
Journal of Computer Science 2 (10): 781-784, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Mansaf Alam, Department of Computer Science, Jamia Millia Islamia, New Delhi-25, India
781

Migration from Relational Database into Object Oriented Database

1Mansaf Alam and 2Siri Krishan Wasan

1Department of Computer Science, Jamia Millia Islamia, New Delhi-25, India
2Department of Mathematics, Jamia Millia Islamia, New Delhi-25, India

Abstract: Object – Oriented Technology is an important discipline in the field of software engineering
in general and it is, therefore, natural to ask whether it is relevant to the field of database management
in particular and what that relevance is. There is, however, no consensus on answer to these questions.
Some authorities believe that object oriented database systems will take over the world replacing
relational system whereas others believe that they are suited only to certain very specific problems and
will never capture more than a small fraction of the overall market. Object-Oriented technology
represents real world very well, focusing on data rather than procedure and gives more security to data.
Also, it is safe from unauthorized use of data because it provides three access specifiers viz. private,
public and protected and strictly provides security to data in database. This technology also provides
function as well as data together so that the data can be manipulated by the given function. In this
paper, we show that how the data is more secure in object-oriented database than in relational database
and also why do we migrate from RDBMS into OODBMS

Key words: Versant ODBMS, object-oriented database

INTRODUCTION

Relational database: A relational database stores all its
data inside tables and nothing more. All operations on
data are done on the tables themselves or produce
another tables as the result. You never see anything
except that tables. A table is a set of rows and columns
and a set does not have any predefined sort order for its
elements. Each row is a set of columns with only one
value for each. All rows from the same table have the
same set of columns, although some columns may have
NULL values, i.e. the value for that row is not
initialized. It is to be noted that a NULL value for a
string column is different from an empty string. As an
example, the Relational model[1,2] supports relations,
which are set of tuples with fixed number of primitive
data elements. The rows from a relational table are
analogous to a record and the columns to a field. Here's
an example of a table and the SQL statement that
creates the table:

 CREATE TABLE ADDR_BOOK (
 NAME char(30),
 COMPANY char(20),
 E_MAIL char (25))
+-----------------+---------------+---------------------+
 NAME | COMPANY | E_MAIL
|+===========+==========+===========+
| Israr Ahmad| Software System |israrl@centroin.com.
|
+-------------------+---------------+---------------------+
| Abid | IBM | Abidl@ibm.com |
+-------------------+---------------+---------------------+

 There are two basic operations that we can perform
on a relational table. Viz. Retrieving a subset of its
columns and retrieving a subset of its rows. Here are
samples of the two operations:

SELECT NAME, E_MAIL FROM ADDR_BOOK
+-------------------+-----------------------+
| NAME | E_MAIL |
+===================+=========+
| Israr Ahmad | israr@centroin.com.br |
+-------------------+-----------------------+
| Abid | abidl@ibm.com |
+-------------------+-----------------------+
SELECT * FROM ADDR_BOOK WHERE COMPANY =
'Software System'
+-------------------+---------------+---------------------+
| NAME | COMPANY | E_MAIL |
+========+=============+==========+
| Israr Ahmad |Software System | israr@centroin.com |
+-------------------+---------------+---------------------+
We can also combine these two operations as follows:
SELECT NAME, E_MAIL FROM ADDR_BOOK WHERE
COMPANY = 'Software system'
+-------------------+-----------------------+
| NAME | E_MAIL |
+===========+=============+
| Israr Ahmad |israr@centroin.com.br |
+-------------------+-----------------------+
 We can also perform operations between two tables
treating them as sets: we can make Cartesian product of
the tables and can get the intersection between two
tables, we can add one table to another and so on. Later
we should be discussing these operations in OODBMS
and show how they are more useful and better.

J. Computer Sci., 2 (10): 781-784, 2006

 782

Object oriented databases: In this paper, we examine
object systems by introducing and explaining basic
object oriented concepts and offer some opinion
regarding the suitability of incorporating such concepts
into the database systems of the future. The advent and
commercial success of well-engineered ODBMS
products, such as ObjectStore[3], indicate that the time is
ripe to seriously investigate migration from RDBMS to
ODBMS.
 The classical SQL systems being inadequate in a
variety of ways, we are led to study object systems.

 The need for object-oriented databases: The
increased emphasis on process integration is a driving
force for the adoption of object-oriented database
systems. For example, the Computer Integrated
Manufacturing (CIM) area is focusing heavily on using
object-oriented database technology as the process
integration framework. Advanced office automation
systems use object-oriented database systems to handle
hypermedia data. Hospital patient care tracking systems
use object-oriented database technologies for ease of
use. All of these applications are characterized by
having to manage complex, highly interrelated
information, which is the strength of object-oriented
database systems. Clearly, relational database
technology has failed to handle the needs of complex
information systems. The problem with relational
database systems is that they require the application
developer to force an information model into tables
where relationships between entities are defined by
values. Mary Loomis, the architect of the Versant
OODBMS compares relational and object-oriented
databases as follow[4]. Relational database design is
really a process of trying to figure out how to represent
real-world objects within the confines of tables in such
a way that good performance results and preserving
data integrity are possible. Object database design is
quite different. For the most part, object database
design is a fundamental part of the overall application
design process. The object classes used by the
programming language are the classes used by the
ODBMS. Because their models are consistent, there is
no need to transform the program’s object model to
something unique for the database manager[5]. An initial
area of focus by several object-oriented database
vendors has been the Computer Aided Design (CAD),
Computer Aided Manufacturing (CAM) and Computer
Aided Software Engineering (CASE) applications. A
primary characteristic of these applications is the need
to manage very complex information efficiently. Other
areas where object-oriented database technology can be
applied include factory and office automation. For
example, the manufacture of an aircraft requires the
tracking of millions of interdependent parts that may be
assembled in different configurations. Object-oriented
database systems hold the promise of putting solutions
to these complex problems within reach of users.

 Object-orientation is yet another step in the quest
for expressing solutions to problems in a more natural,
easier to understand way. Michael Brodie in his book
On Conceptual Modeling[6] states, "The fundamental
characteristic of the new level of system description is
that it is closer to the human conceptualization of a
problem domain”. Descriptions at this level can
enhance communication between system designers,

Object-oriented concept: The object-oriented
paradigm is the latest in the software development and
the most adopted one in the developing project of
today. RDBMS extensions have been spurred by
competition from object-oriented database management
systems (ODBMSs), which combine comprehensive
database management functionality and full-fledged
OO data modeling[7].
 Limitation of Procedural Programming: A Program
in a procedural language is a list of instructions where
each statement tells the computer to do something. The
focus is on the processing, the algorithm needed to
perform the desired computation.
* In procedural paradigm, the emphasis is on doing

things. And not on the data. But Data is, after all,
the reason for a program’s existence. The
important part of an inventory program isn’t a
function that display or check data; it is the
inventory data itself. Yet data is given second –
class status while programming.

* In procedural programming, data type are used and
worked upon by many functions. If a function
makes any change to a data type, then it must be
reflected to all the locations, within the program
that process this data type. This is very time
consuming for large sized programs.

* Procedural programming does not model real
world very well.

 For instance, a vehicle is an object, which is
capable of moving in real world. However, the
procedural programming paradigm would just be
concerned about the procedure i.e. the procedure
programming paradigm would just think of moving the
part and not the vehicle.

OO programming: Now, the object oriented approach
views a problem in terms of objects involved rather
than procedure for doing it.

Object: object is an identifiable entity with some
characteristics and behavior. For instance, we can say
‘Orange’ is an object. Its characteristics are: It is
spherical shaped, its color is Orange etc. Its behavior is:
it is juicy and it tastes sweet sour.
 While using OOP approach the characteristics of
an object are represented by its associated functions.
Therefore, in Object Oriented Programming object
represents an entity that can store data and has its
interface through function.

J. Computer Sci., 2 (10): 781-784, 2006

 783

How OOP overcomes procedural paradigm’s
problems: This RDB shortcoming is being addressed
by extended relational systems[8] and middleware such
as object oriented relational database gateways products
Persistence[9] Now, let us see how the Shortcomings of

procedural paradigm are overcome by OOP.
The object-oriented approach overcomes these

shortcomings in the following manners.
* OOP approach gives data the prime consideration

and by providing interface through the functions
associated with it.

* An object is a complete entity i.e. it has all the data
and associated functions within it. Whenever,
something is to be changed for an object, only its
class gets changed because it is complete in itself.
All the functions that are working on this data or
using it are defined within the class, they get to see
the change immediately and nowhere else the
change is required.

An overview of object technology: It is a basic tenet
of the Object approach that “everything is an object”.
Some objects are immutable; examples might be integer
(3,65) and character string (“Delhi”, “Pune”). Other
objects are mutable; examples might be the department
and employee.
 Objects are encapsulated, which means that the
physical representation i.e. the internal structure of such
an object, say a Dept (“department”) , is not visible to
users of that object; instead, user knows only that the
object is capable of executing certain operations
(Methods).

Creation of object oriented database: Suppose we
wish to define two object classes namely DEPT
(departments) and EMP (employees). Also suppose that
the user-defines classes MONEY and JOB and the class
CHAR is built-in. Then the necessary class definition
for DEPT and EMP might look somewhat as follows:

CLASS DEPT
 PUBLIC (Dep# Char,
 Dname Char,
 Budget Money,
 MGR REF(EMP),
 EMPS REF(SET(REF(REF(EMP))))----
 METHODS (HIR_EMP(REF(EMP))---code----,
 FIRST_EMP(REF(EMP))—code----,----‘
CLASS EMP
 PUBLIC (EMP# CHAR
 ENAME CHAR
 SALARY MONEY
 POSITION REF (JOB))---
METHOD (----)---;

Transparent persistence: Transparent persistence in
object database product refers to ability to directly
manipulate data stored in a database using an object
oriented programming language. This is in contrast to a

database sub-language used by embedded SQL or a call
interface used by ODBC or JDBC. Using an object
oriented database product means that you have higher
performance and less code to write.
 With transparent persistence, the manipulation and
traversal of persistence objects are performed directly
by the object oriented programming language in the
same manner as in-memory. This is achieved through
the use of intelligent caching as in given Fig. 1.

A person object references
an address object in the
object database

Fig. 1: Intelligent caching

Complex data: Complex data is often characterized by:
* A lack of unique, natural identification.
* A large number of many –to-many relation ships.
* Access using traversals.
* Frequently use of type codes such as those found in

the relational schema
 The discussion of complex data will use
the following fragment of a clothing database
that represents an XML data structure stored as
objects.

Fig. 2: Clothing database

High performance: With complex data, it is not
unusual to find that an ODBMS will run anywhere from
10 to 1000 times faster than an RDBMS. The range of
this performance advantage depends on the complexity
of the data and the access patterns for the data.
 Why are ODBMSs faster? ODBMSs are optimized
for the traversals related to complex data. They also do
not have any “ impedance mismatch” when it comes to

J. Computer Sci., 2 (10): 781-784, 2006

 784

using object oriented programming languages such as
Java and C++. High performance can impact business
considerations in two ways:
 We simply may need the best performance possible
on complex data. We may take advantage of the high
performance ODBMSs provide for complex data by
purchasing cheaper hardware.

Lack of impedance mismatch: ODBMSs allow us to
store objects directly without any mapping to different
data structures. RDBMSs require mapping from object
to tables. This mapping to different data structures is
called “ impedance mismatch”. The Fig. 3 shows direct
storage at the left and impedance mismatch at the right.
 This lack of impedance mismatch in ODBMSs give
them a performance advantage over RDBMSs,
especially on complex data. Impedance mismatch slow
down performance on complex data because of
processing needed map from one data structure (tables)
to another (object).

Fig. 3: Map from one data structure (tables) to

another (object)

Everyday uses of object databases: We can use object
database in the following:
* Pager
* Voicemail
* Flight booking
* PCs phone
 Object databases are used more often than we
might realize. Many times, using an object database is
seen as competitive advantage and companies do not
want to publicize this. As a result, object databases are
invisible to users and not mentioned by companies and
hence do not receive much media attention.

CONCLUSION AND FUTURE WORK

 In this study we have focused on migration from
RDBMS to ODBMS. We have also discussed that
ODBMS is better and faster than RDBMS for complex

Data. For ODBMSs, the virtue is direct manipulations
of persistent objects by application software. The
inseparable vices are the semantic and operational
burdens attending such direct manipulation. Perhaps it
is too much to ask for an application framework to
support deft and natural manipulation of objects in both
off line (RDB) and on line (ODBMS) forms. In any
case, we offer the humble opinion that data
representation issues --- the subject of much research in
the academic database community --- are not the
difficult problems. Instead, the core issues lie in areas
long recognized to be among the most vexing of
persistent data: object identity (copying vs. replication),
transaction semantics (nature and lifetime of data
ownership) and object naming (significance of OIDs
and reference binding). Despite the cautionary tone of
this paper, we are pleased with the relative success of
this experiment and are encouraged to pursue several
promising directions for future work. Consequently a
full-fledged port and performance comparison is
underway. The question thus arises: if the ODBMS port
is a complete success and the RDB is retired, how will
data volition be accommodated? We speculate that this
dual database approach constitutes a “best of both
worlds” solution. The ODBMS provides direct, fast,
application-pertinent object access and the RDB
provides a generalized evolution tolerant representation.
The long-term solution thus may be a hybrid system, in
which the ODBMS manages the live data, which is
flushed to the RDB when data evolution is required.

REFERENCES

1. Codd, E.F., 1970. A Relational Model for Large

Shared Data Bank, CACM.
2. Date, C.J., 1985. An Introduction to Database

System, Addison Wesley.
3. Lamb, C., G. Landis, J. Orenstein and D. Weinreb,

1991. The objectstore database system. Commun.
ACM, 34: 50-63.

4. Mary, E.S.L., 1995. Object Databases: The
Essentials, Reading, Mass. Addison-Wesley.

5. Mary, E.S.L., 1992. ODBMS vs. Relational. J.
Object-Oriented Programming Focus On ODBMS,
pp: 35.

6. Brodie, M., J. Mylopoulos and J. Schmidt, 1985.
On Conceptual Modeling. Springer-Verlag.

7. Atkinson, M., F. Bancilhon, D. DeWitt, K.Dittrich,
D. Maier and S. Zdonik, 1989. The Object-
Oriented Database System Manifesto. Proc. First
Intl. Conf. Deductive and Object-Oriented
Databases, Kyoto, Japan, pp: 223-40.

8. Michael, S. and G. Kemnitz, 1991. The postgres
next generation database management system.
Commun. ACM, 34: 78-92.

9. Arthur, M.K., R. Jensen and S. Agarwal, 1993.
Persistence software: Bridging object-oriented
programming and relational databases. Proc. ACM
SIGMOD Intl. Conf. Management of Data,
Washington DC, pp: 523-528.

