
Journal of Computer Science 2 (9): 746-753, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Chokri SOUANI, Laboratory of Microelectronics and Instrumentation �EI, Faculty of Sciences of
Monastir, Boulevard de l’environnement, 5019 Monastir, Tunisia

746

Design of an IP Library for the Synthesis of Image Compression Systems

Chokri Souani, Ihsen Gazzah and Kamel Besbes

Laboratory of Microelectronics and Instrumentation �EI, Faculty of Sciences of Monastir,
Boulevard de l’environnement, 5019 Monastir, Tunisia

Abstract: To design a hardware system we may use generated Intellectual Property (IP) cores from a
library with optimized parameters. The IP parameters are area minimization, memory use optimization
and speed acceleration. The designed system depends on such IP parameters. In this paper, we propose
the design of an IP library optimized with different constraints. The created IPs may be used to
implement optimized hardware architecture for discrete wavelet transform. Here, we take as a
realization example the one dimension Discrete Wavelet Transform (DWT) with multi-resolution-level
decomposition. We show that it is possible to design a hardware system with adjusted constraints.
Moreover, it is possible to merge different structures. The design results in very flexible system
architectures.

Key words: Intellectual Property, compression, Discrete Wavelet Transform, Architecture

INTRODUCTION

 The increasing demand for electronic devices that
can handle multimedia contents, and the expansion of
wireless communication networks have set new
challenges to the embedded system modeling, design
and verification tasks. Applications involve more and
more complex data and functionalities while their
architectural realizations have to cope with heavy
constraints such as high integration density, high
reconfigurability, real-time performance and low power
consumption.
 The classical approach for designing a complex
system is based on a top-down refinement flow where
an initial abstract specification of the application is
progressively and hierarchically decomposed into
interacting subsystems. Such a design flow provides a
wide freedom of choice for partitioning a system into
subsystems and mapping subsystems into hardware or
software, so that a wide variety of architectural
instances can be proposed for a given application.
Because applications are getting more complex, an
increasing number of design decisions must be taken
before reaching an architectural realization. As a result,
at the beginning of the design flow, it is more and more
difficult to foresee which design decisions will actually
yield an architecture that satisfies the application
requirements.
 In order to speed up the design and verification of a
complex system, intensive re-use of pre-designed, pre-
verified hardware and software components—known as
virtual components (VCs) or intellectual property (IP)
cores—has already become an unavoidable practice [1].
 Industrial groups such as the virtual socket
interface alliance (VSIA) [2] have issued a set of

recommendations and standards in order to facilitate the
interaction between IP providers and users (IP
integrators) and make the re-use flow more reliable.
The VSIA recognizes three abstraction levels for IP
synthesizable models: ‘‘hard’’ IP cores are provided as
a fixed-technology placed-and routed layout of the
component; ‘‘firm’’ IP cores are provided as an
optimized gate-level netlist targeting a given
technology and can be inserted into the system
synthesis flow at the physical synthesis stage; ‘‘soft’’ IP
cores are described at the register-transfer level (RTL)
and are technology independent. The latter are inserted
into the system synthesis flow at the RTL and logic
synthesis stage.
 The resulting hardware system may impose some
constraints for a given application. The IPs to be used
must be the most flexible as possible, that is, it may let
the designer choose the architecture from a large
number of proposed ones. It must be possible to merge
architectures in order to get an optimized hardware. For
some reasons we may ask for minimizing memory use,
or minimizing hardware use, or optimizing the timing
or other constraints.
 Many authors developed IP cores which are
optimized for some constraints such as the area, the
clock frequency, or the memory use, varying only the
generic parameters. For a given system, the user may
not use memory or may use a limited quantity of
memory. In other cases, the objective is to design the
fastest possible system.
 In this paper, we present alternatives of
development in the form of IP cores for the 1D wavelet
transform, which is possible to extend to a 2D wavelet
design. The system’s designer thus has a multitude of

J. Computer Sci., 2 (9): 746-753, 2006

 747

choices among his own criteria and he can choose a
solution among some.
 We use the standard 9/7 filter as an example, which
is compatible with the JPEG2000 standard. We cross
some of the possible solutions by the realization and the
conception of IPs, aiming reliable and optimized
designs.
 The paper is organized as follows: next section
provides some information about the wavelet based
image coding standard JPEG2000 and explains several
wavelet transform algorithms. In Section 3, DWT
architectural models and their reusability issues are
discussed. In order to overcome their flexibility
limitations, we detail the possible generated
architectures for designing a 1-D DWT IP core. To
demonstrate the flexibility of our IP cores, results of
combining the different architectures are presented. The
conclusions are given in Section 4.

DWT FOR EMBEDDED IMAGING SYSTEMS

 The JPEG committee has recently released its new
image coding standard, JPEG 2000, which will serve as
a supplement for the original JPEG standard introduced
in 1992. JPEG 2000 implements a new way of
compressing images based on the wavelet transform, in
contrast to the discrete cosine transform (DCT) used in
the original JPEG standard. The state of wavelet-based
coding has improved significantly since the
introduction of the original JPEG standard. Prior to
JPEG 2000, wavelet-based coding was mainly of
interest to a limited number of compression researchers.
Since the new JPEG standard is wavelet based, a much
larger audience including hardware designers, software
programmers, and systems designers will be interested
in wavelet-based coding. The RTL design and synthesis
techniques are still well-known and widely accepted.
 Our objective focuses on generating IPs for
computation-intensive functions such as those involved
in signal and image processing applications. First of all,
we emphasize the fact that a single function (such as
FIR filtering) can be declined into many versions
depending on functional parameters (number of taps,
cut frequency, etc.) Moreover, various architectures can
be considered (MAC-based, ADD/ MULT tree,
systolic) depending on the integration constraints.
 Due to the variety of application profiles it
supports, the JPEG2000 compression scheme—and
particularly the wavelet transform investigated in this
paper—is a typical case of such a complex, highly
customizable function [3]: all its features can easily be
captured into a single behavioral model, but many
different architectures should be designed in order to
fulfill the various application profiles and potential
integration constraints.
 The JPEG2000 standard restricts the use of the 5/3
wavelet to lossless compression and the 9/7 wavelet to
lossy compression. Recursive application of the whole

filtering scheme is performed over the successive
approximation images until the desired resolution depth
has been reached. The inverse transform relies on the
dual 1-D filter banks applied in the reverse order [4]. A
full introduction to wavelets is beyond the scope here
but can be found elsewhere [4]. The generic form for a
one-dimensional (1-D) wavelet transform is shown in
figure 1.

Fig. 1: A 3-level, 1-D wavelet decomposition. The
coefficient notation dij(n) refers to the jth frequency band

(0 for low and 1 for high) of the ith level of the
decomposition.

 Here, a signal is passed through a lowpass and a
highpass filter, h and g, respectively, then down
sampled by a factor of two, constituting one level of
transform. Multiple levels or “scales” of the wavelet
transform are made by repeating the filtering and
decimation processes on the lowpass branch outputs
only. The process is typically carried out for a finite
number of levels K, and the resulting coefficients,
di1(n), i∈{1,…,K} and dK0(n) are called wavelet
coefficients.
 The spectrum of the signal to be analyzed is
recursively decomposed into an approximation subband
(low frequencies) and a detail subband (high
frequencies) at the immediately lower resolution [4]. In
digital signal processing applications, only a partial
decomposition is performed: details are extracted until
a satisfyingly low resolution has been reached (e.g. with
3–5 resolution levels in most image compression
applications), leaving a tiny set of low-resolution
approximation coefficients after the last decomposition
resolution level.
 Two filter banks are supported in part I of the
JPEG2000 standard [3]. The first one is Daubechies’ 9/7
biorthogonal filter bank. The second one is the 5/3
biorthogonal filter bank, also known as the (2,2)
biorthogonal wavelet designed by Cohen, Daubechies
and Feauveau. The ‘‘9/7’’ and ‘‘5/3’’ filter banks are
named after the respective number of taps in their low-
pass/high-pass filters. The JPEG2000 standard restricts
the use of the 5/3 wavelet to lossless compression.
Besides being nearly orthogonal, the 9/7 set has been
shown experimentally to give very good compression
performance and has been used extensively in image
compression applications [4].
 Multi-level decomposition introduces another
dimension in the filtering process. Performing the
multi-level 1-D or 2-D DWT requires defining a
scanning order taking all dimensions—space and

J. Computer Sci., 2 (9): 746-753, 2006

 748

resolution—into account. While the choice of a wavelet
filtering structure has an influence over the
computational complexity of the algorithm, the
scheduling of the filtering passes will have a significant
impact on the memory organization. Two scheduling
algorithms can be considered: the Pyramid Algorithm
(PA) and the Recursive Pyramid Algorithm (RPA) [5].
The PA gives a direct implementation of the DWT
using filter banks. It consists in computing the low-pass
and high-pass coefficients one resolution level after the
other from the highest (j = 1) to the lowest (j = J)
resolution.
 The RPA allows computing a low-pass/high-pass
pair of coefficients at a given decomposition level as
soon as enough data from the previous level have been
produced.
 This algorithm assumes that all low-pass samples
at a given level have been computed before starting the
next level.

Table 1: Estimated memory requirements for pyramid (PA) and
recursive pyramid (RPA) algorithms
Scheduling algorithm Memory size at level j Total memory size
PA N/2j N/2
RPA C C x J

 Table 1 compares the memory requirements of the
two aforementioned scheduling algorithms. It can be
noted that the memory required by the PA is of the
same order of magnitude as the number of input
samples N. It does not depend on the number of
decomposition levels J. On the contrary, the memory
size required by the RPA does not depend on N, but can
be estimated as the product of the number of
decomposition levels J with the number C of data
inputs of the filter bank. In most cases, CxJ is far lower
than N/2 so that the RPA requires less memory than the
PA [5].

ARCHITECTURES OF THE DWT

 The conception alternatives of a basic filter for the
wavelet transform are numerous. Certain authors
choose a single solution which they consider optimal.
The IP’s parameters allow making a generic filter that
has a fixed architecture. We propose a set of
architectures in the form of IP cores. In this paper we
develop a set of possible architectures for the 9/7 filter.
To be reusable in a wide range of applications, a
JPEG2000 encoder should have a high degree of
flexibility in order to support the variety of application
profiles (e.g. tile size, number of wavelet
decomposition levels, choice of wavelet filters) and
high performance (trade-off between speed, gate count,
memory usage and power consumption).
 Flexibility is usually addressed through software
implementation where a variety of programs can be
downloaded into a fixed processor-based platform.
However, general-purpose processors or Digital Signal

Processors have a limited degree of computation
parallelism so that their performance may be
insufficient in some cases. When higher computation
speed is required, hardware solutions are usually
preferred. A first type of hardware implementations can
be denoted as ‘‘programmable architectures’’, which
means that the profile parameters are provided as inputs
to the component. Such architectures may be over-
dimensioned in some cases and may contain useless
hardware if some parameter values are never used by a
given application.
 Moreover due to its generality, such architecture
cannot be guaranteed to work at optimal speed for all
possible sets of parameter values. Due to the variety of
application profiles the JPEG2000 standard supports,
this kind of architecture cannot be considered. A second
type of hardware implementations concerns dedicated
architectures, designed and optimized for only one set
of parameter values, which can be satisfactory in many
embedded applications. Such architecture allows high
speed performance, but it is not flexible at all so that its
re-usability scope is very limited. As a consequence, a
different architecture must be designed and optimized
for each application profile.
 Various 1-D architectural models have been
proposed in the literature. Most of them are based on
FIR filter banks while only a few implement the lifting
scheme. Each of these architectures have strengths and
weaknesses with respect to their complexity—
expressed as the amount of hardware required to
perform the computation, to control the evolution of the
computation and to store the intermediate data—and
their flexibility. Functional flexibility expresses that the
architecture can be adapted by changing the functional
parameters in the original specification (e.g. wavelet
basis, number of decomposition levels). Structural
flexibility expresses that the architecture has a periodic
structure that can be easily enriched by replicating a
given hardware pattern.
 A 1-D DWT architecture can be based on various
filtering structures using Multiplier-Accumulator
(MAC) and registers: serial filters are implemented
using a MAC chain whereas parallel filters use a
balanced tree of adders [5]. The data path can be
optimized using various techniques based either on
arithmetic simplifications or on component sharing. An
example of possible arithmetic simplifications is
provided by linear-phase filters [6]: the symmetry of the
filter coefficients allows factorization of the product
expression, which will result in reduction by half of the
number of multipliers. Special cases of wavelets allow
other arithmetic simplifications based on exploiting
simple relationships between filter coefficients [7].
 DWTs give a possibility to share arithmetic
operators inside a filtering pass. In fact, one can notice
that only half of the samples are kept after filtering. A
manipulation known as polyphase decomposition
consists in splitting the operator tree into two sub-trees
and computes each of them alternatively along the input
sequence [6].

J. Computer Sci., 2 (9): 746-753, 2006

 749

Architectural models at the filter level : A resolution
level of decomposition consists of two filters, a low-
pass and a high-pass (see figure 2). At the output of
every filter the coefficients are decimated, that is one
coefficient is kept for two calculated samples.
 It is not necessary to calculate all the coefficients.
Once, we calculate a coefficient and then we propagate
the sample by shifting it through the registers chain.
Thus, we have 50% of computation activity for each
filter. Both filters are active simultaneously. Due to
decimation, both filters are also inactive
simultaneously. It is then possible to activate the first
filter for the first sample. The second filter is active in
the next period when samples are propagated and the
first filter is not active. Therefore, we obtain 100% of
activity of calculation.

Fig. 2: Filter unit composed of the high pass (H) and the
low-pass (L) filters. The symbol ‘2↓’ means the

decimation by 2.

 Various architectures can be considered for the
design of this decomposition level. We consider three
possible architectures with the same generic
parameters:

- MAC-based architecture:
 The MAC unit is based on realizing a cumulative
sum of the multiplied coefficients (figure 3(a)). The
unit computes the inner product by means of the
classical multiply/accumulate algorithm (for i=1 to n do
Si=ai*bi+Si-1 end for), with A = (a1,.., an), B = (b1,…, bn)
vectors of n integer elements ai and bi, which are signed
two's complement binary numbers. The initial result is
S0=0 and the final result is Sn

[8], [9].

(a)

(b)
Fig. 3: (a) The simple MAC unit (b) The proposed

MAC-based architecture for one decomposition level

 For the MAC filter structure, we may use one FIFO
pile (figure 3(b)) where the input samples are stored.

The FIFO pile depth is equal to the filter taps. Because
we have two unequal filter taps, the FIFO depth is equal
to the maximum taps number. For the 9/7 filter the
maximum filter taps is nine, and then the FIFO depth is
equal to nine. A multiplexer chooses the corresponding
filter coefficient. It switches for the high-pass filter
coefficients (g) and the low-pass filter coefficients (h).
The multiplier reads the coefficients from an
addressable ROM memory. The FIFO pile is also
addressed at the same time (the same address) as the
memory of the filters coefficients.
 The filtering unit begins by calculating the
coefficients of the first filter by going through all the
pile. Then, because of the decimation process, we store
a new sample and we activate the second filter by going
through all the pile.
 In our designed architecture, the FIFO pile is not
involved in the MAC-based cell. The parameters of the
designed IP are the number of bits of the input samples
(bus width) and the number of filter taps. The FIFO pile
and the ROM memory are designed separately and have
the same generic parameters.

- Semi-Systolic architecture:
 It is possible to use a set of cascaded registers.
Each register output is multiplied by the adequate filter
coefficients. The result is then summed up to give the
wavelet coefficient. One elementary cell is defined as a
register with a multiplier and an adder as shown in
figure 4(a). The number of cells is equal to the number
of filter taps.

(a)

 (b)
Fig. 4: (a) Example of a simple semi-systolic

architecture. (b) The designed optimized semi-systolic
architecture.

 In this case also, and because of the decimation, it
is possible to alternate the functioning of both filters.
First, we store a sample and we process the coefficients
of the first filter (h). Next, we store the following
sample but at this time we activate the second filter (g).

J. Computer Sci., 2 (9): 746-753, 2006

 750

Multiplexers are used to allow commuting between the
coefficients of the first or the second filter (figure 4(b)).
 The designed architecture involves a FIFO. The
FIFO depth is equal to the maximum filter taps. The
parameters of the designed IP are the number of bits of
the input samples (bus width) and the number of filter
taps. The filter coefficients are defined as constants and
are stored into a ROM memory.

- Linear-phase architecture:
 The regularity in the expressions of each filter
coefficients is very suitable for mapping them into a
systolic-like (semi-systolic) algorithm for an
implementation using a VLSI architecture.
 For the 9/7 filter it is observed that the coefficients
are symmetric. Thus, it is possible to reduce the number
of multipliers. Let’s consider the 9 taps filter as
example. Let y be the output coefficient. Then, y is
expressed as y = C-4•a-4 + … + C-1•a-1 + C0•a0 + C1•a1 +
… C4•a4 where Ci are the filter coefficients and ai are
the input samples. Because of the symmetry we have
C-i = Ci= C-i,i therefore, y may be rewritten as: y = C-

4,4•(a4 + a-4) + … + C-1,1•(a1 + a-1)+ C0•a0.
 The number of multipliers used is thus reduced
from nine to five. Generally we may gain a number of
multipliers in the order of

�
�

�
�
�

�

2
 tapsofnumber .

(a)

(b)

Fig. 5: (a) Semi-systolic architecture. (b) The Linear-
phase like proposed architecture.

 The designed architecture is represented in figure
5(b). Multiplexers are used to alternate the filter
coefficients between h and g.

- Implementation results:
 The proposed filter architectures are evaluated by
comparing the number of multipliers, the number of
adders and the number of registers used in the design.
The cycle-length is another critical parameter which
expresses the number of clock periods to calculate a
coefficient. The MAC-based filter needs to go through
all the FIFO and accumulating partial products in order
to produce one coefficient. One clock period is
necessary to store a sample into the FIFO and nine
clocks to activate the MAC-based filter. As an example
of implementation, we choose the 9/7 filter with a data
bus width of 16bits.
 Table 2 shows the comparative parameters for the
three proposed filter architectures. The linear phase
architecture uses half the number of multipliers.

Table 2: Complexity of 9/7 filter banks for various filter
implementation structures

 # Mult # Add Cycle length

MAC-based 1 1 10
Semi-Systolic 9 8 1
Linear-Phase 5 8 1

 In table 3, hardware implementation results are
presented. Here, we use the Xilinx Spartan3 as a target
hardware and a data bus width of 16 bits for
input/output. The MAC unit is the simplest architecture
but it needs ten cycles to process one coefficient. The
semi-systolic architecture uses the greater number of
multipliers and thus needs more hardware devices.
Figure 6 depicts the total number of equivalent gates
and the throughput for each filter architecture.

Table 3: Hardware implementation on FPGA

 Equivalent
gates (K
Gates)

Max.
Freq.

(MHz)

Throughput
(KSamples/sec)

Ratio
Thr./Eq.gates

MAC 6.7 62.6 6.3 32.1 %

Semi-
systolic

38.4 63.2 63.2 57.5 %

Linear-
Phase

23.7 69.1 69.1 100.0 %

 The parameter ‘Throughput’ measures the speed of
calculating the coefficients. This parameter is expressed
as the ‘Maximal frequency/Cycle length’. To compare
the architectures we introduce the coefficient
'Throughput/equivalent gate' ratio. The normalized
parameter 'Throughput/equivalent gate' is presented in
figure 7.

J. Computer Sci., 2 (9): 746-753, 2006

 751

MAC SemiSystolic LinearPhase

5,0k

10,0k

15,0k

20,0k

25,0k

30,0k

35,0k

40,0k

 Eq.Gate
 Op.Freq.

Filter type

E
qu

iv
al

en
t g

at
e

0

10k

20k

30k

40k

50k

60k

70k

Throughput

Fig. 6: Equivalent gate and throughput of the designed
filters.

 Based on figure 7, the linear phase filter is the most
efficient because is allows 100 % of throughput per
equivalent gate ratio.

MAC SemiSystolic LinearPhase
0

20

40

60

80

100

N
or

m
al

iz
ed

 T
h.

/E
q.

G
at

e
R

at
io

 (%
)

Filter type

Fig. 7: The throughput per equivalent gate ratio.

Architectural models for multi-level decompositions:
‘‘Unfolded’’ architectures are a direct implementation
of the 1-D DWT, that consist in cascading the filtering
blocks. ‘‘Folded’’ architectures represent a high degree
of component sharing consisting of re-using a single
filter bank at different decomposition levels [5]. This
filter bank is coupled with a ‘‘routing network’’ for
storing and directing intermediate data (figure 8). In
such architecture the routing algorithm will have a
significant influence over the lifetime of the data
produced at each level. Two such algorithms have
already been presented, namely the PA and the RPA. It
is shown that the latter results in more efficient memory
usage. Various routing architectures are listed in [5]:
multiplexer-based; bus-based (semi-systolic); with
distributed control over storage cells (systolic); RAM-
based; with shared registers (reduced storage).
 In [6], a scalable MAC-based architecture for the
1-D DWT is presented, allowing generating wavelet
filters of various lengths by simple structural extension

and coefficient value setting. Structural flexibility can
also be used in multi-level architectures, either unfolded
by choosing the appropriate number of cascaded filter
banks, or folded by relying on systolic routing
networks. Such flexibility can be easily captured by
RTL design methodologies (i.e. by making use of
VHDL-like ‘‘generic’’ clauses for specifying
parameterized architectures, and ‘‘generate’’ statements
for controlling the instantiation of the hardware
structures, either conditionally or iteratively).

Fig. 8: Simple folded architecture

 To design N-level decomposition, we my calculate
the coefficients from the first level and store the results
in memory. At the end of the process, we read
coefficients from the memory to calculate the next
resolution level coefficients.
 A routing network bloc may use a memory for
storing intermediate coefficients. In this case, only one
filter structure is used. We may then use the MAC
structure (MAC) filter, or the semi-systolic (SS) filter,
or the Linear-Phase (LP) filter previously presented.

Fig. 9: Folded doubled architecture

 Except for the first resolution level which operates
at 100 % of activity, the second resolution level runs at
50 % of activity with respect to the first one because of
the decimation. The third resolution level runs at 25 %
of activity with respect to the first resolution level, and
in 50 % with respect to the previous resolution level.

 By combining the activity of the second resolution
level with the third one, it is possible to minimize the
number of filters to be used. A memory is then
necessary for saving the data and temporary
coefficients of the second resolution level to be used by
the third resolution level. We may then use the MAC
structure (MAC) filter, or the semi-systolic (SS) filter,
or the Linear-Phase (LP) filter previously presented.

J. Computer Sci., 2 (9): 746-753, 2006

 752

Fig. 10: The parallel architecture

 In [8] and [9], an architecture based on reducing
the filter bank cascade into one equivalent filter per
subband is presented (figure 10). As a result, each
output is associated with a different sub-sampling factor
depending on the resolution of the corresponding
subband. Practically, a scheduler controls the
computations being performed by activating each filter
at the appropriate rate. Since several filters may be
active at the same time, the filtered samples are
buffered so that one sample per cycle is output. Since
all filters are directly connected to the source input,
they can share the same memory unit. This
implementation allows significant hardware savings by
sharing arithmetic operators within each filter (figure
11).

Table 4: Hardware implementation on FPGA for three-level
decomposition.

 # Mult # Add
MAC SS LP MAC SS LP

Folded 1 9 5 1 8 8
Folded doubled 2 18 10 2 16 16
Parallel 4 18 20 4 32 32

Table 5: Hardware implementation on FPGA for a three-level
decomposition.

Wavelet Architecture
Equivalent
Gate
K Gates

Max.
Frequency
(MHz)

Throughput
depending
 on memory

(MAC) 10.0 61.6
(SS) 40.1 62.0 Folded
(LP) 26.1 68.3
(MAC) 16.4 61.3
(SS) 84.5 61.9

Folded
doubled

(LP) 52.1 69.0

Yes

(MAC) 30.7 40.0
(SS) 172.6 45.6 Parallel
(LP) 106.8 55.3

No

 Because the throughput depends on the temporary
storage memory speed, the device operating frequency
is that of the end bloc of the architecture. In each device
namely, the folded and the folded doubled, a memory is

used for storing intermediate results. Only the parallel
architecture does not need intermediate memory and
operates as one coefficient output at each input
coefficient. The parallel architecture does not use
memory to store intermediate results but uses particular
addressable FIFO with a limited number of registers.

 It should be noted that the parallel architecture
using a semi-systolic (Parallel-SS) and the parallel
architecture using a linear phase filter (Parallel-LP)
allow a throughput equal to the maximum frequency.

Folded (M
AC)

Folded (SS)

Folded (LP)

Folded Doubled (M
AC)

Folded Doubled (SS)

Folded Doubled (LP)

Parallel (M
AC)

Parallel (S
S)

Parallel (L
P)

0

20

40

60

80

100

120

140

160

180

E
q.

 G
at

e
(K

 G
at

es
)

Fig. 11: Hardware implementation on FPGA.

 The principle of the folded wavelet cores is to
spread the computations of wavelet coefficients over
multiple computation cycles. The amount of time
available depends upon the desired throughput, which is
linked to the folding parameters [10]. Case studies for
stand-alone and cascaded silicon cores for various
wavelet algorithms are reported in [10].
 The designs have been captured in VHDL and are
portable across a range of foundries, target technologies
and are applicable to FPGA and ASIC implementations.
The use of a hierarchical approach in the creation of the
various described silicon generators means that tightly
designed smaller blocks are used to create larger library
blocks, which are in turn used to create the described
circuits [10].

CONCLUSION
 In this paper, a variety of architectures for
designing re-usable IP cores for image processing are
presented. The cores implement a 1-D discrete wavelet
transform (DWT) algorithm that can be integrated in a
JPEG2000-compliant image encoder. The key concepts
of our methodology are re-usability—allowing
accelerating the design of image compression devices
within imaging systems—and customizability, allowing
tighter adaptation of an IP core to the functional and
system-level requirements. IP synthesis and
architectural exploration are performed to allow
tremendously faster architecture generation. It is

J. Computer Sci., 2 (9): 746-753, 2006

 753

possible to customize an IP core by selecting the
architecture that best suits the requirements.
 The synthesis results which were shown,
demonstrate the possibility to design a variety of 1-D
DWT architectures for JPEG2000 with varying
complexity and performance starting from elementary
architectures. Our methodology is naturally oriented
towards computation-intensive algorithms and can be
easily generalized to most signal processing functions.

REFERENCES

1. M. Keating, P. Bricaud, 1999. Reuse methodology

manual for system-on-a-chip designs. Kluwer
Academic Publishers, Dordrecht, third ed.,

2. VSI Alliance, Architecture document.
(http://www.vsi.org)

3. ISO/IEC JTC1/SC29, March 2000 & December
2000. JPEG2000 Part I & II Final Committee
Draft, FCD154446& 1 FCD15444-2

4. Bryan E. Usevitch, 2001. A tutorial on modern
lossy wavelet image compression: foundations of
JPEG 2000, IEEE Signal Processing Magazine, pp:
22- 35

5. G. Savaton, E. Casseau, E. Martin, 2006. Design of
a flexible 2-D discrete wavelet transform IP core
for JPEG2000 image coding in embedded imaging
systems, Elseiver Signal Processing, Volume 86,
Issue 7, pp: 1375-1399

6. S. Masud, J.V. McCanny, 2001. Design of silicon
IP Cores for biorthogonal wavelet transforms,
Journal of VLSI Signal Processing, 29, pp: 179-
196

7. S. B. Pan, R. H. Park, 2002. VLSI architectures of
the 1-D and 2-D discrete wavelet transforms for
JPEG2000, Elseiver Signal Processing, 82(7), pp:
891-992

8. Chokri Souani, Mohamed Atri, Mohamed Abid,
Kholdoun Torki, Rached Tourki, 2000. Design of
new optimized architecture processor for DWT,
Real-Time Imaging 6, pp: 297-312

9. Chokri Souani, Mohamed Abid, Kholdoun Torki,
Rached Tourki, 2000. VLSI design of 1-D DWT
architecture with parallel filters, Integration the
VLSI journal 29, pp: 181-207

10. Shahid Masud, John V. McCanny, 2004. Reusable
IP cores for discrete wavelet transform
applications, IEEE Trans. On circuits and Systems-
I, vol. 51, N° 6, pp: 1114-1124

