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Abstract: Existing algorithms for mining association rule at multiple concept level, restricted mining 
strong association among the concept at same level of a hierarchy. However mining level-crossing 
association rule at multiple concept level may lead to the discovery of mining strong association 
among at different level of hierarchy. In this study, a top-down progressive deepening method is 
developed for mining level-crossing association rules in large transaction databases by extension of 
some existing multiple-level association rule mining techniques.  This method is using concept of 
reduced support and refine the transaction table at each level.  
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INTRODUCTION 

 
  Studies on mining association rules have evolved 
from techniques for discovery of functional 
dependencies[1], strong rules[2], classification rules[3,4], 
causal rules[5], clustering[6], etc. to disk-based, 
efficient methods for mining association rules in 
large sets of transaction data[7-10]. However, previous 
work has been focused on mining association rules at 
a single concept level as well as multiple-level. There 
are applications, which need to find “level-crossing” 
associations at multiple concept levels. For example, 
besides finding 80% of customers that purchase milk 
may also purchase bread, it could be informative to 
also show that 75% of people buy wheat bread if they 
buy 2% milk or 70% of people buy milk if they buy 
wheat bread. The association relationship in the latter 
statement is expressed at a lower level but often 
carries more specific and concrete information than 
that in the former. This requires progressively 
deepening the knowledge mining process for finding 
refined knowledge from data. The necessity for 
mining multiple level (level-crossing) association 
rules or using taxonomy information at mining 
association rules has also been observed by other 
researchers[8,11].  
 To confine the association rules discovered to be 
strong ones, that is, the patterns which occur 
relatively frequently and the rules which demonstrate 
relatively strong implication relationships, the 
concepts of minimum support and minimum 
confidence have been introduced[7,8]. For mining 
level-crossing association rules at multiple 
concept level, concept taxonomy should be 

provided for generalizing primitive level 
concepts to high level ones.  
 In many applications, the taxonomy 
information is either stored implicitly in the 
database, such as “Wonder wheat bread is a 
wheat bread which is in turn a bread’, or 
computed elsewhere[3]. Thus, data items can be 
easily generalized to multiple concept levels.    
 In this study, a top-down progressive 
deepening method is developed by extension of 
some existing algorithms for mining single and 
multilevel association rules. The method first 
finds large data items at the top-most level and 
then progressively deepens the mining process 
into their large descendants at lower concept 
levels. At each lower level, find level-crossing 
association rule among frequent item at same 
level and frequent itemsets of all upper levels. 
Due to pruning uninteresting data items at each 
level generation of candidate sets is getting 
minimum at each lower concept levels.   
  

MULTIPLE LEVEL ASSOCIATION 
RULES 

 
 We assume that the database contain 1) an item 
data set which contain the description of each item in 
I in the form of ( Ai, descriptioni), where Ai ∈  I and  
2) a transaction data set, � , which consists of a set of 
transaction (Ti {Ap….., Aq}), where Ti is a transaction 
identifier and Ai ∈  I (for i = p……q). 
 To find relatively frequent occurring patterns 
and reasonably strong rule implications, a  user or an 
expert may specify two thresholds: minimum support, 
�’ and minimum confidence ,  �’. Notice that for 
finding level-crossing association rules, different 
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minimum support and/or minimum confidence can be 
specified at different levels.           
 
Definition 1:  A pattern A is large in set  S at level l if 
the support of A is no less then its corresponding 
minimum support threshold �’l . A rule “A � B/S” is 
strong if , for a set S, each ancestor (i.e. the 
corresponding high-level item) of every item in A and 
B,   if  any , is  frequent   at   its  corresponding       
level  “A ∧ B/S ” is frequent (at the current level ) and 
the confidence of  “A � B/S ” is no less then 
minimum confidence threshold at the current level.  
 The definition implies a filtering process which 
confines the pattern to be examined at lower level to 
be only those with large support at their 
corresponding high level. Based on this definition, 
the idea of mining level-crossing association rules is 
illustrated below. 
 
Table 1: A sales transaction table 
transaction_id  bar_code_set  
351428  {17325, 92108, 55349, ….}  
982510  {92458, 77451, 60395, . . . }   
 { . . . ,  . ..}  

 
Example 1: Let the query be to find level-crossing 
association at concept of multiple-level in the 
database in Table 1 for the purchase patterns related 
to category, content and brand of the food which can 
only be stored for less than three weeks. 
 
Table 2: A sales_item (description) relation 
Bar_code category brand      content     size    storage_pd         price 
17325 milk foremost 2%    1(ga.)   14(day)             $3.89 
….. ….. …… ….. …… …….
 ….. 

  
Table 3: A generalized sales_item description table  
GID bar_code_set category content brand 
112 {17325, 31414, 91265 } Milk 2% foremost 
….. {……………} …… ……. ……… 

  
 The relevant part of the sales item description 
relation in Table 2 is fetched and generalized into a 
generalized sales_item description table, as shown in 
Table 3, in which is tuple represent a generalized 
item which is the merge of a group of tuples which 
share the same values in the interested attributes. For 
example, the tuple with the same category, content 
and brand in Table 1 are merged into one, with their 
bar codes replaced by a bar-code set. Each group is 
then treated as an atomic item in the generation of the 
lowest level association rules. For example, the 
association rule generated regarding to milk will be 
only in relevance to (at the low concept levels) brand 
(such as Dairyland) and content (such as 2%) but not 
to size, producer, etc. 
 The taxonomy information is provided 
implicitly in Table 3. Let category (such as 
"milk") represent the first-level concept, content 

(such as "2%") for the second level one and 
brand (such as "Foremost") for the third level 
one. The table implies a concept tree like Fig. 1.  
The process of mining level-crossing association 
rules  is actually will be starting from  level 
second, but first discover large patterns at  the 
top-most concept level similar to Hen and Fu[11]. 
Let the minimum support at this level be 5% and 
the minimum confidence be 50%. One may find 
the large 1-itemset: “bread (25%), meat(10%), 
milk (20%), vegetable(30%)”.  
 At the second level, only the transactions which 
contain the large items at the first level are examined. 
Let the minimum support at this level be 2% and the 
minimum confidence be 40%. One may find the 
frequent 1-itemsets: “lettuce (10%), wheat 
bread(15%), white bread(10%), 2% milk(10%), ….” , 
then level-crossing large 2-itemsets will be : “ � milk, 

wheat bread (6%) � , � bread, 2% milk(4%) � ,…..” 
and strong level-crossing  association rule: “milk 
�wheat bread(60%), bread � 2% milk, ”, etc.   
 The process repeats at even lower concept level 
until no large patterns can be found. 
 
 
 
 
 
      
 
 

Fig. 1: A  taxonomy  for   the  relevant  data  items 
 

METHOD FOR MINING LEVEL-
CROSSING ASSOCIATION RULES 

 
 A method for mining “level-crossing” 
association rules is introduced in this section, which 
uses a hierarchy information encoded transaction 
table[11]. This is based on the following 
consideration. First, a data mining query is usually in 
relevance to only a portion of the transaction 
database, such as food instead of all the items. It is 
beneficial to first collect the relevant set of data and 
then work repeatedly on the task-relevant set. 
Second, encoding can be performed during the 
collection of task-relevant data and thus there is no 
extra “encoding pass” required. Third, an encoding 
string, which represents a position in a hierarchy, 
required less bits than the corresponding object-
identifier or bar-code. 
 To simply our discussion, an abstract example, 
which simulates the real life example of Example 1, 
is analyzed as follows:                                                               
 
Example 2: As stated above, the taxonomy 
information for each (grouped) item in Example 1 is 
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encoded as  a sequence   of   digits  in the transaction 
table � [1] (Table 4). For example, the item ‘2% 
Foremost milk’ is encoded as ‘112’ in which the 
digit, ‘1’, represents ‘milk’ at level-1, the second, ‘1’, 
for ‘2%(milk)’ at level-2 and the third, ‘2’, for the 
brand ‘Foremost’ at level-3. Similar to Agrawal and 
Srikant[8], repeated items (i.e., items with the same 
encoding) at any level will be treated as one item in 
one transaction. 
Table 4: Encoded transaction table: �   [1] 
TID Items 
T1 {111, 121, 211, 221} 
T2 {111, 211, 222, 323} 
T3 {112, 122, 221, 411} 
T4 {111, 121} 
T5 {111,122,211,221, 413} 
T6 {113, 323, 524} 
T7 {131, 231} 
T8 {323, 411, 524, 713} 

 
 The derivation of the large itemsets at level 1 
proceeds as follows. Let the minimum support be 4 
transactions (i.e., minsup[1] = 4). (Notice since the 
total number of transactions is fixed, the support is 
expressed in an absolute value rather then a relative 
percentage for simplicity). The level-1 derivation of 
large itemset as done[11] i.e.,  large 1-itemset table     
� [1,1]  can be derived by scanning ��[1]  and � [1,1] is 
then used to filter out (1) any item which is not large 
in a transaction and (2) the transactions in � [1] 
which contain only small items. This results in a 
filtered transaction table ��[2] of Fig. 2. Now large   
2-itemset table ��[1,2] can be derived by scanning     
��[2]. 
Level-1 minsup=4 
Level-1 large 1-itemsets: �� [1,1] 
Itemset           Support 
{1**}                     7 
{2**}                              5 
 
Filtered transaction  table: � [2] 
TID                                            Items 

T1                      {111,121,211,221}   
T2                       {111,211,222} 

T3                      {112,122,221} 

T4                       {111,121}  

T5                      {111,122,211,221} 

T6                      {113} 

T7                      {131,231} 
 
Level-1 Large 2-Itemsets: � [1,2] 
Itemset          Support 
{1**,2**}                 4 
Fig 2: Large itemsets at level 1 and filtered transaction table :� [2] 
 
According to the definition of ML-association rules, 
only the descendants of the large item at   level-1 
(i.e., in � [1,1]) are considered as candidate in the 
level-2 large 1-itemsets. Let minsup[2]  = 3.  

 The derivation of level-2 large item sets 
generates the same large 1-itemsets � [2,1] (can be 
derived from the filtered transaction table � [2] by 
accumulating the support count and removing those 
whose is smaller then the minimum support, which 
results in ��[2,1]. ��[2,1] is then used filter out any 
item which is not large in a transaction and the 
transaction in � [2] which contain only small items.  
This results in a filtered transaction table � [3] i.e. 
pruning of infrequent items at each level ) as shown 
in Fig. 3. However, the candidate items are not 
confined to pairing only those in ��[2,1] because the 
item in � [2,1] can be paired with those in � [1,1]  as 
well, such as  {11*, 1**} (for potential association like 
“milk  � 2% milk”), or {11*, 2**}(for potential 
association like “2% milk � bread”).These candidate 
large 2-itemsets will be checked against ��[3] to find 
large items (for the level-mixed nodes, the minimum 
support at lower level, i.e., minsup[2], can be used as 
a default). Such a process generate the large              
2-itemsets table � [2,2] as shown in Fig. 3. 
Level-2 minsup=3 
 
Level-2 large 1-itemsets: �� [2,1] 
Itemset                 Support 

{11*}                         6 
{12*}                         4 
{21*}                         3 
{22*}                         4 
 
Filtered transaction  table: ��[3] 
TID                                     Items 
T1                      {111,121,211,221} 

T2                      {111,211,222} 

T3                      {112,122,221} 

T4                       {111,121} 

T5                      {111,122,211,221} 

T6                       {113} 
 
Level-2 large 2-itemsets: �� [2,2] 
Itemset                      Support 
{11*, 12*}                         4 
{11*, 21*}                         3 
{11*, 22*}                         4 
{12*, 22*}                         3 
{21*, 22*}                         3 
{11*, 2**}                         4 
{12*, 2**}                         3 
{21*, 1**}                         3 
{22*, 1**}                         4 
 
Level-2 large 3-itemsets: �� [2,3] 
Itemset       Support 

{11*, 12,*, 22*}                           4 
{21*, 22,*, 1**}                           3   
Fig 3: Large itemsets at level 2 and filtered transaction table :� [3] 
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 Notice that the table does not include the 2-item 
pair formed by an item with its own ancestor such as 
� {11*, 1**}, 5 �  since its support must be the same 
as its corresponding large 1-itemset in � [2,1], i.e., 
� {11*}, 5 � , based on the set containment 
relationship: any transaction that contains {11*} must 
contain {1**} as well. 
 Similarly, the level-2 large 3-itemsets � [2,3] can 
be computed, with the results shown in Fig. 3 also, 
the entries which pair with there own ancestors are 
not listed here since it is contained implicitly in their 
corresponding 2-itemsets. For example,            
� {11*, 12*},4 �  in ��[2,2] implies � {11*,12*,1**},4 �  
in  ��[2,3]. 
Level-3 minsup=3 
 
Level-3 large 1-itemsets: �� [3,1] 
Itemset                     Support 

{111}                             4 
{211}                             4 
{221}                             3 
   
Filtered transaction   table: � [4] 
TID                             Items 

T1                                {111,211,221} 

T2                                {111,211} 

T3                                {221} 

T4                                {111}  

T5                               {111,211,221} 
 
Level-3 large 2-itemsets: �� [3,2] 

Itemset                       Support 
{111, 211}                                 3 
{111,  21*}                                 3 
{111, 2**}                                 3 
{11*, 211}                                 3 
{1**,  211}                                 3 
Fig 4: Large itemsets at level 3 and filtered transaction table :� [4] 
 
 Finally, the large 1-itemsets table at level–3,      
��[3,1], should be the same as Fig. 3 (can be derived 
from the filtered transaction table � [3] and generate 
transaction table � [4] by filtering table � [3] ). The 
large 2-itemset table includes more itemsets since 
these items can be paired with higher level large 
items, which leads to the large 2-itemsets � [3,2] and 
large 3-itemsets � [3,3] as shown in Fig. 4. similarly, 
the itemsets {111, 11*} and {111, 1**} have the same 
support as {111} in  � [3,1] and are thus not include 
in � [3,2]. 
 Since the large k-itemset (k > 1) tables do not 
explicitly include the pair of items with their own 
ancestors, attention should be paid to include them at 
the generation of association rules. However, since 
the existence of a special item always indicates the 

existence of an item in that class, such as               
“2% milk � milk (100%)”, such trivial rules should 
be eliminated. Thus, only nontrivial implications, 
such as “milk � 2% milk (70%)”, will be considered 
in the rule generation. 
  The above discussion leads to the following 
algorithm for mining strong level-crossing 
association rules.   
     
Algorithm 1: Find large item sets for mining 
strong level-crossing association rules in a 
transaction database. 
 
Input: (1) � [l], a hierarchy-information-encoded 
and task-relevant set of transaction database, in the 
format of � TID, Itemset � , in which each item in the 
Itemset contains encoded concept hierarchy 
information and (2) the minimum support threshold 
(minsup[l] ) for each concept level  l. 
 
Output: level-crossing  large item sets. 
 
Method: A top-down, progressively deepening pro-
cess which collects large item sets with level-crossing   
at different concept levels as follows: 
 
 Starting at level 1, derive for each level l, the 
large k-items sets, � [l ,k] , for each k and the large 
item set����� [l] ( for all k's ), as follows: 
 
1.  l := 1;  Temp:= 0; ��[l , Temp] := 0; 
2. for (l := 1; � [l ,1] � 0 and l< max_level;     

l++) do  
3.   {  � [l ,1]  := large_1_itemsets(� [l], l ); 
4. � [l , Temp] := � [l , Temp] �  � [l ,1]; 
 
5.  � [l+1] := filtered_t_table(� [l], � [l ,1]); 
 
 6.   for (k := 2; � [l , k-1] � 0; k++) do  
 7.    { if  l = 1 then  
 8.         {Ck := get_candidate_set (� [l ,k-1] );} 
 9.       else { if  k = 2 then   
 10.            {Ck := get_crosslevel_candidate_set                                                                          

(� [l ,Temp] );} 
11. else{Ck:=get_crosslevel_candidate_set 
         (� [l ,k-1] );} 
12.         } 
13.   foreach transaction t ∈  � [l +1] do 
14.             { Ct := get_Subsets(Ck, t); 
15.                foreach candidate c ∈  Ct  do                        
16.                c.support++; 
17.    } 
18.   � [l ,k]:= {c∈  Ck |c.support  �  minsup[l]} 
19.   } 
20.     ��� [l ] :=  � K � [l ,k] ; 
21  } 
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Procedure filtered_t_table(�� [l]: transaction   
table at level l) 

1.     {             
2.   foreach transaction   t ∈  � [l] do 
3.  { for all item set i ∈  t 
4.      if  (i  ∈  t)   ∧   (i ∉   � [l, 1]) 
5.      Delete   i  from  t ; 
6.                    Add  t  to � [l +1] ; 
7.    } 
8.       } 
 
Procedure get_crosslevel_candidate_set(� [l ,k-1] :    

frequent (k-1)-itemsets at level  l ) 
1. {     foreach  itemset  l1 ∈  � [l ,k-1] 
2. foreach  itemset  l2 ∈  � [l ,k-1] 
3.         if  (l1 [1] = l2 [1] ) ∧  (l1 [2] = l2 [2] ) ∧ … 
                  ∧  (l1 [k-2] = l2 [k-2] )                  
                      ∧   (l1 [k-1] < l2 [k-1] )    then 
4.                c =  l1 join  l2; 
5.  if   has_ancestor_itemset_pair( c )   then 
6.      delete  c ; 
7.     if  has_infrequent_subset( c, � [l ,k-1] )  then 
8.      delete c ; 
9.   else   add  c to Ck ; 
10. } 
 
Procedure  has_ancestor_itemset_pair(c: 
                     candidate set of cross level ) 
1. { foreach itemset  i  ∈   c 
2.   foreach itemset  j  ∈   c 
3.   if  i  is ancestor of  j   then 
4.    return  True; 
5.     return  False; 
6.    } 
 
Explanation of algorithm 1: According to 
Algorithm 1, the discovery of large support items at 
each level l proceeds as follows.   At level-1, the 
large itemsets derived as done in [11] i.e., 1-itemsets   
� [l,1] is derived from � [1]  by  “large_1_itemsets  
(� [1] , l )”, at any other level l, � [l,1] is derived 
from � [l] by “ large_1_itemsets(� [1] , l )”, after 
scanning the transaction table, filter out those items 
whose support is smaller then minsup[l]. The filtered 
transaction table � [2] is derived by “filtered_t_table 
(� [1], � [1,1] )”, which uses � [1,1] as a filter to 
filter out  any item which is not large at level-1 and 
the transactions which contain no large items. 
  For k > 1 itemset table at level-1 is derived as 
done in the apriori candidate generation 
algorithm [8], i.e., first compute the candidate set 
from � [l, k-1] then count support of each item of 
candidate set in � [l + 1] and collect only those 
itemsets into � [l, k] which has support count no less 
then minsup[l].  

 At each level l >1 for k = 2 compute the 
candidate set from � [l, Tamp] (is a union  of large   
1-itemset of all previous levels) by procedure 
get_crosslevel_candidate_set(� [l, Tamp] ) but  for   
k > 2 ,   procedure  get_crosslevel_candidate_set     
(�� [l, k-1] ) is used. The  procedure   
has_ancestor_itemset_pair(c) is used for 
removing those candidate set which has a item is 
ancestor of other items in c and procedure 
has_infrequent_subset( c, ��[l ,k-1] )  work done 
as in the apriori candidate generation algorithm 
[8], i.e. remove those candidate set which has 
infrequent subset. 
 The large itemsets at level l, ��� [l], is the union 
of � [l, k] for all the k’s. After finding the large 
itemsets, the set of association rules for each level l 
can be derived from the large itemsets ����[l] based 
on the minimum confidence at this level, minconf[l]. 
 

CONCLUSION 
 
 We have extended the scope of the study of 
mining association rules among from concept at the 
same level of a hierarchy to concept of different level 
of hierarchy in multiple concept level and studied 
new method for mining level-crossing association 
rules from large transaction databases. A top-down 
progressive deepening technique is design for mining 
level-crossing association rules, which extends the 
existing single and multilevel association rule mining 
algorithms and explore techniques for sharing data 
structure and intermediate results across level. 
Deriving a new filtered transaction tables at each 
processing level, this method will do less processing 
work and generate minimum candidate sets. 
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