
Journal of Computer Science 2 (10): 765-769, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Jinhua Guo, University of Michigan, Department of Computer and Information Science, Dearborn,
MI 48128, USA, Tel: (313) 583-6439, Fax: (313) 593-4256

765

pmonpp: Pthread Monitor Preprocessor

Jinhua Guo

Department of Computer and Information Science, University of Michigan, Dearborn, MI 48128, USA

Abstract: Monitors have become an exceedingly important synchronization mechanism because they
are a natural generalization of the object-oriented programming. A monitor construct encapsulates
private data with public methods to operate on that data. Although the Pthread library contains dozens
of functions for threading and synchronization, it does not provide direct support for the monitor.
Students must explicitly provide mutual exclusion around “monitor procedures” using mutex locks.
However, monitor procedures by definition execute with implicit mutual exclusion. This makes it hard
to teach the monitor concept in class and explain the semantic differences between monitors and
semaphores. To solve this problem, we have designed and implemented a monitor preprocessor for
Pthreads that provides explicit support for monitors in Pthreads.

Key words: Concurrent programming, mutual exclusion, condition synchronization, process synchronization

INTRODUCTION

 Process (thread) synchronization is fundamental to
concurrent programs and is one of the most difficult
topics in an operating system course. Semaphores and
monitors are two general mechanisms that are taught in
the operating system course for solving synchronization
problems.
 Semaphores were the first and remain one of the
most important synchronization tools. They make it
easy to protect critical sections and can be used in a
disciplined way to implement process synchronization.
However, semaphores are also a low-level mechanism
because it is unstructured. Shared variables and the
semaphores that protect them are global variables.
Operations on shared variables and semaphores are
distributed throughout program. It is very difficult to
determine how a semaphore is being used (mutual
exclusion or condition synchronization) without
examining all of the code. Furthermore, their incorrect
use can result in timing errors that are difficult to
detect, since these errors happen only if some particular
execution sequences take place and these sequences do
not always occur[1].
 Monitors were suggested by Dijkstra, then by
Brinch Hansen[2] and then named and popularized by
Hoare in a seminal 1974 paper[3] and somewhat lost
favor in the 1980s and early 1990s. However, monitors
have regained importance with the object-oriented
programming languages, such as Java[4] and Microsoft
C#. In fact, the Java and C# programming languages
make extensive use of monitors to provide mutual
exclusion and synchronization in multithreaded
applications.
 Monitors have become an exceedingly important
synchronization mechanism because they are a natural

generalization of the object-oriented programming,
which encapsulate data and operation declaration with a
class. A monitor construct is an abstract data type,
which encapsulates private data with public methods to
operate on that data. Mutual exclusion is provided
implicitly by ensuring that procedures in the same
monitor are not executed concurrently. Condition
synchronization in monitors is provided explicitly by
means of condition variables. This makes a concurrent
program easier to develop and easier to understand.
Because of their utility and efficiency, monitors have
been employed in several concurrent programming
languages, most recently and notably in Java[5] and C#.
 The Pthread library[6] is a standard set of C library
routines for the UNIX cross-platform multithreaded
programming. Since Pthread contains dozens of
functions for threading and synchronization, we
recommend students to implement their projects of
thread synchronization problems using the Pthread
library. Unfortunately, Pthread does not provide direct
support for the monitor although it provides “condition
variables” and “mutex locks”, which are part of a
monitor. Students must explicitly provide mutual
exclusion around “monitor procedures” using mutex
locks. However, the semantics of monitors defined by
Hoare provide for implicit mutual exclusion during the
execution of any monitor procedure. This makes it hard
to teach the monitor concept in class and explain the
semantic differences between monitors and
semaphores. We have found that students are reluctant
to use monitors because of this confusion – and
therefore often fail to master the monitor concept.
 To solve this problem, we have designed and
implemented a Pthread monitor preprocessor (pmonpp)
for Pthreads that provides explicit support for monitors
in Pthreads. The preprocessor allows users to use true

J. Computer Sci., 2 (10): 765-769, 2006

 766

monitors in Pthread programming. The user writes a
monitor specification file, which contains a single
monitor. This file is translated by the preprocessor into
proper Pthread codes using only mutex locks to
guarantee mutual exclusion access and condition
variables to allow general condition synchronization.

Monitor: Semaphores are like goto's and pointers:
mistake prone, work okay but lack structure and
“discipline”.
For example, a disastrous typo:
V(S); criticalSection(); V(S)
This leads to deadlock:
P(S); criticalSection(); P(S)
Inappropriate use of nested critical sections can lead to
deadlock:
P1: P(Q); P(S); ... V(S); V(Q);
P2: P(S); P(Q); ... V(Q); V(S);
 A monitor is an object with some built-in mutual
exclusion and thread synchronization capabilities. They
are an integral part of the programming language so the
compiler can generate the correct code to implement the
monitor. Only one thread can be active at a time in the
monitor, where “active” means executing a method of
the monitor. Monitors also have condition variables, on
which a thread can wait if conditions are not right for it
to continue executing in the monitor. Some other thread
can then get in the monitor and perhaps change the state
of the monitor. If conditions are now right, that thread
can signal a waiting thread, moving the latter to the
ready queue to get back into the monitor when it
becomes free.
 Under the general topic of multitasking
management, the monitor concept offers a solution to
the low-level nature semaphore usage. A monitor
construct is a high-level concurrency synchronization
abstract offering safe data consistency. A monitor
guarantees only one active thread/ process with
exclusive rights to access the defined monitor variables
and monitor procedures. Unlike semaphores, the
monitor abstract has implicit mutual exclusion
guaranteed for its protected members and functions.
The syntax of a monitor is shown in Fig. 1.
 Monitors also include the concept of condition
variables. A condition variable is used to delay a
process that cannot safely continue executing until the
monitor’s state satisfies some Boolean condition. It is
also used to awaken a delayed process when the
condition becomes true. Condition variables used
within a monitor have three basic, distinct methods:
wait, signal and broadcast. A thread calling wait on a
particular condition variable is placed into the queue
associated with that condition variable; a thread calling
signal causes a thread wait on that conditional variable
to be removed from the queue. Broadcast removes all
threads from the queue.
 A monitor's implementation of handling this
signaling and thread queuing has two possibilities.

monitor monitor_name {
shared variable declaration;

procedure body P1 (...) { ... }
procedure body P2 (...) { ... }
...
procedure body Pn (...) { ... }

{
 initialization code
}

}

Fig. 1: Syntax of a monitor

 A signal-and-exit monitor requires a thread to
immediately exit the monitor upon signaling.
Alternatively, a signal-and-continue monitor allows a
thread inside the monitor to signal that the monitor will
soon become available, but still maintain a lock on the
monitor until the thread exits the monitor[1].
 In the multithreaded Java applications, monitors
are the primary mechanism providing mutual exclusion
and synchronization. The key word synchronized
imposes mutual exclusion on an object in Java. Java
monitors are signal-and-continue monitors[4].

Mutex locks and condition variables in Pthreads:
Although Pthreads does not provide direct support for
the monitor, it provides “condition variables” and
“locks”, which are part of a monitor.
 Locks in Pthreads are called mutex locks – or
simply mutexes – because they are used to implement
mutual exclusion. A critical section of code uses mutex
as follows:
pthread_mutex_lock(&mutex);
critical sections;
pthread_mutex_unlock(&mutex);
 Condition variables in Pthreads are very similar to
the condition variables described in the previous
subsection. The main operation on condition variables
in Pthreads are wait, signal and broadcast. These must
be executed while holding a mutex lock.
 The parameters to pthread_cond_wait are a
condition variable and a mutex lock. A thread that
wants to wait must first hold the lock. For example,
suppose a thread has already executed
pthread_mutex_lock(&mutex);
and then later executes
pthread_cond_wait(&cond, &mutex);
 This causes the thread to release mutex and wait on
cond. When the process resumes execution after a
signal or broadcast, the thread will again own mutex
and it will be locked. When another thread executes
pthread_cond_signal(&cond);
it awakens one thread (if one is blocked), but the
signaler continues execution and continues to hold onto
mutex.
 The above description for using conditional
variables and mutex locks is very similar to a monitor
procedure except that the users need to explicitly
provide mutual exclusion.

J. Computer Sci., 2 (10): 765-769, 2006

 767

�������
� �	
���
�����

�	�������	��

� ��	���������

������� ����
���

�	
	������

���������

��	���
	�����

�������
� 	
��	�

 ���������
�� ���	��
�	��
�
�	�
��	���� � ���
�����

� �������
� �	������	��
� ���	���

� ����
� ����	�� �
�

 �	����

! ���"��
#
�
� ��������	

! ���

pmonpp
application

pmonpp
class

string
class

Fig. 2: An overview of the intended process

Monitors for Pthreads: As seen in the above
subsection, a monitor procedure can be simulated using
Pthreads by locking a mutex lock at the start of the
procedure and unlocking the mutex at the end.
Therefore, one straightforward solution to a monitor for
Pthreads is a preprocessor application. A monitor
preprocessor will take a programmer’s monitor
specification written in the syntax described in Fig. 1
and generate Pthread compliant stub files for an
application’s development in the programming
language of ANSI C or C++. The desired monitor(s)
will be implemented via mutex locks and condition
variables. Figure 2 shows a graphical overview of the
intended process.
 Using a monitor preprocessor for producing these
monitor stub files offers clear advantages of a
straightforward creation process and a consist control
over the monitor coding format. A similar preprocessor
using a non-standard operating system has been created
for a teaching aid in upper-level computer science
course[7].
 The alternative to the preprocessor would be to
develop a common class or C++ template for monitors.
Unfortunately, handling of improper object-orientated
issue(s) such as inheritance and public method/ data
make create a monitor class/ C++ template difficult to
overcome.

Monitor specification: Monitors are simply an abstract
construct that encapsulates shared variables and
methods and have a formatting syntax that is similar to
a class definition (Fig. 1). Using a similar style of
formatting, an example of monitor’s specification is
shown in Fig. 4.
 The monitor specification developed for this
application allows only one monitor to be defined per
input file. The Pthread Monitor Preprocessor
application uses this file to create the source output
files. The output file names (*.h, *.cc) will have the

Fig. 3: Classes of the monitor preprocessor

Table 1: The errors detected by the monitor preprocessor
No. Error Condition(s)
1 Missing command line argument
2 Missing keyword ‘monitor’ declaration
3 Multiple monitor keyword detected
4 Missing initialize() keyword
5 Missing destroy() keyword
6 Keyword detected in wrong section
7 Missing left brace ‘{‘ after keyword found
8 Missing right brace ‘}’ or ‘};’
9 Inconsistent declaration of condition variables (total count mis-match)
10 Missing right parentheses ‘)’
11 File open error
12 File creation error
13 File read error
14 File write error

same base filename as the monitor specification file.
For instance, if the preprocessor is invoked with
bounded_buffer.mon, the output files created would be
bounded_buffer.h and bounded_buffer.cc. The output
files form monitor class with POSIX compliant
commands.
 Each monitor specification file must declare only
one monitor with the noted keyword.
Subsequently, all data members defined (after the
keyword monitor) will be made private members of
the monitor class.

J. Computer Sci., 2 (10): 765-769, 2006

 768

monitor bounded_buffer {
typeT buf[n]; // an array of some type
int front = 0;
int rear = 0;
int count = 0;
initialize() {

Condition_var not_full;
Condition_var not_empty;

}
destroy() {

Condition_var not_full;
Condition_var not_empty;

 }

sync_functions() {
public void produce(typeT data) {

while (count == n)
 wait(not_full);
buf[rear] = data;
rear = (rear + 1) % n;
count++;
signal(not_empty);

}
public void consume(typeT &result) {

while (count == 0)
 wait(not_empty);
result = buf[front];
front = (front + 1) % n;
count--;
signal(not_full);

}
 } //end of sync_functions
} // end monitor
Fig. 4: Monitor specification file: bounded_buffer.mon

void boundedBuffer_class::produce(typeT data)
{

pthread_mutex_lock(&bmutex);
while (count == n)
 pthread_cond_wait(¬_full, &bmutex);
buf[rear] = data;
rear = (rear + 1) % n;
count++;
pthread_cond_signal(¬_empty);
pthread_mutex_unlock(&bmutex);

}

void boundedBuffer_class::consume(typeT
&result){

pthread_mutex_lock(&bmutex);
while (count == 0)
 pthread_cond_wait(¬_empty, &bmutex
);
result = buf[front];
front = (front + 1) % n;
count--;
pthread_cond_signal(¬_full);
pthread_mutex_unlock(&bmutex);

}

Fig. 5: The generated produce and consume functions
in pthreads

 As shown in Fig. 4, four key sections are defined in
the specification:
initialize()
destroy()
sync_functions()
unsync_functions()
 The initialize and destroy sections place the
declarations of the monitor specification file into the

constructor and destructor of the monitor class. Any
condition variables declared in the monitor must be
defined in both of these sections.
 Then the synchronized functions, those with
automatic mutual exclusion, are defined. As a final
option, the monitor specification allows for
unsynchronized functions to be declared, which means
the procedure is executed as a regular procedure call.

Preprocessor implementation: The Pthread Monitor
PreProcessor (pmonpp) is constructed using object
oriented program design and is implemented with C++.
The main() function simply looks for a proper
command line input and then initiates the pmonpp
object. Two main classes of the preprocessor are the
pmonpp class and the string class. Figure 3 shows the
high-level object overview.
 The pmonpp class is the primary handler for the
Pthread Monitor Preprocessor application. The bulk of
the work begins with the "kick-off" of the constructor
method. This constructor sets up the output files and in-
turn initiates the parsing operation. The parsing
operation begins by looking for keywords and upon
detecting a keyword, handlers are called for continuing
the processing the designated section. The primary
parser routine is implemented as a five level if-then-else
structure searching for each section.
 A string class was created since a strings class or
template is not standard with all ANSI C++ compilers.
The custom string class ensures consistent treatment of
string operations. Essentially, this class provided basic
token and "find" methods to enable the parsing
operations mentioned as part of the pmonpp class.

A. Expected input: Only the monitor input file is
required for proper operation; no other input is utilized
for this application. When the user invokes the pmonpp
application, a filename containing the monitor
specification must be provided as well. Proper
formatting of the monitor specification is assumed
otherwise, as previously discussed, the note error
condition will be displayed back to the user. The default
line length (a supplied setting or constant of the
pmonpp program is 255 characters per line); lines
longer then this length will be clipped unless the
preprocessor application is re-compiled with an
adjusted value.

B. Expected output: As briefly mentioned, the
successfully output of the pmonpp applications are two
source code files. The output header file contains the
monitor class declaration and the private data members.
The monitor’s name is provided from the specification
file. This header file also lists the class prototypes for
the corresponding implementation file (*.cc).
 Similarly, the implementation file contains the
associated methods for the monitor class with all
functions in the “sync” or “unsync” section made into

J. Computer Sci., 2 (10): 765-769, 2006

 769

class methods. The class constructor by default will
create the appropriate Pthread mutex with its name
derived from the monitor’s; the destructor does the
same as well.

Error conditions: The pmonpp application implements
multiple error handlers. The default action upon
detecting an error is to shutdown the application with a
message supplied to default error pipe (i.e. the user’s
display screen).
 The Table 1 lists many of the errors detected by the
pmonpp operations and processing; again the end-action
to halt operation for all detected errors. The pmonpp
application only processes the defined keywords. No
guarantee is made for the monitor’s correctness, which
is totally dependant upon proper coding placed into the
specification file.

Algorithm analysis overview: The creation of the
pmonpp object begins with the primary function of
parsing the input file. This input file is parsed in a
single line, linear fashion. By linear, meaning the
tokens or keywords are determined in a forward fashion
with no back up operations.
 Many different mechanisms could have been
implemented for the parsing operations, but after
reviewing the Pthread Monitor Preprocessor
requirements, the parse operations were deemed to
fairly unique to the monitor specification. The coding
efficiency could be improved by creating a centralized
token recognition function.

Example: Here, we will demonstrate how to use the
preprocessor to solve synchronization problems through
a well-known bounded buffer problem.
 The bounded buffer problem is commonly used to
illustrate the power of synchronization primitives. A
producer and a consumer process communicate by
sharing a buffer having n slots. The buffer contains a
queue of messages. The producer sends a message to
the consumer by depositing the message at the end of
the queue. The consumer receives a message by
fetching the one at the front of the queue.
Synchronization is required so that a message is not
deposited if the queue is full and a message is not
fetched if the queue is empty.
 To solve this synchronization problem, the
programmers just need to write a monitor specification
in the syntax described in Fig. 1. The specification file
bounded_buffer.mon is shown in Fig. 4. The monitor
preprocessor will then take the programmer’s monitor
specification and generate Pthread compliant stub files
in the language of C++. In Fig. 5, we show the produce
and consume Pthread functions generated by the
Pthread monitor preprocessor.

CONCLUSION

 Concurrent programs are harder to write, debug,
modify and prove correct than non-concurrent

programs. Monitors are a high-level synchronization
construct that provides more structure than semaphores.
A monitor construct is an abstract data type, which
encapsulates private data with public methods to
operate on that data. Mutual exclusion is provided
implicitly by ensuring that procedures in the same
monitor are not executed concurrently. Condition
synchronization in monitors is provided explicitly by
means of condition variables. This makes a concurrent
program easier to develop and easier to understand.
 We have designed and implemented a monitor
preprocessor for Pthreads that provides explicit support
for monitors in Pthreads. The preprocessor allows users
to use true monitors in Pthread programming. With the
monitor preprocessor, the users can write their monitors
in the syntax similar to the original Hoare’s
specification and without worrying the mutual
exclusion. These monitor files can then be translated by
the preprocessor into proper Pthread codes using only
mutex locks to guarantee mutual exclusion access and
condition variables to allow general condition
synchronization.
 The Pthread Monitor Preprocessor (pmonpp) has
been used and tested by students in the operating
system class since the fall 2004. The preprocessor make
it easier to write concurrent programs using Pthreads
for solving synchronization problems, it also can help
students to have a deep understanding about how a
monitor is implemented by analyzing the generated
codes. The interested readers may find more about our
work, including pmonpp software and documents at the
following site:
http://www.engin.umd.umich.edu/~jinhua/pmonpp

REFERENCES

1. Sihberscatz, A., P.B. Galvin and G. Gagne, 2003.

Operating System Concepts. John Wiley and Sons.
2. Hansen, B., 1993. Monitors and concurrent Pascal:

A personal history. ACM SIGPLAN Notices. The
second ACM SIGPLAN Conf. History of
Programming Languages, 28: 3.

3. Hoare, C.A.R., 1974. Monitors: An operating
system structuring concept. Comm. ACM, 17:
549–557.

4. Hyde, P., 1999. Java Thread Programming. Sams
Publishing.

5. Gregory, R.A., 2000, Foundations of
Multithreaded, Parallel and Distributed
Programming. Addison Wesley.

6. Lewis, B. and D. Berg, 1998. Multithreaded
Programming with Pthreads. Mountain View, CA:
Sun Microsystems Press.

7. Hatcher, J. and D. Lowenthal, 1999. monpp:
Monitors in Nachos. Technical Report TR-99-7.
Department of Computer Science, University of
Georgia.

