PPSN’98, pp: 673-682.

11. Baràn, B. and R. Sosa, 2000. A new approach for
antnet routing. Proc. Intl. Conf. on Computer
Communications and Networks, ICCCN’00, pp:
303-308.

12. Schoonderwoerd, R., O. Holland and J. Bruten,
1997. Ant-Like agent for load balancing in
telecommunication networks. Proc. Intl. Conf. on
Autonomous Agents, Agent’97, pp: 209-216.

13. Bohoris, C., G. Pavlou and A. Liotta, 2003. Mobile
agent-based performance management for the
virtual home environment. J. Network and System
Management, 11: 133-149.

14. Koon-Seng, L. and R. Stadler, 2003. Weaver:
Realizing a scalable management paradigm on
commodity routers. Proc. IFIP/IEEE Intl. Symp. on
Integrated Network Management, IM’03, pp:
409-424.

15. Bossardt, M., L. Ruf, B. Plattner and R. Stadler,
2000. Service deployment on high performance
networks nodes. Proc. IEEE/IFIP Network
Operations and Management Symposium,
NOMS’02, pp: 915-917.

16. Rubinstein, M.G., O. Duarte and G. Pujolle, 2000.
Reducing the response time in network
management by using multiple mobile agents.
Proc. Third Intl. Conf. on Management of
Multimedia Networks and Services, Kluwer
Academic Publishers, pp: 253-265.

17. Boyer, J., B. Pagurek and T. White, 1999.
Methodologies for PVC configuration in
heterogeneous ATM environments using intelligent
mobile agents.
ftp://ftp.sce.carleton.ca/pub/netmanage/jb-
mata99.ps.gz. Proc. of Mobile Agents for
Telecommunications Applications, MATA'99, pp:
211-228.

18. Zapf, M., K. Herrmann and K. Geihs, 1999.
Decentralized SNMP management with mobile
agents. Proc. of the Sixth IFIP/IEEE Intl. Symp. on
Distributed Management for the Networked
Millennium, pp: 623-635.

19. Gavalas, D., D. Greenwood, M. Ghanbari and M.
O'Mahony, 1999. An infrastructure for distributed
and dynamic network management based on
mobile agent technology. Proc. IEEE Intl. Conf. on
Communications, ICC’99, pp: 1362-1366.

20. Gavalas, D., D. Greenwood, M. Ghanbari and M.
O’Mahony, 2002. Hierarchical network
management: A scalable and dynamic mobile
agent-based approach. Computer Networks, 38:
693-711.

21. Putzolu, D., S. Bakshi, S. Yadav and R. Yavatkar,
2000. The phoenix framework: A practical
architecture for programmable networks. IEEE
Commun. Mag., 38: 160-165.

22. White, T., B. Pagurek and A. Bieszczad, 1999.
Network modeling for management applications
using intelligent mobile agents. J. Network and
Systems Management, 7: 295-321.

23. Timon, C. Du, Eldon Y. Li and An-Pin Chang,
2003. Mobile agents in distributed network
management. Communications of the ACM, 46:
127-137.

24. IKV++, “Grasshopper - The Agent Platform,”
http://www.grasshopper.de, 2004.

25. AdventNet, Inc., “AdventNet SNMP API,”
http://www.adventnet.com, 2004.

26. Baldi, M., S. Gai and G.P. Picco, 1997. Exploiting
code mobility in decentralized and flexible network
management. Proc. Intl. Workshop on Mobile
Agents, MA'97, pp: 13-26.

27. Puliafito, A. and O. Tomarchio, 1999. Advanced
network management functionalities through the
use of mobile software agents. Proc. Intl.
Workshop on Intelligent Agents for
Telecommunications Applications, IATA’99,
Springer-Verlag, pp: 33-45.

28. Borselius, N., 2002. Mobile agent security.
Electronics & Communication Engineering J., 14:
211-218.

