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Abstract: To design a hardware system we may use generated Intellectual Property (IP) cores from a 
library with optimized parameters. The IP parameters are area minimization, memory use optimization 
and speed acceleration. The designed system depends on such IP parameters. In this paper, we propose 
the design of an IP library optimized with different constraints. The created IPs may be used to 
implement optimized hardware architecture for discrete wavelet transform. Here, we take as a 
realization example the one dimension Discrete Wavelet Transform (DWT) with multi-resolution-level 
decomposition. We show that it is possible to design a hardware system with adjusted constraints. 
Moreover, it is possible to merge different structures. The design results in very flexible system 
architectures. 
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INTRODUCTION 

 
 The increasing demand for electronic devices that 
can handle multimedia contents, and the expansion of 
wireless communication networks have set new 
challenges to the embedded system modeling, design 
and verification tasks. Applications involve more and 
more complex data and functionalities while their 
architectural realizations have to cope with heavy 
constraints such as high integration density, high 
reconfigurability, real-time performance and low power 
consumption. 
 The classical approach for designing a complex 
system is based on a top-down refinement flow where 
an initial abstract specification of the application is 
progressively and hierarchically decomposed into 
interacting subsystems. Such a design flow provides a 
wide freedom of choice for partitioning a system into 
subsystems and mapping subsystems into hardware or 
software, so that a wide variety of architectural 
instances can be proposed for a given application. 
Because applications are getting more complex, an 
increasing number of design decisions must be taken 
before reaching an architectural realization. As a result, 
at the beginning of the design flow, it is more and more 
difficult to foresee which design decisions will actually 
yield an architecture that satisfies the application 
requirements. 
 In order to speed up the design and verification of a 
complex system, intensive re-use of pre-designed, pre-
verified hardware and software components—known as 
virtual components (VCs) or intellectual property (IP) 
cores—has already become an unavoidable practice [1]. 
 Industrial groups such as the virtual socket 
interface alliance (VSIA) [2] have issued a set of 

recommendations and standards in order to facilitate the 
interaction between IP providers and users (IP 
integrators) and make the re-use flow more reliable. 
The VSIA recognizes three abstraction levels for IP 
synthesizable models: ‘‘hard’’ IP cores are provided as 
a fixed-technology placed-and routed layout of the 
component; ‘‘firm’’ IP cores are provided as an 
optimized gate-level netlist targeting a given 
technology and can be inserted into the system 
synthesis flow at the physical synthesis stage; ‘‘soft’’ IP 
cores are described at the register-transfer level (RTL) 
and are technology independent. The latter are inserted 
into the system synthesis flow at the RTL and logic 
synthesis stage. 
 The resulting hardware system may impose some 
constraints for a given application. The IPs to be used 
must be the most flexible as possible, that is, it may let 
the designer choose the architecture from a large 
number of proposed ones. It must be possible to merge 
architectures in order to get an optimized hardware. For 
some reasons we may ask for minimizing memory use, 
or minimizing hardware use, or optimizing the timing 
or other constraints. 
 Many authors developed IP cores which are 
optimized for some constraints such as the area, the 
clock frequency, or the memory use, varying only the 
generic parameters. For a given system, the user may 
not use memory or may use a limited quantity of 
memory. In other cases, the objective is to design the 
fastest possible system. 
 In this paper, we present alternatives of 
development in the form of IP cores for the 1D wavelet 
transform, which is possible to extend to a 2D wavelet 
design. The system’s designer thus has a multitude of 
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choices among his own criteria and he can choose a 
solution among some. 
 We use the standard 9/7 filter as an example, which 
is compatible with the JPEG2000 standard. We cross 
some of the possible solutions by the realization and the 
conception of IPs, aiming reliable and optimized 
designs. 
 The paper is organized as follows: next section 
provides some information about the wavelet based 
image coding standard JPEG2000 and explains several 
wavelet transform algorithms. In Section 3, DWT 
architectural models and their reusability issues are 
discussed. In order to overcome their flexibility 
limitations, we detail the possible generated 
architectures for designing a 1-D DWT IP core. To 
demonstrate the flexibility of our IP cores, results of 
combining the different architectures are presented. The 
conclusions are given in Section 4. 
 

DWT FOR EMBEDDED IMAGING SYSTEMS 
 
 The JPEG committee has recently released its new 
image coding standard, JPEG 2000, which will serve as 
a supplement for the original JPEG standard introduced 
in 1992. JPEG 2000 implements a new way of 
compressing images based on the wavelet transform, in 
contrast to the discrete cosine transform (DCT) used in 
the original JPEG standard. The state of wavelet-based 
coding has improved significantly since the 
introduction of the original JPEG standard. Prior to 
JPEG 2000, wavelet-based coding was mainly of 
interest to a limited number of compression researchers. 
Since the new JPEG standard is wavelet based, a much 
larger audience including hardware designers, software 
programmers, and systems designers will be interested 
in wavelet-based coding. The RTL design and synthesis 
techniques are still well-known and widely accepted. 
 Our objective focuses on generating IPs for 
computation-intensive functions such as those involved 
in signal and image processing applications. First of all, 
we emphasize the fact that a single function (such as 
FIR filtering) can be declined into many versions 
depending on functional parameters (number of taps, 
cut frequency, etc.) Moreover, various architectures can 
be considered (MAC-based, ADD/ MULT tree, 
systolic) depending on the integration constraints.  
 Due to the variety of application profiles it 
supports, the JPEG2000 compression scheme—and 
particularly the wavelet transform investigated in this 
paper—is a typical case of such a complex, highly 
customizable function [3]: all its features can easily be 
captured into a single behavioral model, but many 
different architectures should be designed in order to 
fulfill the various application profiles and potential 
integration constraints. 
 The JPEG2000 standard restricts the use of the 5/3 
wavelet to lossless compression and the 9/7 wavelet to 
lossy compression. Recursive application of the whole 

filtering scheme is performed over the successive 
approximation images until the desired resolution depth 
has been reached. The inverse transform relies on the 
dual 1-D filter banks applied in the reverse order [4]. A 
full introduction to wavelets is beyond the scope here 
but can be found elsewhere [4]. The generic form for a 
one-dimensional (1-D) wavelet transform is shown in 
figure 1.  
 

Fig. 1: A 3-level, 1-D wavelet decomposition. The 
coefficient notation dij(n) refers to the jth frequency band 

(0 for low and 1 for high) of the ith level of the 
decomposition. 

 
 Here, a signal is passed through a lowpass and a 
highpass filter, h and g, respectively, then down 
sampled by a factor of two, constituting one level of 
transform. Multiple levels or “scales” of the wavelet 
transform are made by repeating the filtering and 
decimation processes on the lowpass branch outputs 
only. The process is typically carried out for a finite 
number of levels K, and the resulting coefficients, 
di1(n), i∈{1,…,K} and dK0(n) are called wavelet 
coefficients. 
 The spectrum of the signal to be analyzed is 
recursively decomposed into an approximation subband 
(low frequencies) and a detail subband (high 
frequencies) at the immediately lower resolution [4]. In 
digital signal processing applications, only a partial 
decomposition is performed: details are extracted until 
a satisfyingly low resolution has been reached (e.g. with 
3–5 resolution levels in most image compression 
applications), leaving a tiny set of low-resolution 
approximation coefficients after the last decomposition 
resolution level.  
 Two filter banks are supported in part I of the 
JPEG2000 standard [3]. The first one is Daubechies’ 9/7 
biorthogonal filter bank. The second one is the 5/3 
biorthogonal filter bank, also known as the (2,2) 
biorthogonal wavelet designed by Cohen, Daubechies 
and Feauveau. The ‘‘9/7’’ and ‘‘5/3’’ filter banks are 
named after the respective number of taps in their low-
pass/high-pass filters. The JPEG2000 standard restricts 
the use of the 5/3 wavelet to lossless compression. 
Besides being nearly orthogonal, the 9/7 set has been 
shown experimentally to give very good compression 
performance and has been used extensively in image 
compression applications [4]. 
 Multi-level decomposition introduces another 
dimension in the filtering process. Performing the 
multi-level 1-D or 2-D DWT requires defining a 
scanning order taking all dimensions—space and 
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resolution—into account. While the choice of a wavelet 
filtering structure has an influence over the 
computational complexity of the algorithm, the 
scheduling of the filtering passes will have a significant 
impact on the memory organization. Two scheduling 
algorithms can be considered: the Pyramid Algorithm 
(PA) and the Recursive Pyramid Algorithm (RPA) [5]. 
The PA gives a direct implementation of the DWT 
using filter banks. It consists in computing the low-pass 
and high-pass coefficients one resolution level after the 
other from the highest (j = 1) to the lowest (j = J) 
resolution. 
 The RPA allows computing a low-pass/high-pass 
pair of coefficients at a given decomposition level as 
soon as enough data from the previous level have been 
produced. 
 This algorithm assumes that all low-pass samples 
at a given level have been computed before starting the 
next level. 
 
Table 1: Estimated memory requirements for pyramid (PA) and 
recursive pyramid (RPA) algorithms 
Scheduling algorithm Memory size at level j Total memory size 
PA N/2j N/2 
RPA C C x J 
 
 Table 1 compares the memory requirements of the 
two aforementioned scheduling algorithms. It can be 
noted that the memory required by the PA is of the 
same order of magnitude as the number of input 
samples N. It does not depend on the number of 
decomposition levels J. On the contrary, the memory 
size required by the RPA does not depend on N, but can 
be estimated as the product of the number of 
decomposition levels J with the number C of data 
inputs of the filter bank. In most cases, CxJ is far lower 
than N/2 so that the RPA requires less memory than the 
PA [5]. 
 

ARCHITECTURES OF THE DWT 
 
 The conception alternatives of a basic filter for the 
wavelet transform are numerous. Certain authors 
choose a single solution which they consider optimal. 
The IP’s parameters allow making a generic filter that 
has a fixed architecture. We propose a set of 
architectures in the form of IP cores. In this paper we 
develop a set of possible architectures for the 9/7 filter. 
To be reusable in a wide range of applications, a 
JPEG2000 encoder should have a high degree of 
flexibility in order to support the variety of application 
profiles (e.g. tile size, number of wavelet 
decomposition levels, choice of wavelet filters) and 
high performance (trade-off between speed, gate count, 
memory usage and power consumption). 
 Flexibility is usually addressed through software 
implementation where a variety of programs can be 
downloaded into a fixed processor-based platform. 
However, general-purpose processors or Digital Signal 

Processors have a limited degree of computation 
parallelism so that their performance may be 
insufficient in some cases. When higher computation 
speed is required, hardware solutions are usually 
preferred. A first type of hardware implementations can 
be denoted as ‘‘programmable architectures’’, which 
means that the profile parameters are provided as inputs 
to the component. Such architectures may be over-
dimensioned in some cases and may contain useless 
hardware if some parameter values are never used by a 
given application. 
 Moreover due to its generality, such architecture 
cannot be guaranteed to work at optimal speed for all 
possible sets of parameter values. Due to the variety of 
application profiles the JPEG2000 standard supports, 
this kind of architecture cannot be considered. A second 
type of hardware implementations concerns dedicated 
architectures, designed and optimized for only one set 
of parameter values, which can be satisfactory in many 
embedded applications. Such architecture allows high 
speed performance, but it is not flexible at all so that its 
re-usability scope is very limited. As a consequence, a 
different architecture must be designed and optimized 
for each application profile. 
 Various 1-D architectural models have been 
proposed in the literature. Most of them are based on 
FIR filter banks while only a few implement the lifting 
scheme. Each of these architectures have strengths and 
weaknesses with respect to their complexity—
expressed as the amount of hardware required to 
perform the computation, to control the evolution of the 
computation and to store the intermediate data—and 
their flexibility. Functional flexibility expresses that the 
architecture can be adapted by changing the functional 
parameters in the original specification (e.g. wavelet 
basis, number of decomposition levels). Structural 
flexibility expresses that the architecture has a periodic 
structure that can be easily enriched by replicating a 
given hardware pattern. 
 A 1-D DWT architecture can be based on various 
filtering structures using Multiplier-Accumulator 
(MAC) and registers: serial filters are implemented 
using a MAC chain whereas parallel filters use a 
balanced tree of adders [5]. The data path can be 
optimized using various techniques based either on 
arithmetic simplifications or on component sharing. An 
example of possible arithmetic simplifications is 
provided by linear-phase filters [6]: the symmetry of the 
filter coefficients allows factorization of the product 
expression, which will result in reduction by half of the 
number of multipliers. Special cases of wavelets allow 
other arithmetic simplifications based on exploiting 
simple relationships between filter coefficients [7]. 
 DWTs give a possibility to share arithmetic 
operators inside a filtering pass. In fact, one can notice 
that only half of the samples are kept after filtering. A 
manipulation known as polyphase decomposition 
consists in splitting the operator tree into two sub-trees 
and computes each of them alternatively along the input 
sequence [6]. 
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Architectural models at the filter level : A resolution 
level of decomposition consists of two filters, a low-
pass and a high-pass (see figure 2). At the output of 
every filter the coefficients are decimated, that is one 
coefficient is kept for two calculated samples. 
 It is not necessary to calculate all the coefficients. 
Once, we calculate a coefficient and then we propagate 
the sample by shifting it through the registers chain. 
Thus, we have 50% of computation activity for each 
filter. Both filters are active simultaneously. Due to 
decimation, both filters are also inactive 
simultaneously. It is then possible to activate the first 
filter for the first sample. The second filter is active in 
the next period when samples are propagated and the 
first filter is not active. Therefore, we obtain 100% of 
activity of calculation. 
 

Fig. 2: Filter unit composed of the high pass (H) and the 
low-pass (L) filters. The symbol ‘2↓’ means the 

decimation by 2. 
 

 Various architectures can be considered for the 
design of this decomposition level. We consider three 
possible architectures with the same generic 
parameters: 
 
- MAC-based architecture: 
 The MAC unit is based on realizing a cumulative 
sum of the multiplied coefficients (figure 3(a)). The 
unit computes the inner product by means of the 
classical multiply/accumulate algorithm (for i=1 to n do 
Si=ai*bi+Si-1 end for), with A = (a1,.., an), B = (b1,…, bn) 
vectors of n integer elements ai and bi, which are signed 
two's complement binary numbers. The initial result is 
S0=0 and the final result is Sn 

[8], [9]. 
 

(a)  

(b)  
Fig. 3: (a) The simple MAC unit (b) The proposed 

MAC-based architecture for one decomposition level 
 
 For the MAC filter structure, we may use one FIFO 
pile (figure 3(b)) where the input samples are stored. 

The FIFO pile depth is equal to the filter taps. Because 
we have two unequal filter taps, the FIFO depth is equal 
to the maximum taps number. For the 9/7 filter the 
maximum filter taps is nine, and then the FIFO depth is 
equal to nine. A multiplexer chooses the corresponding 
filter coefficient. It switches for the high-pass filter 
coefficients (g) and the low-pass filter coefficients (h). 
The multiplier reads the coefficients from an 
addressable ROM memory. The FIFO pile is also 
addressed at the same time (the same address) as the 
memory of the filters coefficients. 
 The filtering unit begins by calculating the 
coefficients of the first filter by going through all the 
pile. Then, because of the decimation process, we store 
a new sample and we activate the second filter by going 
through all the pile. 
 In our designed architecture, the FIFO pile is not 
involved in the MAC-based cell. The parameters of the 
designed IP are the number of bits of the input samples 
(bus width) and the number of filter taps. The FIFO pile 
and the ROM memory are designed separately and have 
the same generic parameters. 
 
- Semi-Systolic architecture: 
 It is possible to use a set of cascaded registers. 
Each register output is multiplied by the adequate filter 
coefficients. The result is then summed up to give the 
wavelet coefficient. One elementary cell is defined as a 
register with a multiplier and an adder as shown in 
figure 4(a). The number of cells is equal to the number 
of filter taps. 
 

(a)

 (b)  
Fig. 4: (a) Example of a simple semi-systolic 

architecture. (b) The designed optimized semi-systolic 
architecture. 

 
 In this case also, and because of the decimation, it 
is possible to alternate the functioning of both filters. 
First, we store a sample and we process the coefficients 
of the first filter (h). Next, we store the following 
sample but at this time we activate the second filter (g). 
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Multiplexers are used to allow commuting between the 
coefficients of the first or the second filter (figure 4(b)). 
 The designed architecture involves a FIFO. The 
FIFO depth is equal to the maximum filter taps. The 
parameters of the designed IP are the number of bits of 
the input samples (bus width) and the number of filter 
taps. The filter coefficients are defined as constants and 
are stored into a ROM memory. 
 
- Linear-phase architecture: 
 The regularity in the expressions of each filter 
coefficients is very suitable for mapping them into a 
systolic-like (semi-systolic) algorithm for an 
implementation using a VLSI architecture. 
 For the 9/7 filter it is observed that the coefficients 
are symmetric. Thus, it is possible to reduce the number 
of multipliers. Let’s consider the 9 taps filter as 
example. Let y be the output coefficient. Then, y is 
expressed as y = C-4•a-4 + … + C-1•a-1 + C0•a0 + C1•a1 + 
… C4•a4 where Ci are the filter coefficients and ai are 
the input samples. Because of the symmetry we have  
C-i = Ci= C-i,i therefore, y may be rewritten as: y = C-

4,4•(a4 + a-4) + … + C-1,1•(a1 + a-1)+ C0•a0. 
 The number of multipliers used is thus reduced 
from nine to five. Generally we may gain a number of 
multipliers in the order of 

�
�

�
�
�

�

2
  tapsofnumber . 

(a)  

(b)    
 
 

Fig. 5: (a) Semi-systolic architecture. (b) The Linear-
phase like proposed architecture. 

 
 The designed architecture is represented in figure 
5(b). Multiplexers are used to alternate the filter 
coefficients between h and g. 
 
- Implementation results: 
 The proposed filter architectures are evaluated by 
comparing the number of multipliers, the number of 
adders and the number of registers used in the design. 
The cycle-length is another critical parameter which 
expresses the number of clock periods to calculate a 
coefficient. The MAC-based filter needs to go through 
all the FIFO and accumulating partial products in order 
to produce one coefficient. One clock period is 
necessary to store a sample into the FIFO and nine 
clocks to activate the MAC-based filter. As an example 
of implementation, we choose the 9/7 filter with a data 
bus width of 16bits. 
 Table 2 shows the comparative parameters for the 
three proposed filter architectures. The linear phase 
architecture uses half the number of multipliers. 
 
Table 2: Complexity of 9/7 filter banks for various filter 
implementation structures 

  # Mult  # Add  Cycle length 

MAC-based  1  1  10 
Semi-Systolic  9  8  1 
Linear-Phase  5  8  1 

 
 In table 3, hardware implementation results are 
presented. Here, we use the Xilinx Spartan3 as a target 
hardware and a data bus width of 16 bits for 
input/output. The MAC unit is the simplest architecture 
but it needs ten cycles to process one coefficient. The 
semi-systolic architecture uses the greater number of 
multipliers and thus needs more hardware devices. 
Figure 6 depicts the total number of equivalent gates 
and the throughput for each filter architecture. 
 
Table 3: Hardware implementation on FPGA 

 Equivalent 
gates (K 
Gates) 

Max. 
Freq. 

(MHz) 

Throughput 
(KSamples/sec) 

Ratio 
Thr./Eq.gates 

MAC 6.7 62.6 6.3 32.1  % 

Semi-
systolic 

38.4 63.2 63.2 57.5  % 

Linear-
Phase 

23.7 69.1 69.1 100.0  % 

 
 The parameter ‘Throughput’ measures the speed of 
calculating the coefficients. This parameter is expressed 
as the ‘Maximal frequency/Cycle length’. To compare 
the architectures we introduce the coefficient 
'Throughput/equivalent gate' ratio. The normalized 
parameter 'Throughput/equivalent gate' is presented in 
figure 7. 
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 Based on figure 7, the linear phase filter is the most 
efficient because is allows 100 % of throughput per 
equivalent gate ratio. 
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Fig. 7: The throughput per equivalent gate ratio. 
 
Architectural models for multi-level decompositions: 
‘‘Unfolded’’ architectures are a direct implementation 
of the 1-D DWT, that consist in cascading the filtering 
blocks. ‘‘Folded’’ architectures represent a high degree 
of component sharing consisting of re-using a single 
filter bank at different decomposition levels [5]. This 
filter bank is coupled with a ‘‘routing network’’ for 
storing and directing intermediate data (figure 8). In 
such architecture the routing algorithm will have a 
significant influence over the lifetime of the data 
produced at each level. Two such algorithms have 
already been presented, namely the PA and the RPA. It 
is shown that the latter results in more efficient memory 
usage. Various routing architectures are listed in [5]: 
multiplexer-based; bus-based (semi-systolic); with 
distributed control over storage cells (systolic); RAM-
based; with shared registers (reduced storage).  
 In [6], a scalable MAC-based architecture for the 
1-D DWT is presented, allowing generating wavelet 
filters of various lengths by simple structural extension 

and coefficient value setting. Structural flexibility can 
also be used in multi-level architectures, either unfolded 
by choosing the appropriate number of cascaded filter 
banks, or folded by relying on systolic routing 
networks. Such flexibility can be easily captured by 
RTL design methodologies (i.e. by making use of 
VHDL-like ‘‘generic’’ clauses for specifying 
parameterized architectures, and ‘‘generate’’ statements 
for controlling the instantiation of the hardware 
structures, either conditionally or iteratively). 
 

Fig. 8: Simple folded architecture 
 
 To design N-level decomposition, we my calculate 
the coefficients from the first level and store the results 
in memory. At the end of the process, we read 
coefficients from the memory to calculate the next 
resolution level coefficients. 
 A routing network bloc may use a memory for 
storing intermediate coefficients. In this case, only one 
filter structure is used. We may then use the MAC 
structure (MAC) filter, or the semi-systolic (SS) filter, 
or the Linear-Phase (LP) filter previously presented. 
 

Fig. 9: Folded doubled architecture 
 
 Except for the first resolution level which operates 
at 100 % of activity, the second resolution level runs at 
50 % of activity with respect to the first one because of 
the decimation. The third resolution level runs at 25 % 
of activity with respect to the first resolution level, and 
in 50 % with respect to the previous resolution level. 
 
 By combining the activity of the second resolution 
level with the third one, it is possible to minimize the 
number of filters to be used. A memory is then 
necessary for saving the data and temporary 
coefficients of the second resolution level to be used by 
the third resolution level. We may then use the MAC 
structure (MAC) filter, or the semi-systolic (SS) filter, 
or the Linear-Phase (LP) filter previously presented. 
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Fig. 10: The parallel architecture 

 
 In [8] and [9], an architecture based on reducing 
the filter bank cascade into one equivalent filter per 
subband is presented (figure 10). As a result, each 
output is associated with a different sub-sampling factor 
depending on the resolution of the corresponding 
subband. Practically, a scheduler controls the 
computations being performed by activating each filter 
at the appropriate rate. Since several filters may be 
active at the same time, the filtered samples are 
buffered so that one sample per cycle is output. Since 
all filters are directly connected to the source input, 
they can share the same memory unit. This 
implementation allows significant hardware savings by 
sharing arithmetic operators within each filter (figure 
11). 
 
Table 4: Hardware implementation on FPGA for three-level 
decomposition. 

 # Mult  # Add  
MAC SS LP MAC SS LP 

Folded  1 9 5 1 8 8 
Folded doubled  2 18 10 2 16 16 
Parallel  4 18 20 4 32 32 

 
Table 5: Hardware implementation on FPGA for a three-level 
decomposition. 

Wavelet Architecture 
Equivalent 
Gate 
K Gates 

Max. 
Frequency 
(MHz) 

Throughput 
depending 
 on memory 

(MAC) 10.0 61.6 
(SS) 40.1 62.0 Folded 
(LP) 26.1 68.3 
(MAC) 16.4 61.3 
(SS) 84.5 61.9 

Folded 
doubled 

(LP) 52.1 69.0 

Yes 

(MAC) 30.7 40.0 
(SS) 172.6 45.6 Parallel 
(LP) 106.8 55.3 

No 

 
 Because the throughput depends on the temporary 
storage memory speed, the device operating frequency 
is that of the end bloc of the architecture. In each device 
namely, the folded and the folded doubled, a memory is 

used for storing intermediate results. Only the parallel 
architecture does not need intermediate memory and 
operates as one coefficient output at each input 
coefficient. The parallel architecture does not use 
memory to store intermediate results but uses particular 
addressable FIFO with a limited number of registers. 
 
 It should be noted that the parallel architecture 
using a semi-systolic (Parallel-SS) and the parallel 
architecture using a linear phase filter (Parallel-LP) 
allow a throughput equal to the maximum frequency.  
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Fig. 11: Hardware implementation on FPGA. 
 
 The principle of the folded wavelet cores is to 
spread the computations of wavelet coefficients over 
multiple computation cycles. The amount of time 
available depends upon the desired throughput, which is 
linked to the folding parameters [10]. Case studies for 
stand-alone and cascaded silicon cores for various 
wavelet algorithms are reported in [10]. 
 The designs have been captured in VHDL and are 
portable across a range of foundries, target technologies 
and are applicable to FPGA and ASIC implementations. 
The use of a hierarchical approach in the creation of the 
various described silicon generators means that tightly 
designed smaller blocks are used to create larger library 
blocks, which are in turn used to create the described 
circuits [10]. 
 

CONCLUSION 
 In this paper, a variety of architectures for 
designing re-usable IP cores for image processing are 
presented. The cores implement a 1-D discrete wavelet 
transform (DWT) algorithm that can be integrated in a 
JPEG2000-compliant image encoder. The key concepts 
of our methodology are re-usability—allowing 
accelerating the design of image compression devices 
within imaging systems—and customizability, allowing 
tighter adaptation of an IP core to the functional and 
system-level requirements. IP synthesis and 
architectural exploration are performed to allow 
tremendously faster architecture generation. It is 



J. Computer Sci., 2 (9): 746-753, 2006 

 753 

possible to customize an IP core by selecting the 
architecture that best suits the requirements.  
 The synthesis results which were shown, 
demonstrate the possibility to design a variety of 1-D 
DWT architectures for JPEG2000 with varying 
complexity and performance starting from elementary 
architectures. Our methodology is naturally oriented 
towards computation-intensive algorithms and can be 
easily generalized to most signal processing functions. 
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