
Journal of Computer Science 2 (11): 824-834, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: R. B. Patel, Department of Computer Engineering, M. M. Engineering College, Mullana-133203,
Haryana, India

824

Mobile Agents in Heterogeneous Networks: A Look on Performance

R. B. Patel and Neeraj Goel

Department of Computer Engineering, M. M. Engineering College, Mullana-133203, Haryana, India

Abstract: Mobile agents can be seen as a new paradigm for distributed computing. One characteristic
of mobile agents is their autonomy and pro-activity. This article present a framework designed on top
of PMADE (Platform for Mobile Agent Distribution and Execution) to support our research in this
domain. Our framework consists of three modules. The Map Module collects information on the
available network of agent hosts (AHs) and a mobile agent is able to locate services within the network
with the help of this module. Furthermore, the framework provides a Route estimating module and an
optimization module, which minimizes network load. These modules support a fast and efficient
navigation through the network, which is an environment with an inherently dynamical behavior. The
basis for this work is the PMADE Domain Service, which is a hierarchical arrangement of AHs that
groups AHs into a federation of networked local clusters, so called domains. This paper also evaluates
the basic concepts and the actual modules of the developed framework and made some measurements
to characterize the modules quality and to identify problems.

Key words: PMADE, mobile agents, route estimator, domain

INTRODUCTION

 A Mobile agent (MA)[1] is a software process,
which can move autonomously from one physical
network location to another. The agent performs its job
wherever and whenever it is found appropriate and is
not restricted to be co-located with its client. Thus,
there is an inherent sense of autonomy in the mobility
and execution of the agent. Agents can be seen as
automated errand boys who work for users. MA
research evolved over the past years from the creation
of many different monolithic mobile agent systems
(MASs), often with similar characteristics and built by
research groups spread all over the world, for
optimisation and better understanding of specific agent
issues[1,2].
 In the area of networked environments, mobile
agents can be seen as a new paradigm for the
implementation of fully distributed software systems
with a balanced peer-to-peer concept[3]. PMADE
(Platform for Mobile Agent Distribution and Execution)
is a Java-based platform that supports the efficient
migration of mobile agents on a wide variety of
protocols and migration strategies[4]. It is based on so
called agent host (AH)[4] that resides on the network’s
nodes. In our approach, every Java-enabled device in
the Internet can be such a network node. Currently, we
are working on additional system components on top of
the basic platform layer to network mobile AH better,
to improve scalability and flexibility and to provide an
information base for mobile agents that support their
pro-activity and adaptability. Especially interesting is
the case where the network provides a dynamic

environment[5], e.g., if mobile network nodes and
services appear and disappear and where agents act as
intelligent entities by determining their own path at
runtime dynamically in the continuously changing
landscape.
 The migration of mobile agents is associated with
different movement costs viz transmission time, round
trip time, number of hops, etc. Costs are also generated
by executing the agent’s algorithms on the AH. Such
execution costs are not part of this research. The focus
is to optimize the autonomous navigation through a
network in general. We do not care for the agent’s
autonomy on the user task level, e.g., negotiations,
fulfill user tasks, etc. We also do not optimize the
technical (hardware) infrastructure of the underlying
network. The movement of mobile agents is based on a
logical network view which is based on the nodes on
the network which are equipped with AH.
 To improve the performance of mobile agents
means to optimize a mobile agent’s path through a
network of AH (nodes). Thereby, an agent visits only
those AHs which provide a service of interest.
Furthermore, the agent uses a fast path through a
network based on known infrastructure characteristics
(as QoS). Finally, an agent optimizes its transmissions
between AHs with the help of several migration
strategies described in[6]. The main focus of this paper
is on the performance and evaluation of the additional
system components which are introduced in Section 3.
All components have been prototyped and are currently
evaluated. We look at their interaction, trace typical
scenarios and discuss their efficiency in a number of
situations. Based on the results of our experiments, we

J. Computer Sci., 2 (11): 824-834, 2006

 825

will discuss the applicability of the proposed
framework and pinpoint relevant advantages as well as
inherent constraints.

Overview of PMADE: Figure 1 shows the basic block
diagram of PMADE. Each node of the network has an
Agent Host (AH), which is responsible for accepting
and executing incoming autonomous Java agents and an
Agent Submitter (AS)[5,6], which submits the MA on
behalf of the user to the AH.
 A user, who wants to perform a task, submits the
MA designed to perform that task, to the AS on the user
system. The AS then tries to establish a connection with
the specified AH, where the user already holds an
account. If the connection is established, the AS
submits the MA to it and then goes offline. The AH
examines the nature of the received agent and executes
it. The execution of the agent depends on its nature and
state. The agent can be transferred from one AH to
another whenever required. On completion of
execution, the agent submits its results to the AH,
which in turn stores the results until the remote AS
retrieves them for the user.
 The AH is the key component of PMADE. It
consists of the manager modules and the Host Driver.
The Host Driver lies at the base of the PMADE
architecture and the manager modules reside above it. It
is the basic utility module responsible for driving the
AH by ensuring proper co-ordination between various
managers and making them work in tandem. Details of
the managers and their functions are provided in[6].
PMADE provides weak mobility to its agents and
allows one-hop, two-hop and multi-hop agents[7,8].

Mobile Agent’s Result

Mobile Agent with Task

User Agent
Submitter

Manager Modules
Host Driver
Agent Host

Fig. 1: Block architecture of PMADE

System architecture: The PMADE Domain Service is
a hierarchical arrangement of groups of AHs into a
federation of networked local clusters, so called
domains is shown in Fig. 2. A domain is simply a local
group of well connected and/or logically neighbored
AH with a dedicated manager (a specialized AH-the
Domain Manager[7]). Domains, holding only a limited
number of nodes are again networked with other
domains via a so-called master, thus providing the

means to structure very large networks in a scalable and
iterative fashion. The Domain Master is a specialized
Domain Manager which manages only Domain
Managers.
 Building on this as an infrastructure, we collect
information to generate a network map offering
information to mobile agents. To achieve this, we
implemented a Map Module which consists of several
network sensors and a map data structure[9]. The basic
concepts of this module are taken from the Network
Weather Service[10]. In addition to throughput, latency
and other network status information, this module
collects and distributes information on application-level
services provided by the AH in the domain. By
partitioning the network in PMADE Domains, each AH
is located within a local domain that reflects its primary
area of interest. Each Domain Manager has additional
links to a number of selected remote domains. The Map
Module cares for precise and up-to-date knowledge
(maps) within its local domain and provides a rough,
summarized view of the linked remote domains.
 Utilizing the service descriptions in those maps, a
mobile agent is able to locate points of interest within
the network and see changes in the network structure.
Once a list of interesting AH has been determined,
another system component - the Route Estimator as
shown in Fig. 3 - can be used by the agent to plan an
itinerary[8]. This component is able to calculate the
shortest trip through the net based on the map data. This
component uses classic local optimization algorithms.
If necessary, an itinerary can be recalculated and
amended, for example, in the case of changes in the
network or when the agent moves into new domains
and thus shifts its focus with regards to the fisheye
paradigm.
 At any point in time, as long as we have an
itinerary, a mobile agent may also use a so called
Migration Planner as shown in Fig. 3 to optimize each
single migration included in this itinerary from a more
technological, in our case PMADE-specific, efficiency
perspective[8]. This module is mainly designed to
reduce network load by selecting and transmitting only
those code and data portions of the agent that are
needed at the upcoming remote AH. This is, if
necessary, done by a concept called slicing[11]. Other
options are to place code in advance in the network, to
send data home to carry fewer luggages, to change the
transmission protocol, etc.
 Figure 4 presents an architectural overview of the
system. The components are integrated into the
PMADE using stationary agents. In general, such
agents are not able to migrate but offer local services.
Mobile agents are able to use local services by
employing agent-to-agent communication within the
local AH. Furthermore, the PMADE and the additional
system components are based on Java Virtual Machine
to achieve a high portability and interoperability and to
use standard interfaces to various operating systems.

J. Computer Sci., 2 (11): 824-834, 2006

 826

INTERNET

Route
r

Router

Domain Manager

PMADE Domain

Domain Manager

PMADE Domain

Router
Router

Domain
Master

Map Module

Route Estimator Algorithms

A1

An

Itinerary

Map/Requirements

Agent factory

Task

Services

Map

Migration Planner

Itinerary

Migration State

4

3

User
2

1

Mobile Agents Stationary Agents

Route Estimator

Migration Planner

Map Module

PMADE

Operating System

Java Virtual Machine

Sensors/wireless Nodes

Fig. 2: PMADE domain concept

Fig. 3: An Agent logical view of the system

Fig. 4: System architecture

 The system builds its network of AH on this
principle. Many of these single AHs form the agent
network infrastructure, which is structured into
PMADE Domains. AH communicate only

asynchronously/synchronously by transmitting mobile
agents/messages, respectively.

Implementation: This section presents function and
performance of the network latency and bandwidth
monitoring sensors. Precision, actuality and reliability
of the network measurements made by these sensors
influence the Route estimating and migration planning
directly. Implementation of the system is done on three
laptops, 22 wireless computers and setup of Ethernet
lab whereas one laptop acts as the Master as shown in
Fig. 5. On this computer we launch a second AH which
acts as a Master Domain Manager. On the other laptops
we launch AH acting as another Domain Manager. All
the Domain Managers run network sensors.
 To understand the behavior of the sensors in
different network situations, we constructed several test
networks. The first scenario describes an inter-domain
communication in between the same Ethernet link. All
AHs and the associated network nodes are located in
the same IP-subnet. Normally, two domains do not
share such an environment. Hence, we use different
communication ports for the Domain Managers.

J. Computer Sci., 2 (11): 824-834, 2006

 827

Domain
Manager

Domain
Manager

Bridge + AP

11 Wireless PC 11 Wireless PC

100 mps
switch

AP

Domain
Master

Ethernet network
Internet

Fig. 5: Environment architecture

We use a 100 Mbps Ethernet with a 16-port switch. In
the second scenario the remote domain/AH is located in
another IP-subnet. The two 100 Mbps Ethernet based
IP-subnets are separated by an I-router 915. The third
scenario is like the first but one Domain Manager is a
mobile node linked by three D-Link-2100 IEEE
802.11g WLAN access points. In the fourth scenario,
an IEEE 802.11b W-LAN access point links all
computers and in the fifth the mobile nodes
communicate in ad-hoc mode. In all IEEE 802.11b
cases we take care for the full 11 Mbps throughput of
the wireless connection during the measurements.

MAP module: The Map Module is used by a mobile
agent to locate services and to access information on
network connection qualities. Connection qualities are
especially important for the Route Estimator and the
Migration Planner to achieve optimizations.
 Basically, a map of an AH consists of a partial
network graph. The vertices of such a partial graph are
the visible AH of the surrounding area such as all nodes
in the local domain including the domain manager and
the neighbored domain managers. The edges of the
graph represent the end-to-end view transport layer
connections between the vertices. Each edge is
characterized by the full qualified domain name of the
remote AH and a couple of network parameters that
reflect the current performance of the connection. Since
the PMADE comes as a Java application, we have
naturally a lack of hard network information, because
raw sockets are not supported in Java. There are
possibilities to use basic operating system
functionalities outside of Java (e.g. Ping) by using Java
Native Interface (JNI[12]) e.g. Ping ICMP[13] for
Windows systems. We try to avoid the use of JNI tools

to preserve portability and interoperability as well as to
avoid security problems. Thus, PMADE uses network
sensors (note: we have used wireless machines as
sensors in the testing of the proposed system) with
interfering measurement methods on top of Java to get
network information. The measurement environment
and the sensors are described in the following
subsections.
 Ping gives back the round trip time of an ICMP
packet and is a good indicator for the actual network
traffic on the used link. Unfortunately, Java does not
support raw sockets. Hence, the PMADE latency sensor
emulates a Ping over a TCP connection. Thereby, an
AH node opens a connection to a special port of the
remote AH. After establishing the connection, it sends a
small packet and starts the time measurement. The
answer of the remote AH is an acknowledge, the
measurement stops and the connection gets
disconnected. We assume this procedure takes more
time than the operation system Ping. Nevertheless, we
use the OS-Ping as a reference to compare the
performance of this sensor. During the measurements
we found two main effects. PMADE latency sensor
values are a little bit higher (about 1 to 2 ms) then the
Ping values. We assume this offset comes from the
TCP-controlled transmission of the sensor packet and
the handing over times to Java. The second effect is that
the deviations from average values increase according
to the network load. Ping round trip times (RTT)
deviations are significant smaller than the latency
sensor RTT ones. This comes from the short Ping
timeout causing Ping RTTs to be ignored, if longer
delays occur. The latency sensor complies with the
relative long TCP timeout and therefore, produces in
this case values up to 104s.

J. Computer Sci., 2 (11): 824-834, 2006

 828

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12
network traffic [Mbits/s]

R
ou

nd
 tr

ip
 ti

m
e

[m
s]

Average PMADE Ping (Wireless)
Average OS Ping (Wireless)
Average PMADE Ping (Ethernet)
Average OS Ping (Ethernet)

Fig. 6: RTTs measured by the PMADE latency sensor

and by OS-Ping in different environments

measurement (10Mbps Ethernet networks)

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

bit rate limit (logscale) [Mbps]

Th
ro

ug
ht

pu
t [

K
B

/s
]

average (within a network)
median (within a network)

median (between networks)
average (between networks)

Fig. 7: Bandwidth inside an Ethernet and between two

Ethernets (10 Mbps)

Measured (11 Mbps 802.11b wireless network)

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

bit rate limit (logscale) [Mbps]

Th
ro

u
g

ht
p

ut
 [

K
B

/s
]

median(W-LAN ad-hoc)
average W-LAN ad-hoc)
median (W-LAN managed)
average (W-LAN managed)

Fig. 8: Bandwidth in wireless LAN (managed and ad-

hoc)

 Figure 6 shows the average RTT measurements
over 100 values corrected for deviations bigger than 2 *
101 ms. In spite of the nearly constant overhead to the
Ping values, latency sensor values are comparable
precise.
 The bandwidth sensor works similar to the latency
sensor but the sent packet is considerably larger. After
finishing transmission and time measurement the
bandwidth sensor calculates the current available
bandwidth as the quotient of the given fixed packet size
and the transmission time. Generally a big packet gives
a more precise result but induces also a higher load on
the network. Typically, the size of mobile agents (in
PMADE) ranges from some hundred bytes to more than

5 Kbytes and increases as per application
implementation. This is a rough orientation for a
relevant packet size. But such small packets need only
about 10 ms transmission time in a 10 Mbps Ethernet
and the resolution of Java’s time measurement is only 1
ms. After a preliminary examination with several
packet sizes from 10 Kbyte to 500 Kbyte we decided to
use a 30 Kbyte packet for our experiments which gives
more reliable bandwidth results and loads the network
rather minimal. To verify the bandwidth sensor’s
quality we limited the data output of one AH node with
the Traffic Control tool and measured the available
bandwidth to the remote AH node in several network
scenarios. Figure 7 compares the measured bandwidth
inside an Ethernet and between two Ethernets
connected by a router. At a limited available bit rate of
about 800 Kbps the throughput of the router-connected
Ethernets falls off compared to the intra-Ethernet
throughput. This effect results from more delays and
collisions caused by the two collision domains and by
delays in the router’s forwarding process.
 Figure 8 compares the bandwidth between two AH
in a IEEE 802.11b wireless LAN in managed mode and
ad-hoc mode. The double maximum bandwidth in ad-
hoc mode comes from the direct communication. In
managed mode all data goes over the access point to the
other node, which means two data streams per time, on
the shared radio media. The graphs turn into a
horizontal, nearly straight line. At these points the
natural throughput of the connections is reached. All
measured bandwidth values correspond with the limited
bit rate caused by the overhead of about 20%.
 First tests have shown that the quality of measured
data by PMADE sensors is high enough for route and
migration optimizations. The extreme values of the
latency measurements can be filtered out easily. We are
going to make measurements with full duplex Ethernet
to reduce collisions. In case of the Java time
measurement granularity is improved, we hope to
decrease the size of the packets used by the bandwidth
sensor.

Route estimator: This module may be used by mobile
agents to optimize the sequence of AH to visit, i.e., the
itinerary. If an agent chooses a random path through a
network, the sequence may lead to a non-optimal total
migration time. The Route estimating process itself is
basically the Traveling Salesman Problem (TSP)[14],
which is a NP-complete type of problem. As a
consequence, getting an optimal solution in practical
application is ruled out. But there are heuristic
algorithms (such as local search, genetic, simulated
annealing, neural network algorithms etc.) that have
been applied extensively for solving such problems[15].
The comparative performance of the algorithms
depends on the problem and the given detailed
circumstances.

J. Computer Sci., 2 (11): 824-834, 2006

 829

 The computation of an itinerary is based on the
map data. We calculate a kind of distance matrix simply
by using the reciprocal values of measured bandwidth.
This matrix has to be updated at regular time intervals
to fit the environment’s dynamic behavior. Then, a
pathfinder algorithm is applied in order to get a distance
matrix with shortest paths between two places. In some
experiments, we figured out that our distance matrix is
not symmetrically in general. This is caused by
variation in the bandwidth values and non-symmetrical
connections measured by the Map Module. For TSP,
there are algorithms for asymmetrical (ATSP)[16] and
for symmetrical matrices (STSP)[17].
 The variation in network throughput influences the
result and success of the route estimating, especially
short time variations. The Route Estimator generates an
itinerary with a fast path through the net on basis of the
distance matrix. Thereby, some of the best paths may
be blocked by short-time traffic. At the point in time,
when an agent uses the optimized itinerary, the
generated path may not be the best one any more or, in
the worst case, is by now the slowest one. The
probability that this happens is lower in networks with
clearly differing connection qualities. The Route
estimating is especially useful in networks with
different connection qualities and in networks with
connections, which have different loads over a longer
time period. In networks with nearly identical
connection qualities, the use of Route estimating
algorithms makes no sense – just choose a random path
instead of spending time to calculate the random path.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35

bit rate (fast)/ bit rate (slow)

Ti
m

e
[m

s]

random
optimal

100 KB Agent, Ring of 10, Basis bit rate 500Kbps

Fig. 9: Simple measurement experiment with 22 AH

 We want to discuss the following scenario: a ring
of 22 AH A1, A2, A3…. A22 connected with a 100 Mbps
Ethernet and a bit rate limitation to 500 Kbps for one
direction of the ring (A1 � A2 � A3 � … A10 → A20

→A1). We also have limited the other direction of the
ring from 500 Kbps to 16 Mbps. We have measured the
performance difference between the round trips of an
agent which takes a random path and an agent which
takes the optimal path. Figure 9 shows the measured the

time for the round trips. The speed up of the optimal
path agent increases, if the line speed gets better. Thus,
Route estimating is useful.
 Generally, our Route estimating process starts with
a nearest neighbor search algorithm to generate a first
path through the net. This path is input for further
optimizations with an iterated 3-Opt algorithm (I3Opt).
Figure 10 shows the result of the nearest neighbor
algorithm which is about 36% above optimum
(optimum means minimum in this case) but is
calculated within 0.7 ms. This Route estimating is done
on a generated matrix of the problem space triangulated
random matrices (TMAT) with 100 places[18]. Such a
matrix is an asymmetrical one where an entry is the
shortest path between two places.

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000

Calculation time [ms]

%
 a

b
o
ve

 o
p
ti
m

u
m

Iterated 3-Opt w ith Nearest Neighbor start
tour

Triangulated random matrices with 100 places

Fig. 10: Route estimating with TMAT 100

 I3Opt is a local optimization algorithm which
provides good solution in the implementation of the
considered problem as shown Fig. 10. Steps evolved in
the implementation are:

• Select 3 edges from the path
• Remove these edges (the path is broken into 3

parts)
• Insert these edges so that a better path is achieved
• Repeat until no improvements are achieved (local

optimum)

 The algorithm itself is also iterated several times to
achieve an improvement. There is a good improvement
after the first iterations and only moderate
improvements for further iterations. I3Opt is a good
algorithm to achieve a solution with only some
iterations and a quite short computation time. The
number of iterations can be chosen dynamically. We
iterate this algorithm as long as the amount of migration
time saved is not shorter than the computation time.
Hence, the number of iterations depends on the
computing power.
 An initial start tour for I3Opt should be generated
by a fast algorithm, which delivers a near optimal
result. This is a trade off between computation time and
quality of result. The nearest neighbor algorithm is very

J. Computer Sci., 2 (11): 824-834, 2006

 830

fast but the calculated path is quite far away from
optimum. An even better choice for ATSP is the patch
algorithm. The algorithm chooses exactly one link from
each vertex in a way that the sum of distances of all
chosen edges is minimal. The result is a set of circles
which have to be connected to one circle. For ATSP,
patch is as good as nearest neighbor (and better). It
reaches results about 10% above optimum.
 Within the Route Estimator, we decided to
integrate a combination of the patch and the I3Opt
algorithms. It delivers good results for asymmetrical
distance matrices. In a test run with tmat-instances, we
reached a result within about 0.3 s which is 0.43%
above optimum (100 AHs, P-IV 3.0 GHz, Java). In a
case the distance matrix is symmetrical; the result of the
patch algorithm is not as good as for the asymmetrical
case. In spite of that, the I3Opt achieves good results
for this case too. So this combination of patch and
I3Opts seems to be a good choice.
 Currently, we run a test sequence in a real network.
Unfortunately, the number of AH within this network is
small. There are 24 AHs. We have defined some
random bit rate between 500 Kbps and 16 Mbps for
every link. Connections are limited on the basis of such
generated values to get a network with different
connection qualities. Our combined algorithm reaches a
solution that is about 3% above the optimum. Nearest
neighbor reached about 13%. The migration times of
the agents are reduced by about 50% compared to
random paths. However, we have to do measurements
in larger environments to make further qualitative
statements.

Migration planner: During execution, an agent
consists of three parts: the agent’s state and data and its
set of tasks (one or more task code to be executed at
different nodes in the network- is set of class files). In
Java, the state and data can be serialized for
transmission. Such a serialized agent has to be
transmitted to an AH to guarantee execution.
Furthermore, an agent needs some portion of its tasks to
be executed. The point of time when an agent’s tasks
are transmitted depends on the migration strategy – the
way how a mobile agent is transmitted over the
network. There are so called push strategies which
transmit an agent’s tasks along with the agent’s state
and data (before the agent is started at a remote AH).
Using a pull strategy, an agent’s tasks are downloaded
dynamically (while the agent is executed at a remote
AH) from its home site. The agent’s home platform is
the Agent Submitter (AS)[4] where the agent was started
the first time. Furthermore, strategies can be
distinguished by which tasks are transmitted: all tasks
code at once or only some tasks. For example, the pull-
all strategy means: transmit the serialized agent, start
the agent at the remote site and in case that at least one
task is required, download all tasks of the agent from its
home. Using a push strategy, agent’s tasks can be

transmitted to the next AH of the agent’s route or even
to all AH visited by the agent. For example, the push-
tasks-to-all strategy transmits first some of agent’s tasks
(those tasks which are needed potentially at remote AH)
to all AH which are visited by the agent. Missed tasks
will be downloaded dynamically. Then the serialized
agent is migrated to the first AH of its itinerary. For the
next hops, only the serialized agent is transmitted.
 The Migration Planner is used to optimize time and
network load caused by a transmission. Calculating the
expected transmission times for different migration
strategies does this. The results are compared to select a
best fit migration strategy. In[4], a network model was
developed for that purpose. It allows us to calculate
network load and transmission time for migration of a
mobile agent from home, between AH of its route and
back home. For the computation, it takes in account an
agent’s size (state, data and tasks), data which is
collected on its itinerary (increases with a constant
factor) and connection qualities (latency and
bandwidth). Thereby, a task is used at a remote AH
with a certain probability.
 In[4], this network model is also refined and
extended. The data collected by an agent increases by a
non-constant size and might be transmitted back home
from an AH on the agent’s route. Furthermore, code
servers and mirror servers are added to the model. A
code server is a server which contains all tasks of an
agent. Such a server can be used by an agent to
download tasks instead of downloading from home. A
mirror server might be used by an agent to upload
collected data instead transmitting data to the home site.
An agent can initialize code and mirror servers on its
route. With this extended network model, the effort and
the advantage of initializing and using code and mirror
servers can be computed.
 There are some technical problems to determine
the actual size of the serialized agent at runtime. For the
comparison of different migration strategies, this size is
constant and needs not to be involved in our
computation. The same holds for the collected data.
Hence, the Migration Planner compares the
transmission time for the tasks of an agent. The number
of tasks and the point in time of transmission differs for
different strategies. Possible requests for task
downloads have to be taken in account.
 In more detail, a computation of the migration time
for different migration strategies for a hop is done
according to the following scheme: An agent wants to
hop from server iS to 1+iS . The agent’s home server
is 0S . The latency between two AH is defined by the
function δ . Function τ denotes the available
bandwidth between two AH. The amount of bytes
which will be transmitted is cB (size of all tasks) for

J. Computer Sci., 2 (11): 824-834, 2006

 831

push-all-to-next is () ()()11 ,, ++ += iicii SSBSST τδ and
for pull-all is () ()()1010 ,, ++ += ici SSBSST τδ .
 Furthermore, it is difficult to determine the
probability for the usage of a certain task at a remote
AH it is not designated if it is designated it can be very
easily traced in PMADE. Thus, we decided to use the
worst-case assumption that every task has to be
downloaded as long as we do not have any other hints.
A time computation can be made by pull-tasks

() () ()� ++=
=

++
n

k
i

k
ci SSBBSST

1
1010 ,, τδ τ

k
cB is the size of the k-th task code of the agent. τB

denotes the size of a request for downloading a certain
task code.
 In[8], we have developed some optimization
variants. The basic process for an optimization is
simple:
• Calculate migration times of different migration

strategies
• Compare results and choose best migration strategy

 In literature it is found that there is no overall
optimal migration strategy. A mobile agent might use
the Migration Planner to compute an optimal migration
strategy regarding migration times for parts of its route
or even for the whole route. A simple variant is to
optimize the next hop only by comparing the migration
strategies push-all-to-next, pull-all, pull-tasks and push-
all-to-all. The algorithm looks like this:

/*Calculate transmission times*/
/*Push-all-to-next: Transmit tasks to next AH*/
T-patn = delay ()ji SS , +Task_size/bandwidth ()ji SS , ;

/*Pull-all: Download tasks from home site at next AH*/
T-pa = delay ()jSS ,0 +Task_size/bandwidth ()jSS ,0 ;

{Pull-task: Download each task from home at next AH}
T-pt = delay ()jSS ,0 + SUM (Probability(k)

*(Task(k)+Request))/ bandwidth ()jSS ,0 ;

/* Only for the first hop: push-all-to-all: and Distribute tasks
from home to all AH*/
for s in servers
{

T-pata=T-pata+delay ()sSS ,0 +

Task_size/bandwidth ()sSS ,0 ;
}
/*Select migration strategy*/

T-min = T-patn;
MS = "push-all-to-next";

if (T-pa < T-min)
{

T-min = T-pa;
MS = "pull-all";

}Else if (T-pt < T-min)
{

 T-min = T-pu;

MS = "pull-tasks";
}
else (T-pata < T-min)
{

T-min = T-pata;
MS = "push-all-to-all";

}
 The migration strategy push-all-to-all can be used
only at the home site. From there, all tasks are
transmitted to all AH visited by the agent. Then, only
the serialized agent needs to be transmitted between the
AH of the itinerary. No additional tasks are necessary.
A special case is also the last hop of a mobile agent.
This is the migration back to the home AS. Thereby, the
collected data and the serialized agent are transmitted
only. Thus, there is no optimization for this hop. A
similar optimization variant is to optimize the migration
for more than one hop (not only for the next hop). The
computation of transmission times is made for all
migrations. Thereby, the migration strategy is fixed for
all hops. This method can be improved, if the migration
strategy is not fixed at all. The complexity of the
computation is increased for this method. We have to
check this method in more detail before we implement
it.
 An automatic code server initialization might be
useful in a case where it takes more time to download
tasks from the home AS than from a near code server
with a fast connection. Such a code server is the code
base for further migrations as long as there is a good
connectivity. This is useful only for pull strategies
(downloading tasks code dynamically). The
optimization is simply based on a comparison of
migration times with and without a code server
initialization. With a low optimization degree, the
module compares the migration time with the home AS
as a code server and with a local code server on the
current AH. A medium optimization degree is reached,
if all available code servers are taken into account. As a
variation of the low degree optimization, the migration
times for further migrations with a dynamic code server
initialization are computed (high optimization degree).
The initialization of a mirror server depends on whether
an agent wants to transmit collected data to home site.
Collected data loads the network again and again when
the agent migrates. In a case, where a mobile agent does
not need this collected data for further computations,
the data should be sent home site. Now, the Migration
Planner computes whether it is cheaper to initialize a
mirror server or to use the home AS to upload data.
Automatic data upload variant calculates the migration
time to the next AH, if all data is carried along with the
agent. The result is compared with the time to upload
collected data and to migrate without unnecessary data.
The introduced optimization variants are some
approaches to reduce network load and migration time
of a mobile agent. New variants and combinations of
variants result from the mentioned optimizations. The

J. Computer Sci., 2 (11): 824-834, 2006

 832

implementation of these optimizations is not finished
yet. Thus, we are not able to present measurement
results at the moment. A complete evaluation of all
optimization variants is also difficult due to the lack of
a large global infrastructure for testing.

Analysis: The Map Module is used by a mobile agent
to locate services and to access information on network
connection qualities. Connection qualities are especially
important for the Route Planner and the Migration
Planner to achieve optimizations. Map Module cares for
precise and up-to-date knowledge (maps) within its
local domain and provides a rough, summarized view
of the linked remote domains. Map Module consists of
several network sensors (Latency Sensors, Bandwidth
Sensors) for computation. A mobile agent is able to
locate points of interest within the network of AH (Map
Module). Once a list of interesting AH has been
determined, another system component - the Route
Estimator can be used by the agent to plan an
itinerary[8]. As long as we have an itinerary, a mobile
agent may also use a so-called Migration Planner
Module.
 For computing the overhead on the network we
have taken few assumptions which are- Total Nodes =
TN, Nodes of Interest = NI . Packets per Node = pN ,

Size of Packet = pS , Requested Packet = pR , =u

Requested Packet (pR)/Total Packets Available (pN)

and Traffic due to one node = pN . pS . Thus, Total
Traffic due to all nodes of Interest can be given by

�=
PI

PSPNNIT
1

and Traffic due to relevant Packet on network will be
PPI uST = . Overhead)(MMO can be defined as (Total

Traffic due to all nodes of Interest - Traffic due to
Relevant Packet on network) is given by

P
NI

i
PP uSSN� −

=1
 => � −

=

NI

i
pP uNS

1
.

 Route Estimator component is able to calculate the
shortest trip through the net based on the map data. This
module may be used by mobile agents to optimize the
sequence of AH to visit, i.e., the itinerary. Itinerary is
based on the map data. This component uses classic
local optimization algorithms. Minimum path can be
found out with the help of distance matrix. Distance
matrix is calculated simply by using the reciprocal
values of measured bandwidth and this matrix has to be
updated dynamically. A path finder algorithm is applied
in order to get a distance matrix with shortest paths

between two places. We have assumed →iτ be

measured bandwidth of thi node and where i = 1 to N,
the distance matrix iD for N is given by

�
�

�

�
�

�

�

�
�

�

�
�

�

�

=

NNnN

N

N

i

aaa

aaa

aaa

D

....
................

....
.....

21

22221

11211

 Thus,

iiiia τ
1= where iia is calculated from the

reciprocal value of iiτ . Where iia ’s stands for places

or point of interest for which we find out the shortest
distance. Assume iP be a distance matrix that is found
out from iD by applying a pathfinder algorithm.
Elements of iP gives us the shortest path between two

places and ib ’s are the elements of matrix iP . iib ’s
stands for shortest path between two places.

�
�

�

�
�

�

�

�
�

�

�
�

�

�

=

NNNN

N

N

i

bbb

bbb

bbb

P

....
................

....

....

21

22221

11211

 Distance matrix is not symmetrically because of
varying bandwidth values and non-symmetrical
connections measured by the Map Module. For TSP,
there are algorithms for asymmetrical (ATSP)[16] and
for symmetrical matrices (STSP)[17]. As all of the
working of Route Estimator is done locally so no traffic
is present on the network to go from one place to
another only algorithms are used for local calculations
of path so we assume the overhead is negligible in this
case.
 During execution, an agent consists of three parts:
the agent’s state and data and its set of tasks. As long as
we have an itinerary, a mobile agent may also use a
Migration Planner Module to optimize each single
migration included in the itinerary. This module is
mainly designed to reduce network load by selecting
and transmitting only those code and data portions of
the agent that are needed at the upcoming remote AH.
This is also used to optimize time during transmission.
Network load is the traffic on the network due the
migration of mobile agents. Total traffic and overhead
is calculated as given below so that we optimize the
network load. Mobile agent carries its code and state

across the network. For each hop j traffic is j
MPT .

 Traffic generated due migration planner is given by

P
j

MAP
j

MP SSCRT = , where →PR Requested Packet,

→MAC Code for mobile agent, →jS Size of the state
of agent at hope j and →PS Size of a Packet. Thus, size
of state of the agent is given by

�++=
i

Plistj uSdS
1

ω , where →listd Size of the

list, →ω Size of the other internal data structure

J. Computer Sci., 2 (11): 824-834, 2006

 833

representing the state of computation� →j
PuS1

Indicate the useful information collected by the
agent at each, Visited node. listd , u , PS and ω do not
depend on the node and for simplicity

ωω += listd . Thus Overall Traffic

)(0 �+++�= =
j
i PMAPP

N
jMP uSCSRT ω and Traffic

Overhead are given by 1−= MPMP TO ,

i.e., ()() () 112/11 −+++++ NNMAPP IICSR ω

=> ()() ()12/11 −++++ NNMAPP IICSR ω .

RELATED WORK

In[4], authors refer to some performance

evaluations[19,20] and comparisons[21,22] for mobile agent
systems. These performance evaluations only consider
one-hop migrations for non Java-based systems. The
performance comparisons of different mobile agent
systems turned out to be difficult. A comparison has to
consider that each system has implemented different
security strategies, different migration and transmission
strategies, etc. Regarding migration times, a system
with security issues is not comparable with a system
without such a feature. Thus, we have compared
PMADE with Aglets and other systems extensively.
Furthermore as far as we know, there is no comparable
framework for optimizing agent’s travel through the
agent systems infrastructure. Similar approaches to
obtain network information can be found in the area of
active networks. Such a network consists of active
nodes. An active node is a network node which is able
to detect smart packets and execute the embedded code
e.g., a router with a special execution environment.
In[23] active nodes on a path are used to measure
characteristics of the path’s sections as well as
characteristics of the nodes. The measured
characteristics are highly detailed. Our framework is
able to detect intermediate network nodes and also a
destination oriented end-to-end view. The information
on the network characteristics is adequate for Route
estimating and migration strategy decisions.

CONCLUSION AND FUTURE WORKS

 In this paper we presented an evaluation of system
components for a mobile agent system. These system
components provide a framework for mobile agents to
improve their performance as well as their autonomy
and pro-activity for the navigation through the agent
system framework infrastructure. For the evaluation,
our focus was the quality of the modules as well as their
performance advantage for mobile agents.
 We took a look at some reference measurements in
a network with the help of the OS-Ping. The

comparison showed that the measured round trip time
has a quite constant deviation and is nearly as good as
the OS-Ping. Furthermore, we made some
measurements in defined the quality of data which is
collected by sensors of the Map Module. Therefore, we
made network environments. The throughput measured
by the bandwidth sensor reflects the actual network
quality quite good. Caused by the bad granularity of
time intervals in Java, we decided to do the bandwidth
measurements with a quite large packet size.
 We also made first measurements with the Route
Estimator. Caused by the lack of a larger infrastructure,
we had to use generated distance matrices to evaluate
the performance of this module. In most cases, we
assume the distance matrix is an asymmetrical one.
Thus, we use a combination of algorithms for ATSP.
The measurements showed that the module is able to
calculate a nearly optimal path through the net within a
very short time. We also started first measurements
within a real network. Our first impression is that this
Route estimating process works, but we are not able to
present qualitative statements, as yet.
 Finally, we introduced some optimization variants
of the Migration Planner. Thereby, the computation of
expected migration times is used for the selection of a
migration strategy. This computation is based on the
map’s data. Variation in values falsifies the results also
in this case. The comparison of migration strategies is
based on the computation of the code tasks’
transmission times.
 With this framework, we made a qualitative step in
the development of PMADE. This framework is an
extension of PMADE, which is designed to be plug-
able into other Java-based mobile agent systems. In the
past, without this framework, the programmer or even
the end user had to integrate routing information into
PMADE agents. Now, agents can do this task on their
own (in an autonomous fashion) and even more,
dynamically adjust the itinerary. Thus, the performance
gain cannot quantitatively be measured within our
system.
 The developed prototypes have to be updated and
completed. Furthermore, a sample application will be
developed to show the interaction of the framework’s
modules and to test their applicability in more detail.
We are currently in the process of implementing this
system for cluster computing and mobile transaction
management.

REFERENCES

1. Picco, G.P., 2001. Mobile Agents: An Introduction.

Microprocessors and Microsystems, 25: 65-74.
2. Tripathi, R., T. Ahmed and N.M. Karnik, 2001.

Experiences and future challenges in mobile agents
programming. Microprocessors and Microsystems,
25: 121-129.

J. Computer Sci., 2 (11): 824-834, 2006

 834

3. Vigna, G., 1998. Mobile code technologies,
paradigms and applications. Ph.D. Thesis.
Politecnico di Milano, Italy.

4. Patel, R.B. and K. Garg, 2004. A new paradigm for
mobile agent computing. WSEAS Trans.
Computers, 1: 57-64.

5. Erfurth, C. and W. Rossak, 2002. Characterization
and management of dynamical behavior in a
system with mobile agents. In Innovative Internet
Computing System-Second Intl. Workshop, IICS
2002, K¨uhlungsborn (Germany), Jun. LNCS 2346,
H. Unger, T. B¨ohme and A. Mikler (Eds.),
Springer-Verlag, pp: 109-119.

6. Patel, R.B., 2004. Design and Implementation of a
secure mobile agent platform for distributed
computing. Ph.D. Thesis. Department of
Electronics and Computer Engineering, IIT
Roorkee, India.

7. Patel, R.B., N. Mastorakis and K. Garg, 2005.
Mobile agent location management in global
networks. WSEAS Trans. Computers, 7: 697-710.

8. Patel, R.B. and K. Garg, 2005. A flexible security
framework for mobile agent systems. Control and
Intelligent Systems, 33: 175-183.

9. Schreiber, S., 2002. Beschreibung und Analyse von
dynamischen Netzen f¨ur Agentensysteme. M. Sc.
Thesis. Friedrich-Schiller-Universit¨at Jena,
Institutf¨ur Informatik.

10. Wolski, R., N. Spring and C. Peterson, 1997.
Implementing a performance forecasting system
for meta-computing: The network weather service.
Proc. Supercomputing’97 San Jose, CA: ACM
SIGARCH and IEEE.

11. Fensch, C., 2001. Class splitting as a method to
reduce network traffic in a mobile agent system.
M. Sc. Thesis. Friedrich-Schiller-Universit¨at Jena,
Institut f¨ur Informatik.

12. Java Native Interface, http://java.sun.
com/j2se/1.3/docs/guide/jni/, 2003.

13. Ping functionality in java,
http://www.geocities.com/SiliconValley/Bit/5716/p
ing/index eng.html, 2003.

14. Lin, S., 1965. Computer solutions of the traveling
salesman problem. Bell System Technical J., 44:
2245–2269.

15. Johnson, D.S. and L.A. McGeoch, 1997. The
traveling salesman problem: A case study in local
optimization. Local Search in Combinatorial
Optimization, E.H.L. Aarts and J.K. Lenstra (Eds.),
John Wiley and Sons, Ltd., pp: 215–310.

16. Johnson, D.S., G. Gutin, L.A. McGeoch, A. Yeo,
W. Zhang and A. Zverovitch, 2002. Experimental
analysis of heuristics for the ATSP. The Traveling
Salesman Problem and its Variations, G. Gutin and
A. P. Punnen (Eds.) Kluwer Academic Publishers,
pp: 445–487.

17. Johnson, D.S. and L.A. McGeoch, 2002.
Experimental analysis of heuristics for the STSP.
The Traveling Salesman Problem and its
Variations, G. Gutin and A. P. Punnen, Eds.
Kluwer Academic Publishers, pp: 369-444.

18. Cirasella, J., D.S. Johnson, L.A. McGeoch and W.
Zhang, 2001. The asymmetric traveling salesman
problem: Algorithms, instance generators and tests.
Proc. 3rd ALENEX, 17 Jun. LNCS 2153, pp: 32-
59, Springer-Verlag.

19. Gray, R.S., 1997. Agent Tcl: A flexible and secure
mobile-agent system. Ph.D. Thesis. Department of
Computer Science, Dartmouth College, University
of Pennsylvania, Georgia, USA.

20. Johansen, D., N.P. Sudmann and R. van Renesse,
1997. Performance issues in TACOMA. Proc. 3rd
ECOOP Workshop on mobile object systems:
Operating system support for mobile object
systems, Jyv¨alskyl¨a (Finland), C. Tschudin, J.
Baumann and M. Shapiro (Eds).

21. Dikaiakos, M.D. and G. Samaras, 2000. Qualitative
performance analysis of mobile agent systems: A
hierarchical approach. Department of Computer
Science, University of Cyprus, Tech. Rep..

22. Silva, L.M., G. Soares, P. Martins, V. Batista and
L. Santos, 2000. Comparing the performance of
mobile agent systems. J. Computer
Communications, Special Issue on Mobile
Software Agents for Telecommunications, 23: 769-
778.

23. Li, Y. and L. Wolf, 2001. Collection of network
information in active networks. ACM SIGOPS
Operating Systems Rev., 35: 39-49.

