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Abstract: In this paper some of the most common attacks against Rivest, Shamir, and Adleman (RSA) 
cryptosystem are presented. We describe the integer factoring attacks, attacks on the underlying 
mathematical function, as well as attacks that exploit details in implementations of the algorithm. 
Algorithms for each type of attacks are developed and analyzed by their complexity, memory 
requirements and area of usage. 
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INTRODUCTION 

 
 While cryptography is the science concerned with 
the design of ciphers, cryptanalysis is the related study 
of breaking ciphers. We begin by describing a 
simplified version of RSA encryption. Let N = p*q be 
the product of two large primes of the same size. Let e, 
d be two integers satisfying e*d�1 mod Ø(N) where 
Ø(N) = (p-1)*(q-1) is the Euler’s totient function of N. 
We call N the RSA modulus, e the encryption 
exponent, and d the decryption exponent. The pair (N,e) 
is the public key which is used to encrypt messages. 
The pair (N,d) is called the private key and is known 
only to the recipient of encrypted messages. 
 A message is an integer M, to encrypt M, one 
computes C = Me mod N. To decrypt the ciphertext C, 
the legitimate receiver computes Cd mod N. 
 In an encryption scheme, the main objective of the 
attacker is to recover the plaintext m from the related 
cipher text. If he/she is successful, we say he/she has 
broken the system. In the case of digital signature, the 
goal of the attacker is to forge signatures. A more 
ambitious attack is to recover the private key d. If 
achieved, the attacker can now decrypt all cipher texts 
and forge signatures at will. In this case the only 
solution is to revocation of the key. 
 This research gives a brief description of the main 
attacks against RSA cryptosystem. Some of integer 
factoring attacks, attacks on the underlying 
mathematical function and attacks which exploit 
implementation are presented. This study superiors 
from others by writing simple algorithms and analysis 
for each attack. Some of these attacks apply only to the 
encryption scheme, some result in the private key 
recovery[1-3]. 
  
Integer Factoring Attacks: The problem of integer 
factorization is one of the oldest in number theory and 

the adverts of computers have simulated considerable 
progress in recent years. However, the security of many 
cryptographic techniques depends upon the 
intractability of the Integer Factorization Problem 
(IFP). The security of RSA cryptosystem is initially 
related to the IFP. If an adversary can factor the public 
modulus, N into its two prime factors, p and q, he can 
efficiently calculate the private exponent. 
 Factoring algorithms comes in two parts: special 
purpose and general purpose algorithms. The efficiency 
of special purpose depends on the unknown factors, 
whereas the efficiency of the latter depends on the 
number to be factored. Special purpose algorithms are 
best for factoring numbers with small factors, but the 
numbers used for the modulus in the RSA do not have 
any small factors. Therefore, general purpose factoring 
algorithms are the more important ones in the context 
of cryptographic systems and their security. Table 1 
summarizes the running time for integer factoring 
algorithms. The first four rows are special purpose 
algorithm, and last rows are general purpose 
algorithms. 
 The notation o(1) denotes a function of N that 
approaches 0 as n →�, p denotes the smallest prime 
factor of N, and Euler’s constant e=2.718. 
 
Table 1: Factoring algorithms running time 

Pollard’s Rho algorithm O( p ) 

Pollard’s p-1 algorithm O(p~) where p~ 

is the largest prime factor of p-1. 
Pollard’s p+1 algorithm O(p~) where p~ 

is the largest prime factor of p+1. 
Elliptic Curve method (ECM) O(e(1+o(1)) (2ln p 

lnln p)1/2) 
Quadratic Sieve (Q.S.) O(e(1+o(1)) (ln N ln 

ln N)1/2) 
Number Filed Sieve (NFS) O(e(1.92+o(1))(ln 

N)1/3(ln ln N)2/3) 
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Wiener’s Attack: To reduce the work load of the 
exponentiation, one may wish to use a small value of 
private key rather than a random value[4]. Since modular 
exponentiation takes time linear in log (private key), a 
small private key can improve performance by at least a 
factor of 10 (for 1024 bits modulus). For instance, if a 
smart card is used to sign messages, it will have to 
compute exponentiations Cd mod N, where C is a cipher 
text, d is private key and N is RSA modulus. If the card 
has limited computing power, a relatively small value 
of d would be handy. 
In this section, we present an attack, due to Wiener [4], 
that succeeds in computing the secret decryption 
exponent under certain conditions. 
 
Theorem 1: Let N=p*q with q < p< 2*q, let d < 
1/3*N0.25. Given public key (N,e) with e*d�1 mod 
Ø(N). Attacker can efficiently recover d. 
 
Proof: The proof is using continued fractions 
technique. Since d is calculated in equation e*d�1 mod  
Ø(N), it follows that there is an integer k such that e*d-
k*Ø(N)=1. Therefore, we have that: 

Ø(N)*
1

Ø(N) dd
ke =− . 

Since N=p*q>q2, we have that q< N , hence: 

0<N-Ø(N)=p+q-1<2*q+q-1<3* N . Now, we see that 
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Since k<d, we have that 3*k<3*d<N0.25, and hence 

25.0*

1

Ndd
k

N
e <− . 

Finally, since 3*d<N0.25, we have that  

2*3

1

dd
k

N
e <−   

 As note from mathematical proof there are at most 
log N fractions 

d
k  with d < N approximately 

N
e so 

tightly, and they can be obtained by computing the log 
N convergents of the continued fraction expansion of 

N
e . 

Algorithm: (Wiener’s attack). 
Input:a public key (N,e),a continued fractions of                               
N/e:[q1,q2,…,qm]. 
Output:a non-trivial factors p and q of N. 
 
Algorithm: 
Set c0=1, c1=1, d0=0, d1=1, i=1; 

while i<=m do 
 
Calculate z=(ci*e-1)/di ; 
If z is an integer then 
Let p and q be the roots of the equation: x2-(N-
z+1)x+N=0; 
If p and q are positive integers then return (p,q); 
i=i+1; 
ci=qi*ci-1+ci-2; 
di=qi*di-1+di-2; 
return “failure”; 
End Algorithm (Wiener’s attack). 
 
 Note that this attack is efficient and practical, and 
thus is a concern only if the private key d is chosen to 
be small relative to N. For example, if N is a 1024 bits 
number, then d must be at least 256 bits long in order to 
prevent Wiener’s attack. Wiener proposed[4] certain 
techniques that avoid his attack The first technique is to 
use a large encryption exponent, say e~=e+c*Ø(N) for 
some large c. For a large enough e~, the factor k in the 
proof is so large the Wiener’s attack can not be 
mounted, regardless of how small d is. 
 A second technique uses the Chinese Remainder 
Theorem (CRT) to speed up decryption, even if d is not 
small. Let d be a large decryption exponent such that 
both dp=d mod p-1 and   dq=d mod q-1 are small. Then, 
can decrypt a given cipher text C as follows. Compute 
mp=Cdp mod p and mq=Cdq mod q, and use the CRT to 
obtain the unique solution m modulo N=p*q of the two 
equations m=mp mod p and m=mq mod q. The point is 
that although dp and dq are small, d can be chosen to 
resist Wiener’s attack. 
 Boneh and Durfee[5] show that as long as d<N0.292, 
an attacker can efficiently recover d from (N,e). 
 
Low Public Exponent Attacks: A user of the RSA 
cryptosystem may wish reducing encryption or 
signature-verification, it is customary to use a small 
public exponent e. The common choices of a public 
exponent e are 3 or 216+1. When the value 216+1 is 
used, signature verification requires 17 multiplications, 
as opposed to roughly 1000 when a random e<=Ø(N) is 
used. If the public exponent is small and the plaintext m 
is very short, then the RSA function may be easy invert. 
Unlike Wiener’s attack, attacks that apply when a small 
e is used are far from a total break. In this section, we 
explain some of these attacks and show how they work. 
 
Hastad Broadcasting Attack 
Theorem 2: Suppose N1,N2,…,Nk are relatively prime 
integers and set Nmin=minimum (Ni). Let gi(x) ∈ZNi[x] 
be k polynomials of maximum degree d. Suppose there 
exists a unique m < Nmin satisfying: gi(m)=0 mod Ni for 
all i ∈{0,…,k}. Furthermore, suppose k>d, there is an 
efficient algorithm which given (Ni,gi(x)) for all i, 
computes m. 
Proof: The mathematical proof can be found in[6]. 
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In other words, if three parties participating in the same 
system encrypt the same message m using the same 
public exponent e=3, although perhaps different 
modulus n1,n2, and n3, then one can easily compute m 
from the three cipher texts: 
c1=m3 mod n1 
c2=m3 mod n2 
c3=m3 mod n3 
Using CRT one can compute the unique solution C=m3 
mod n1*n2*n3=m3. Hence, one can compute m from C 
by ordinary root extraction. 
 
Algorithm: (Hastad Broadcasting Attack) 
Input:a system of cipher texts equations with different 
modulus. 
Output: an original message m. 
 
Algorithm: 
For simplicity choose e=3. 
Given the following equations: 
c1=m3 mod n1 
c2=m3 mod n2 

ci=m3 mod ni 

compute N=n1*n2*…*ni 

compute Mi=N/ni, for i=1,2,… 
compute yi�mi

-1 mod ni, for i=1,2,… 
compute X=(c1*M1*y1+c2*M2*y2+…+ci*Mi*yi) mod 
N. 
Compute original message m=X1/3. 
 
End Algorithm (Hastad Broadcasting attack). 
 
 Hasted shows[6] that small public exponents can be 
dangerous when the same plaintext is sent to many 
different recipients, (i.e.) this attack works in efficient 
manner where public exponent e is small. To foil this 
attack, we can use larger exponents or send not exactly 
the same message by adding a time-stamp, for example, 
this latter solution does not always prevent the recovery 
of messages. Suppose that the messages are linearly 
related: mi=�i*m+�i mod ni, where �i and �i are known 
constants. The corresponding cipher texts are ci=mi

ei 
mod ni. In this case, we have: 
 
Corollary 1: In the RSA cryptosystem, a set of k 
linearly related messages encrypted with public 
encryption keys ei and RSA-moduli ni can be recovered 
if k>e*(e+1)/2  and ni>2(e+1)*(e+2)/4 (e+1)e+1 , where 
e=max(ei). 
 Table 2 summarizes the number of messages 
required in the RSA cryptosystem to mount successful 
Hastad’s attack. Note that, the “-“ means that the RSA 
system is not defined for this value of e.  
 Hastad’s attack depends on CRT step to recover 
original message, so it needs O((logN)2) bit operations 

in total, where N=∏
=

k

i
in

1

. 

Table 2: Basic Hasted's attack 
E No. of messages 
2 - 
3 7 
4 - 
5 16 
7 29 
33 562 

 
Franklin-Reiter Related Messages Atack[7] 
Theorem 3: Set e=3, and let (N,e) be an RSA public 
key. Let m1!=m2 ∈ZN satisfy m1=f(m2) mod N for 
some linear polynomial f=a*x+b ∈  ZN[x] with b!=0. 
Then, given (N,e,c1,c2,f), attacker can recover m1, m2 in 
time quadratic in log N. 
 
Proof: Using an arbitrary e (rather than restricting to 
e=3). Since c1=m1

e mod N, we know that m2 is a root of 
the polynomial g1(x)=f(x)e-c1 ∈  ZN[x]. Similarly, m2 is 
a root of g2(x)=xe-c2 ∈  ZN[x]. The linear factor x-m2 

divides both polynomials. 
 Therefore, attacker calculates the greatest common 
divisor (gcd) of g1 and g2 , if the gcd turns out to be 
linear, m2 is found. The gcd can be computed in 
quadratic time in e and log N. Coppersmith[7] describes 
two methods to recover the plaintext m: Direct method 
and gcd method. Here, we write a Direct method steps 
and the latter method can be found in[8]. 
 
Algorithm: (Franklin-Reiter attack). 
Input: Two ciphertexts c1 and c2, and f(m) such that: 
f(m)=a*m+b. 
Output: an original message m. 
 
Algorithm: 
Calculate f=b*(c2+2*a3*c1-b

3) mod N. 
Calculate g=a*(c2-a

3*c1+2*b3) mod N. 
Find m such that g*m�f mod N using Extended 
Euclidean Algorithm. 
End Algorithm (Franklin-Reiter attack). 
 
 Franklin-Reiter identified a new attack against 
RSA with public exponent e=3. If two messages differ 
only from a known fixed value � and are RSA 
encrypted under the same RSA modulus N, then it is 
possible to recover both of them. This situation occurs 
quite after, as for example, Letters sent to different 
addresses, Texts differing only from their date of 
compilation, Retransmission of a message with a new 
ID number due to an error. 
 Furthermore, Coppersmith[7] showed that if � 
(difference between the two messages) is unknown, 
then m1 and m2 can sometimes be recovered. In 
particular, this means that adding a random padding to 
the messages being encrypted does not always prevent 
the recovery of messages. It is estimated that, for RSA, 
this attack applies with a public encryption exponent e 
up to 32 bits. When e=3 the attack can be mounted as 
long as the pad length is less than 1/9th the message 
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length, so, In general the related messages attack can be 
mounted if and only if the padding length is less than 

2e

N
 where (N,e) is a RSA public key. Table 3 shows 

this result. 
 
Table 3: Random padding � tolerated for modulus N 
E N (in bits) 
 512 1024 
3 56 113 
5 20 40 
7 10 20 

 
 The above attack takes O((log N)2) time to 
calculate a gcd between two polynomials, for e >3 the 
attack takes time quadratic in e. Consequently, it can be 
applied only when a small public exponent e is used. 
For a large e the work in computing the gcd is 
prohibitive. 
 
Partial Key Exposure attack 
Theorem 4: Let N=p*q be an n-bit RSA modulus, let 
1<=e, d<=Ø(N) satisfy e*d�1 mod Ø(N). There is an 
algorithm that given the n/4 Least Significant Bits 
(LSB) of d computes all of d in polynomial time in n 
and e. 
 
Proof: The proof of above theorem 4 is not provided 
here, it can be found in[9]. 
 
Algorithm: (Partial Key Exposure attack). 
Input: a public key (N,e), let d0=n/4 LSB of d. 
Output: a private exponent d. 
 
Algorithm: 
e*d0=1+k*(N-s+1) (mod 2n/4). 
Test a candidate value of k, 1<=k<=e. 
Solve p2-s*p+N=0 (mod 2n/4). 
Find p0=p (mod 2n/4). 
Find q0 such that p0*q0=N (mod 2n/4). 
Find x, y in polynomial f(x,y)=(r*x+p0)*(r*y-q0)-N, 
where r= 2n/4. 
Calculate Ø(N)=(r*x+p0-1)*(r*y+q0-1). 
Computes d in e*d-k*Ø(N)=1. 
End Algorithm (Partial Key Exposure attack). 
 
 Like other methods for cracking RSA, this 
algorithm is effective under certain circumstances, 
when e is large this attack will fail. 
 One sees that the running time of this algorithm is 
most dependent on the first and last steps. The first step 
is solving a couple modular equations, the final step is 
actually factoring N, so the expected time for this attack 
is linear in O(e*log e). One searches for randomness in 
order to locate private keys in large volumes of data, 
such as the hard disk filling system, it should be clear 
how important the safe storage of the RSA private key 
is perhaps the best solutions is the use of tamper- 

resistant hardware modulus or tokens, in which the 
private key is securely stored and the private operation 
is performed. 
 
Homomorphic Attacks: The inherent homomorphic 
structure of the RSA enables to mount some attacks. 
Let m1 and m2 be two plaintext messages, and let c1 and 
c2 be their respective the RSA encryptions. Observe 
that: (m1*m2)

e
�m1

e*m2
e
�c1*c2 (mod N), this is called 

homomorphic property of RSA. In this section, we 
produce some attacks depend on this property of RSA. 
 
Chosen Cipher text Atack: Given (N,e) as RSA public 
key, and cipher text c, then choose a cipher text and 
look at the plaintext, then repeat until they have figured 
out how to decrypt any message. 
 
Algorithm: (Chosen Cipher text attack). 
Input: a public key (N,e), and  cipher text c. 
Output: an original message m. 
 
Algorithm: 
Choose an integer randomly r less than N. 
Compute three roots (x,y,z) as follows: 
2.1. x=re mod N. 
2.2. y=x*c mod N. 
2.3. z�r-1 mod N. 
Send y to victim. 
Victim computes u=yd mod N, then send u to attacker. 
Attacker recovers original message m=z*u mod N. 
End Algorithm (Chosen Cipher text attack). 
 
 Usually, a Chosen Cipher text attack is based on 
the theoretical assumption that the attacker has access 
to a decryption device that returns the complete 
decryption for a Chosen Cipher text. Hence, if a public 
key cryptosystem is susceptible to a Chosen Cipher text 
attack, which often is considered to be only a 
theoretical weakness. 
 Chosen Cipher text attack requires more 
decryptions with each candidate key to identify the 
expected clear text statistics. In public key 
cryptosystems, it suffices to know the victim’s public 
key, since the attacker can generate by himself the 
required clear text / cipher text pairs. 
  
 The main problem an applying this technique to the 
RSA scheme is that each modular exponentiations is 
very expensive, and, its time complexity grows 
cubically with the size N of the modulus. If we have to 
try   about u possible   substrings   as   candidate 
values for the decryption exponent d, we get a total 
complexity of O(u*N3), which is polynomial but 
impractical. 
 
Common Modulus Attack: Let c1=me1 mod N, c2=me2 
mod N be the cipher texts corresponding to message m, 
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where gcd(e1,e2)=1, then attacker recovers original 
message m=c1

a*c2
b mod N for e1*a+e2*b=1. 

 
Algorithm: (Common Modulus attack) 
Input: A modulus N, e1, e2, and  two cipher texts c1 and 
c2, where gcd(e1,e2)=1. 
Output: an original message m. 
 
Algorithm: Find a, b such that: e1*a+e2*b=1, using 
Extended Euclidean Algorithm. 
Computes original message m=c1

a*c2
b mod N. 

End Algorithm (Common Modulus attack). 
 
 A Common Modulus attack can be used to recover 
the plaintext when the same message is encrypted to 
two RSA keys that use the same modulus. This 
algorithm works if and only if message sends with the 
same modulus and relatively prime encryption 
exponents. The main task of Common Modulus attack 
algorithm is computing a and b such that e1*a+e2*b=1, 
this process needs O((log k)2), where k is maximum 
size of a or b. 
 
Davida’s Attack[10]: If the attacker can get access to 
the bin of victim, then he/she will be able to recover the 
original plaintext if the transformation is done in a 
clever way. 
 
Algorithm: (Davida’s attack) 
Input: a public key(N,e), and a cipher text c. 
Output: An original message m. 
 
Algorithm: Attacker intercepts the cipher text c, and 
replaces it by c~=c*ke mod N, where k is a random 
number. 
Victim receives c~ and computes m~=c~d mod N, since 
the message m~ is meaningless it will be discarded. 
If attacker can get access to m~, he/she van recover 
original message m by computing m~*k-1

�c~d*k-1
�cd
�m 

mod N. 
End Algorithm (Davida’s attack). 
 
 Davida’s attack[10] is one kind of Garbage-man-in-
the-middle attacks. The basic idea of these attacks relies 
on the possibility to get access to the bin of the 
recipient. In fact, if the cryptanalyst intercepts, 
transforms and re-sends a cipher text, then the 
corresponding plaintext will be meaningless when the 
authorized receiver will decrypt it, if the attacker can 
get access to this discard, he/she will be able to recover 
the original plaintext if the transformation is done in a 
clever way. In many situations, we can get access to the 
discards, as for example, Bad implementation of 
software or bad architectures, Negligent Secretaries, 
Recovering of previously deleted message by a tool like 
the <restore> command in Windows. 
 Note that, the last step of Davida’s attack relies on 
the homomorphic nature of RSA, the running time of 

Davida’s attack depends on this step which takes O((log 
N)2) time to calculate modular inverse, where N is RSA 
modulus. 
RSA Digital Signature Attacks: A digital signature of 
a message is a number dependent on some secret 
known to the signer, and additionally on the content of 
the message being signed. 
 In a digital signers environment the goal of an 
attacker is to forge signatures: that is, produce 
signatures which will be accepted as those of some 
other entity. In this section, we present two attacks 
against RSA digital signature scheme, the first is 
Blinding attack ( or Chosen-Message attack) which is 
depending on homomorphic nature of RSA, the second 
is Lenstra’s attach which is can applicable on all 
Chinese Remaindering based cryptosystems. 
 
Blinding Attack:  
Theorem 5: Given (N,e) as RSA public key, and 
message m, then it can recover an original signature s 
of message m as: s=((m*re)d)*r-1 mod N, where r is a 
random number such that 0<r<N-1. 
 
Proof: Since gcd(r,e)=1, then by , there is u,v such that: 
r*u+e*v=1. 
So, d=d*(r*u+e*v)=d*r*u+v since e*d�1 mod Ø(N). 
Hence, signature  s�md

�md*r*u*mv
�(md*r)u*mv

�s-u*mv 
mod N. 
 
Algorithm: (Blinding attack). 
Input: A public key (N,e), and a message m. 
Output: An original signature of message m. 
 
Algorithm: 
Choose a random number r, such that 0<r<N-1 and 
gcd(e,r)=1; 
Compute m~=m*re mod N, send m~ to victim; 
Victim computes s~=m~d mod N, send s~ to attacker; 
Attacker computes the original signature s of message 
m as s~*r-1 mod N; 
End Algorithm (Blinding attack). 
 
 Let d victim’s private key and (N,e) be his 
corresponding public key. Suppose an adversary wants 
victim’s signature on a message m, being no fool, 
victim refuses to sign m. Attacker can try the following: 
he/she picks a random r such that gcd(e,r)=1 and sets 
m~=m*re mod N, then asks victim to sign the random 
message m~. Victim may be willing to provide his 
signature s~ on the innocent looking m~. But recall that 
s~=m~d mod N, attacker now simply compute s=s~*r-1 
mod N and obtains victim’s signature s on the original 
message m. This technique, called Blinding because it 
enables attacker to obtain a valid signature on a 
message of his choice by asking victim to sign a 
random “blinded” message. Victim has no information 
as to what message he is actually signing.  
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 Since most signature schemes apply a one-way 
hash function to the message m, the attack is not a 
serious concern. Although a useful property of the RSA 
needed for implementing anonymous digital cash (cash 
that can be used to purchase goods, but does not reveal 
the identity of the person making the purchase). Let x 
be a size of public exponent e, and y is a size of 
modulus N, then time necessary for this attack is 
O(x*y2).  
 
Lenstra’s Attack[11]: Theorem 6. The secret factors p 
and q of the public modulus N can be recovered when 
the faulty signature is known. 
 
Proof: the proof does not provide here , it can be found 
in[11]. 
 
Algorithm (Lenstra’s attack) 
Input: A public key (N,e), message m, and CRT 
signature system. 
Output: A factors p and q of N. 
Algorithm: A CRT signature system consists of the 
following steps: 
Compute dp=d mod (p-1), dq=d mod (q-1); 
Compute mp=m mod p, mq=m mod q; 
Compute sp=mp

dp mod p, sq=mq
dq mod q; 

Calculate the message signature s using CRT technique 
by sp and sq. 
Then, suppose that an error occurs during the 
computation of sp but not during that of sq, but applying 
CRT will give the faulty signature s~ for message m. 
Attacker computes the secret factor q=gcd(s~e-m mod 
N,N). 
End Algorithm (Lenstra’s attack). 
 
 In case of computation error, the researchers 
showed how to recover the secret factors p and q of the 
public modulus N from two signatures of the same 
message: a correct one and a faulty one; Lenstra 
showed[11] that actually only the faulty signature is 
required. Note that some attacks applies to decryption 
process, if the attacker has access to the faulty 
encryption. 
Shamir presented a simple solution to prevent the 
previous attack. The signer first chooses a small 
random number r relatively prime to N. Then he/she 
computes: 
 
srp=md mod Ø(r*p) mod r*p. 
srq=md mod Ø(r*q) mod r*q. 
 
if srp=srq mod r, then the computations are assured 
correct and s is computed by applying the CRT on srp 
mod p and srq mod q.  
In fact, Lenstra’s attack is applicable on a the RSA 
hardware devices (say smart cards), So, it can be 
considered as implementation attack on the RSA 
cryptosystem. 

Timing attacks: Most of the attacks against RSA we 
have seen so far apply to the underlying cryptographic 
primitives and parameters. On the other side, 
implementation attacks target specific implementation 
leaked by the implementation of the RSA function. The 
attacks are usually applied against smart cards and 
security tokens, and are more effective when the 
attacker is in possession of the cryptographic module. 
Prevention of implementation attacks is hard, trying to 
reduce the amount of information leaked.  
 In this section, we present a Timing attacks as a 
good example of implementation attacks. In 1996, 
Kocher[12] demonstrated that an attacker can determine 
a private key by keeping track of how long a computer 
takes to decipher messages. Timing attacks are 
alarming for two reasons: it comes from a completely 
unexpected direction and it is a cipher text only attack. 
In order to describe this attack, we need to explain how 
Square-and-Multiply exponentiation is carried out. In 
order to compute m=Cd mod N for decryption a cipher 
text, we show that at stage i, if d[i]=0, then the value m 
is not modified. However, if d[i]=1, then we multiply 
the previous result by C2*i.  The Timing attack uses the 
fact that when d[i]=1, an additional multiplication takes 
place. Now, assume that an attacker holds a smart card 
that decrypts. Then, the attacker asks it to decrypt a 
large number of random messages C1,C2,…,Ck ∈ZN 
and measures the time Ti that is takes to compute Ci

d 
mod N. These timing measurements are now used to 
obtain d, one bit at a time. Since d is odd, we know that 
d[0]=1. Initially m=C2 mod N. Thus, if d[i]=1, the 
smart cards computes the product m=(m*C) mod N; 
otherwise, it does not. Let ti be the time that it takes to 
compute Ci*Ci

2 where Ci is one of the random 
messages that was initially chosen. 
 By measuring the correlation between ti and Ti it is 
possible for attacker to determine if d[1] equals 1 or 0, 
given d[0] and d[1], it is possible to do the same thing 
for d[2] and so on. 
 In other words, the attacker can determine the 
particular sequence of squarings and multiplications 
that the program went through. Based on the outcome, 
he/she can simply compute the secret exponent d stored 
on the card. There are simple countermeasures that can 
be used to confuse the Timing attack such as random 
delay by adding a random delay to the exponentiation 
algorithm. 
 

PREVENTION AND COUNTERMEASURE 
 
 Years of cryptanalysis of RSA have provided us 
some very clever attacks, and although no devastating 
attack has ever been found, there are a number of issues 
users and developers alike must be aware when 
working with RSA. Points that deserve special attention 
are: key size, properties of parameters (primes, 
exponents) and encoding details.  
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 Factoring modulus N: given the best factoring 
methods, no one should use a 512-bit modulus for 
security. An organization that is willing to invest 
several million in hardware and give a few months to 
crack a key could do so. 1024-bit keys are safe at the 
moment. However, over the next 20 years, we must 
move towards 2048-bit keys. The rate of progress in 
number theory and factoring in particular has been 
faster than expected. 
 Low private exponent attacks: a low private 
exponent should never be used. This is bad news for 
smart cards. Boneh and Durfee[5] prove that private 
exponent must be greater than N0.292. 
 Low public exponent attacks: a low public 
exponent should not be allowed. There is already a 
lesson we can learn, sending related messages is 
dangerous.  
 Homomorphic attacks: the remedy is simple; the 
attacker should never be able to obtain the raw 
decryption of an arbitrary value. Another lesson is that 
the use of the same cryptosystem for decryption and 
signature is definitively not a good practice. 
 RSA Digital Signature attacks: always destroy 
encrypted messages, especially ones that look like 
garbage. You never know when you are being attacked. 
Also, never sign any random messages. 
 Implementation attacks: illustrates that a study of 
the underlying mathematical structure is not enough. 
 

CONCLUSION 
 
 The RSA cryptosystem is the “de-facto” standard 
for Public-key encryption and signature worldwide. We 
survey, present, and analyze the most common against 
RSA attacks. Integer factoring methods, attacks on the 
underlying mathematical function, as well as attacks the 
exploit details in implementations of the algorithm are 
presented. It was shown that no attack algorithm can 
break RSA cryptosystem in efficient manner. Most 
attacks appear to be result of misuse of the system or 
bad choice of parameters. Analysis of the known 
attacks shows that RSA has not been proven to be 
unbreakable, but having survived a great deal of 
cryptanalytic security over the last twenty years. 
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