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Abstract: Mobile agents can be seen as a new paradigm for distributed computing. One characteristic 
of mobile agents is their autonomy and pro-activity. This article present a framework designed on top 
of PMADE (Platform for Mobile Agent Distribution and Execution) to support our research in this 
domain. Our framework consists of three modules. The Map Module collects information on the 
available network of agent hosts (AHs) and a mobile agent is able to locate services within the network 
with the help of this module. Furthermore, the framework provides a Route estimating module and an 
optimization module, which minimizes network load. These modules support a fast and efficient 
navigation through the network, which is an environment with an inherently dynamical behavior. The 
basis for this work is the PMADE Domain Service, which is a hierarchical arrangement of AHs that 
groups AHs into a federation of networked local clusters, so called domains. This paper also evaluates 
the basic concepts and the actual modules of the developed framework and made some measurements 
to characterize the modules quality and to identify problems.  
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INTRODUCTION 

 
 A Mobile agent (MA)[1] is a software process, 
which can move autonomously from one physical 
network location to another. The agent performs its job 
wherever and whenever it is found appropriate and is 
not restricted to be co-located with its client. Thus, 
there is an inherent sense of autonomy in the mobility 
and execution of the agent. Agents can be seen as 
automated errand boys who work for users. MA 
research evolved over the past years from the creation 
of many different monolithic mobile agent systems 
(MASs), often with similar characteristics and built by 
research groups spread all over the world, for 
optimisation and better understanding of specific agent 
issues[1,2].  
 In the area of networked environments, mobile 
agents can be seen as a new paradigm for the 
implementation of fully distributed software systems 
with a balanced peer-to-peer concept[3]. PMADE 
(Platform for Mobile Agent Distribution and Execution) 
is a Java-based platform that supports the efficient 
migration of mobile agents on a wide variety of 
protocols and migration strategies[4]. It is based on so 
called agent host (AH)[4] that resides on the network’s 
nodes. In our approach, every Java-enabled device in 
the Internet can be such a network node. Currently, we 
are working on additional system components on top of 
the basic platform layer to network mobile AH better, 
to improve scalability and flexibility and to provide an 
information base for mobile agents that support their 
pro-activity and adaptability. Especially interesting is 
the case where the network provides a dynamic 

environment[5], e.g., if mobile network nodes and 
services appear and disappear and where agents act as 
intelligent entities by determining their own path at 
runtime dynamically in the continuously changing 
landscape. 
 The migration of mobile agents is associated with 
different movement costs viz transmission time, round 
trip time, number of hops, etc. Costs are also generated 
by executing the agent’s algorithms on the AH. Such 
execution costs are not part of this research. The focus 
is to optimize the autonomous navigation through a 
network in general. We do not care for the agent’s 
autonomy on the user task level, e.g., negotiations, 
fulfill user tasks, etc. We also do not optimize the 
technical (hardware) infrastructure of the underlying 
network. The movement of mobile agents is based on a 
logical network view which is based on the nodes on 
the network which are equipped with AH. 
 To improve the performance of mobile agents 
means to optimize a mobile agent’s path through a 
network of AH (nodes). Thereby, an agent visits only 
those AHs which provide a service of interest. 
Furthermore, the agent uses a fast path through a 
network based on known infrastructure characteristics 
(as QoS). Finally, an agent optimizes its transmissions 
between AHs with the help of several migration 
strategies described in[6]. The main focus of this paper 
is on the performance and evaluation of the additional 
system components which are introduced in Section 3. 
All components have been prototyped and are currently 
evaluated. We look at their interaction, trace typical 
scenarios and discuss their efficiency in a number of 
situations. Based on the results of our experiments, we 
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will discuss the applicability of the proposed 
framework and pinpoint relevant advantages as well as 
inherent constraints. 
 
Overview of PMADE: Figure 1 shows the basic block 
diagram of PMADE. Each node of the network has an 
Agent Host (AH), which is responsible for accepting 
and executing incoming autonomous Java agents and an 
Agent Submitter (AS)[5,6], which submits the MA on 
behalf of the user to the AH.  
 A user, who wants to perform a task, submits the 
MA designed to perform that task, to the AS on the user 
system. The AS then tries to establish a connection with 
the specified AH, where the user already holds an 
account. If the connection is established, the AS 
submits the MA to it and then goes offline. The AH 
examines the nature of the received agent and executes 
it. The execution of the agent depends on its nature and 
state. The agent can be transferred from one AH to 
another whenever required. On completion of 
execution, the agent submits its results to the AH, 
which in turn stores the results until the remote AS 
retrieves them for the user.  
 The AH is the key component of PMADE. It 
consists of the manager modules and the Host Driver. 
The Host Driver lies at the base of the PMADE 
architecture and the manager modules reside above it. It 
is the basic utility module responsible for driving the 
AH by ensuring proper co-ordination between various 
managers and making them work in tandem. Details of 
the managers and their functions are provided in[6]. 
PMADE provides weak mobility to its agents and 
allows one-hop, two-hop and multi-hop agents[7,8]. 
 
 

Mobile Agent’s Result 

Mobile Agent with Task 

User Agent 
Submitter 

Manager Modules 
Host Driver 
Agent Host 

 
 
Fig. 1: Block architecture of PMADE 
 
System architecture: The PMADE Domain Service is 
a hierarchical arrangement of groups of AHs into a 
federation of networked local clusters, so called 
domains is shown in Fig. 2. A domain is simply a local 
group of well connected and/or logically neighbored 
AH with a dedicated manager (a specialized AH-the 
Domain Manager[7]). Domains, holding only a limited 
number of nodes are again networked with other 
domains via a so-called master, thus providing the 

means to structure very large networks in a scalable and 
iterative fashion. The Domain Master is a specialized 
Domain Manager which manages only Domain 
Managers. 
 Building on this as an infrastructure, we collect 
information to generate a network map offering 
information to mobile agents. To achieve this, we 
implemented a Map Module which consists of several 
network sensors and a map data structure[9]. The basic 
concepts of this module are taken from the Network 
Weather Service[10]. In addition to throughput, latency 
and other network status information, this module 
collects and distributes information on application-level 
services provided by the AH in the domain. By 
partitioning the network in PMADE Domains, each AH 
is located within a local domain that reflects its primary 
area of interest. Each Domain Manager has additional 
links to a number of selected remote domains. The Map 
Module cares for precise and up-to-date knowledge 
(maps) within its local domain and provides a rough, 
summarized view of the linked remote domains.  
 Utilizing the service descriptions in those maps, a 
mobile agent is able to locate points of interest within 
the network and see changes in the network structure. 
Once a list of interesting AH has been determined, 
another system component - the Route Estimator as 
shown in Fig. 3 - can be used by the agent to plan an 
itinerary[8]. This component is able to calculate the 
shortest trip through the net based on the map data. This 
component uses classic local optimization algorithms. 
If necessary, an itinerary can be recalculated and 
amended, for example, in the case of changes in the 
network or when the agent moves into new domains 
and thus shifts its focus with regards to the fisheye 
paradigm. 
 At any point in time, as long as we have an 
itinerary, a mobile agent may also use a so called 
Migration Planner as shown in Fig. 3 to optimize each 
single migration included in this itinerary from a more 
technological, in our case PMADE-specific, efficiency 
perspective[8]. This module is mainly designed to 
reduce network load by selecting and transmitting only 
those code and data portions of the agent that are 
needed at the upcoming remote AH. This is, if 
necessary, done by a concept called slicing[11]. Other 
options are to place code in advance in the network, to 
send data home to carry fewer luggages, to change the 
transmission protocol, etc. 
 Figure 4 presents an architectural overview of the 
system. The components are integrated into the 
PMADE using stationary agents. In general, such 
agents are not able to migrate but offer local services. 
Mobile agents are able to use local services by 
employing agent-to-agent communication within the 
local AH. Furthermore, the PMADE and the additional 
system components are based on Java Virtual Machine 
to achieve a high portability and interoperability and to 
use standard interfaces to various operating systems.  
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Fig. 2: PMADE domain concept 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: An Agent logical view of the system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: System architecture 
 
 The system builds its network of AH on this 
principle. Many of these single AHs form the agent 
network infrastructure, which is structured into 
PMADE Domains. AH communicate only 

asynchronously/synchronously by transmitting mobile 
agents/messages, respectively. 
 
Implementation: This section presents function and 
performance of the network latency and bandwidth 
monitoring sensors. Precision, actuality and reliability 
of the network measurements made by these sensors 
influence the Route estimating and migration planning 
directly. Implementation of the system is done on three 
laptops, 22 wireless computers and setup of Ethernet 
lab whereas one laptop acts as the Master as shown in 
Fig. 5. On this computer we launch a second AH which 
acts as a Master Domain Manager. On the other laptops 
we launch AH acting as another Domain Manager. All 
the Domain Managers run network sensors. 
 To understand the behavior of the sensors in 
different network situations, we constructed several test 
networks. The first scenario describes an inter-domain 
communication in between the same Ethernet link. All 
AHs and the associated network nodes are located in 
the same IP-subnet. Normally, two domains do not 
share such an environment. Hence, we use different 
communication ports for the Domain Managers. 
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Fig. 5: Environment architecture 
 
We use a 100 Mbps Ethernet with a 16-port switch. In 
the second scenario the remote domain/AH is located in 
another IP-subnet. The two 100 Mbps Ethernet based 
IP-subnets are separated by an I-router 915. The third 
scenario is like the first but one Domain Manager is a 
mobile node linked by three D-Link-2100 IEEE 
802.11g WLAN access points. In the fourth scenario, 
an IEEE 802.11b W-LAN access point links all 
computers and in the fifth the mobile nodes 
communicate in ad-hoc mode. In all IEEE 802.11b 
cases we take care for the full 11 Mbps throughput of 
the wireless connection during the measurements.  
 
MAP module: The Map Module is used by a mobile 
agent to locate services and to access information on 
network connection qualities. Connection qualities are 
especially important for the Route Estimator and the 
Migration Planner to achieve optimizations. 
 Basically, a map of an AH consists of a partial 
network graph. The vertices of such a partial graph are 
the visible AH of the surrounding area such as all nodes 
in the local domain including the domain manager and 
the neighbored domain managers. The edges of the 
graph represent the end-to-end view transport layer 
connections between the vertices. Each edge is 
characterized by the full qualified domain name of the 
remote AH and a couple of network parameters that 
reflect the current performance of the connection. Since 
the PMADE comes as a Java application, we have 
naturally a lack of hard network information, because 
raw sockets are not supported in Java. There are 
possibilities to use basic operating system 
functionalities outside of Java (e.g. Ping) by using Java 
Native Interface (JNI[12]) e.g. Ping ICMP[13] for 
Windows systems. We try to avoid the use of JNI tools 

to preserve portability and interoperability as well as to 
avoid security problems. Thus, PMADE uses network 
sensors (note: we have used wireless machines as 
sensors in the testing of the proposed system) with 
interfering measurement methods on top of Java to get 
network information. The measurement environment 
and the sensors are described in the following 
subsections. 
 Ping gives back the round trip time of an ICMP 
packet and is a good indicator for the actual network 
traffic on the used link. Unfortunately, Java does not 
support raw sockets. Hence, the PMADE latency sensor 
emulates a Ping over a TCP connection. Thereby, an 
AH node opens a connection to a special port of the 
remote AH. After establishing the connection, it sends a 
small packet and starts the time measurement. The 
answer of the remote AH is an acknowledge, the 
measurement stops and the connection gets 
disconnected. We assume this procedure takes more 
time than the operation system Ping. Nevertheless, we 
use the OS-Ping as a reference to compare the 
performance of this sensor. During the measurements 
we found two main effects. PMADE latency sensor 
values are a little bit higher (about 1 to 2 ms) then the 
Ping values. We assume this offset comes from the 
TCP-controlled transmission of the sensor packet and 
the handing over times to Java. The second effect is that 
the deviations from average values increase according 
to the network load. Ping round trip times (RTT) 
deviations are significant smaller than the latency 
sensor RTT ones. This comes from the short Ping 
timeout causing Ping RTTs to be ignored, if longer 
delays occur. The latency sensor complies with the 
relative long TCP timeout and therefore, produces in 
this case values up to 104s. 
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Fig. 6: RTTs measured by the PMADE latency sensor 

and by OS-Ping in different environments 
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Fig. 7: Bandwidth inside an Ethernet and between two 

Ethernets (10 Mbps) 
 

Measured (11 Mbps 802.11b wireless network)

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

bit rate limit (logscale) [Mbps]

Th
ro

u
g

ht
p

ut
 [

K
B

/s
]

median(W-LAN ad-hoc)
average W-LAN ad-hoc)
median (W-LAN managed)
average (W-LAN managed)

 
Fig. 8: Bandwidth in wireless LAN (managed and ad-

hoc) 
 
 Figure 6 shows the average RTT measurements 
over 100 values corrected for deviations bigger than 2 * 
101 ms. In spite of the nearly constant overhead to the 
Ping values, latency sensor values are comparable 
precise. 
 The bandwidth sensor works similar to the latency 
sensor but the sent packet is considerably larger. After 
finishing transmission and time measurement the 
bandwidth sensor calculates the current available 
bandwidth as the quotient of the given fixed packet size 
and the transmission time. Generally a big packet gives 
a more precise result but induces also a higher load on 
the network. Typically, the size of mobile agents (in 
PMADE) ranges from some hundred bytes to more than 

5 Kbytes and increases as per application 
implementation. This is a rough orientation for a 
relevant packet size. But such small packets need only 
about 10 ms transmission time in a 10 Mbps Ethernet 
and the resolution of Java’s time measurement is only 1 
ms. After a preliminary examination with several 
packet sizes from 10 Kbyte to 500 Kbyte we decided to 
use a 30 Kbyte packet for our experiments which gives 
more reliable bandwidth results and loads the network 
rather minimal. To verify the bandwidth sensor’s 
quality we limited the data output of one AH node with 
the Traffic Control tool and measured the available 
bandwidth to the remote AH node in several network 
scenarios. Figure 7 compares the measured bandwidth 
inside an Ethernet and between two Ethernets 
connected by a router. At a limited available bit rate of 
about 800 Kbps the throughput of the router-connected 
Ethernets falls off compared to the intra-Ethernet 
throughput. This effect results from more delays and 
collisions caused by the two collision domains and by 
delays in the router’s forwarding process. 
 Figure 8 compares the bandwidth between two AH 
in a IEEE 802.11b wireless LAN in managed mode and 
ad-hoc mode. The double maximum bandwidth in ad-
hoc mode comes from the direct communication. In 
managed mode all data goes over the access point to the 
other node, which means two data streams per time, on 
the shared radio media. The graphs turn into a 
horizontal, nearly straight line. At these points the 
natural throughput of the connections is reached. All 
measured bandwidth values correspond with the limited 
bit rate caused by the overhead of about 20%. 
 First tests have shown that the quality of measured 
data by PMADE sensors is high enough for route and 
migration optimizations. The extreme values of the 
latency measurements can be filtered out easily. We are 
going to make measurements with full duplex Ethernet 
to reduce collisions. In case of the Java time 
measurement granularity is improved, we hope to 
decrease the size of the packets used by the bandwidth 
sensor.  
 
Route estimator: This module may be used by mobile 
agents to optimize the sequence of AH to visit, i.e., the 
itinerary. If an agent chooses a random path through a 
network, the sequence may lead to a non-optimal total 
migration time. The Route estimating process itself is 
basically the Traveling Salesman Problem (TSP)[14], 
which is a NP-complete type of problem. As a 
consequence, getting an optimal solution in practical 
application is ruled out. But there are heuristic 
algorithms (such as local search, genetic, simulated 
annealing, neural network algorithms etc.) that have 
been applied extensively for solving such problems[15]. 
The comparative performance of the algorithms 
depends on the problem and the given detailed 
circumstances. 
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 The computation of an itinerary is based on the 
map data. We calculate a kind of distance matrix simply 
by using the reciprocal values of measured bandwidth. 
This matrix has to be updated at regular time intervals 
to fit the environment’s dynamic behavior. Then, a 
pathfinder algorithm is applied in order to get a distance 
matrix with shortest paths between two places. In some 
experiments, we figured out that our distance matrix is 
not symmetrically in general. This is caused by 
variation in the bandwidth values and non-symmetrical 
connections measured by the Map Module. For TSP, 
there are algorithms for asymmetrical (ATSP)[16] and 
for symmetrical matrices (STSP)[17]. 
 The variation in network throughput influences the 
result and success of the route estimating, especially 
short time variations. The Route Estimator generates an 
itinerary with a fast path through the net on basis of the 
distance matrix. Thereby, some of the best paths may 
be blocked by short-time traffic. At the point in time, 
when an agent uses the optimized itinerary, the 
generated path may not be the best one any more or, in 
the worst case, is by now the slowest one. The 
probability that this happens is lower in networks with 
clearly differing connection qualities. The Route 
estimating is especially useful in networks with 
different connection qualities and in networks with 
connections, which have different loads over a longer 
time period. In networks with nearly identical 
connection qualities, the use of Route estimating 
algorithms makes no sense – just choose a random path 
instead of spending time to calculate the random path. 
 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35

bit rate (fast)/ bit rate (slow)

Ti
m

e 
[m

s]

random
optimal

100 KB Agent, Ring of 10, Basis bit rate 500Kbps

 
Fig. 9: Simple measurement experiment with 22 AH 
 
 We want to discuss the following scenario: a ring 
of 22 AH A1, A2, A3…. A22 connected with a 100 Mbps 
Ethernet and a bit rate limitation to 500 Kbps for one 
direction of the ring (A1 � A2 � A3 � … A10 → A20 

→A1). We also have limited the other direction of the 
ring from 500 Kbps to 16 Mbps. We have measured the 
performance difference between the round trips of an 
agent which takes a random path and an agent which 
takes the optimal path. Figure 9 shows the measured the 

time for the round trips. The speed up of the optimal 
path agent increases, if the line speed gets better. Thus, 
Route estimating is useful. 
 Generally, our Route estimating process starts with 
a nearest neighbor search algorithm to generate a first 
path through the net. This path is input for further 
optimizations with an iterated 3-Opt algorithm (I3Opt). 
Figure 10 shows the result of the nearest neighbor 
algorithm which is about 36% above optimum 
(optimum means minimum in this case) but is 
calculated within 0.7 ms. This Route estimating is done 
on a generated matrix of the problem space triangulated 
random matrices (TMAT) with 100 places[18]. Such a 
matrix is an asymmetrical one where an entry is the 
shortest path between two places. 
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Fig. 10: Route estimating with TMAT 100 
 
 I3Opt is a local optimization algorithm which 
provides good solution in the implementation of the 
considered problem as shown Fig. 10. Steps evolved in 
the implementation are: 
 
• Select 3 edges from the path 
• Remove these edges (the path is broken into 3 

parts) 
• Insert these edges so that a better path is achieved 
• Repeat until no improvements are achieved (local 

optimum) 
 
 The algorithm itself is also iterated several times to 
achieve an improvement. There is a good improvement 
after the first iterations and only moderate 
improvements for further iterations. I3Opt is a good 
algorithm to achieve a solution with only some 
iterations and a quite short computation time. The 
number of iterations can be chosen dynamically. We 
iterate this algorithm as long as the amount of migration 
time saved is not shorter than the computation time. 
Hence, the number of iterations depends on the 
computing power. 
 An initial start tour for I3Opt should be generated 
by a fast algorithm, which delivers a near optimal 
result. This is a trade off between computation time and 
quality of result. The nearest neighbor algorithm is very 
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fast but the calculated path is quite far away from 
optimum. An even better choice for ATSP is the patch 
algorithm. The algorithm chooses exactly one link from 
each vertex in a way that the sum of distances of all 
chosen edges is minimal. The result is a set of circles 
which have to be connected to one circle. For ATSP, 
patch is as good as nearest neighbor (and better). It 
reaches results about 10% above optimum. 
 Within the Route Estimator, we decided to 
integrate a combination of the patch and the I3Opt 
algorithms. It delivers good results for asymmetrical 
distance matrices. In a test run with tmat-instances, we 
reached a result within about 0.3 s which is 0.43% 
above optimum (100 AHs, P-IV 3.0 GHz, Java). In a 
case the distance matrix is symmetrical; the result of the 
patch algorithm is not as good as for the asymmetrical 
case. In spite of that, the I3Opt achieves good results 
for this case too. So this combination of patch and 
I3Opts seems to be a good choice.  
 Currently, we run a test sequence in a real network. 
Unfortunately, the number of AH within this network is 
small. There are 24 AHs. We have defined some 
random bit rate between 500 Kbps and 16 Mbps for 
every link. Connections are limited on the basis of such 
generated values to get a network with different 
connection qualities. Our combined algorithm reaches a 
solution that is about 3% above the optimum. Nearest 
neighbor reached about 13%. The migration times of 
the agents are reduced by about 50% compared to 
random paths. However, we have to do measurements 
in larger environments to make further qualitative 
statements. 
 
Migration planner: During execution, an agent 
consists of three parts: the agent’s state and data and its 
set of tasks (one or more task code to be executed at 
different nodes in the network- is set of class files). In 
Java, the state and data can be serialized for 
transmission. Such a serialized agent has to be 
transmitted to an AH to guarantee execution. 
Furthermore, an agent needs some portion of its tasks to 
be executed. The point of time when an agent’s tasks 
are transmitted depends on the migration strategy – the 
way how a mobile agent is transmitted over the 
network. There are so called push strategies which 
transmit an agent’s tasks along with the agent’s state 
and data (before the agent is started at a remote AH). 
Using a pull strategy, an agent’s tasks are downloaded 
dynamically (while the agent is executed at a remote 
AH) from its home site. The agent’s home platform is 
the Agent Submitter (AS)[4] where the agent was started 
the first time. Furthermore, strategies can be 
distinguished by which tasks are transmitted: all tasks 
code at once or only some tasks. For example, the pull-
all strategy means: transmit the serialized agent, start 
the agent at the remote site and in case that at least one 
task is required, download all tasks of the agent from its 
home. Using a push strategy, agent’s tasks can be 

transmitted to the next AH of the agent’s route or even 
to all AH visited by the agent. For example, the push-
tasks-to-all strategy transmits first some of agent’s tasks 
(those tasks which are needed potentially at remote AH) 
to all AH which are visited by the agent. Missed tasks 
will be downloaded dynamically. Then the serialized 
agent is migrated to the first AH of its itinerary. For the 
next hops, only the serialized agent is transmitted. 
 The Migration Planner is used to optimize time and 
network load caused by a transmission. Calculating the 
expected transmission times for different migration 
strategies does this. The results are compared to select a 
best fit migration strategy. In[4], a network model was 
developed for that purpose. It allows us to calculate 
network load and transmission time for migration of a 
mobile agent from home, between AH of its route and 
back home. For the computation, it takes in account an 
agent’s size (state, data and tasks), data which is 
collected on its itinerary (increases with a constant 
factor) and connection qualities (latency and 
bandwidth). Thereby, a task is used at a remote AH 
with a certain probability. 
 In[4], this network model is also refined and 
extended. The data collected by an agent increases by a 
non-constant size and might be transmitted back home 
from an AH on the agent’s route. Furthermore, code 
servers and mirror servers are added to the model. A 
code server is a server which contains all tasks of an 
agent. Such a server can be used by an agent to 
download tasks instead of downloading from home. A 
mirror server might be used by an agent to upload 
collected data instead transmitting data to the home site. 
An agent can initialize code and mirror servers on its 
route. With this extended network model, the effort and 
the advantage of initializing and using code and mirror 
servers can be computed. 
 There are some technical problems to determine 
the actual size of the serialized agent at runtime. For the 
comparison of different migration strategies, this size is 
constant and needs not to be involved in our 
computation. The same holds for the collected data. 
Hence, the Migration Planner compares the 
transmission time for the tasks of an agent. The number 
of tasks and the point in time of transmission differs for 
different strategies. Possible requests for task 
downloads have to be taken in account. 
 In more detail, a computation of the migration time 
for different migration strategies for a hop is done 
according to the following scheme: An agent wants to 
hop from server iS  to 1+iS . The agent’s home server 
is 0S . The latency between two AH is defined by the 
function δ . Function τ  denotes the available 
bandwidth between two AH. The amount of bytes 
which will be transmitted is cB  (size of all tasks) for 
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push-all-to-next is ( ) ( )( )11 ,, ++ += iicii SSBSST τδ  and 
for pull-all is ( ) ( )( )1010 ,, ++ += ici SSBSST τδ . 
 Furthermore, it is difficult to determine the 
probability for the usage of a certain task at a remote 
AH it is not designated if it is designated it can be very 
easily traced in PMADE. Thus, we decided to use the 
worst-case assumption that every task has to be 
downloaded as long as we do not have any other hints. 
A time computation can be made by pull-tasks 

( ) ( ) ( )� ++=
=

++
n

k
i

k
ci SSBBSST

1
1010 ,, τδ τ   

k
cB  is the size of the k-th task code of the agent. τB  

denotes the size of a request for downloading a certain 
task code. 
 In[8], we have developed some optimization 
variants. The basic process for an optimization is 
simple: 
• Calculate migration times of different migration 

strategies 
• Compare results and choose best migration strategy 

 
 In literature it is found that there is no overall 
optimal migration strategy. A mobile agent might use 
the Migration Planner to compute an optimal migration 
strategy regarding migration times for parts of its route 
or even for the whole route. A simple variant is to 
optimize the next hop only by comparing the migration 
strategies push-all-to-next, pull-all, pull-tasks and push-
all-to-all. The algorithm looks like this: 
 
/*Calculate transmission times*/ 
/*Push-all-to-next: Transmit tasks to next AH*/ 
T-patn = delay ( )ji SS ,  +Task_size/bandwidth ( )ji SS ,  ; 

/*Pull-all: Download tasks from home site at next AH*/ 
T-pa = delay ( )jSS ,0  +Task_size/bandwidth ( )jSS ,0  ; 

{Pull-task: Download each task from home at next AH} 
T-pt = delay ( )jSS ,0  + SUM (Probability( k ) 

*(Task( k )+Request))/ bandwidth ( )jSS ,0  ; 

/* Only for the first hop: push-all-to-all: and Distribute tasks 
from home to all AH*/ 
for s  in servers 
{ 

T-pata=T-pata+delay ( )sSS ,0 + 

Task_size/bandwidth ( )sSS ,0  ; 
} 
/*Select migration strategy*/ 

T-min = T-patn; 
MS = "push-all-to-next"; 

if ( T-pa < T-min )  
{ 

T-min = T-pa; 
MS = "pull-all"; 

}Else if ( T-pt < T-min ) 
{ 

 T-min = T-pu;  

MS = "pull-tasks"; 
}  
else ( T-pata < T-min ) 
{ 

T-min = T-pata; 
MS = "push-all-to-all"; 

} 
 The migration strategy push-all-to-all can be used 
only at the home site. From there, all tasks are 
transmitted to all AH visited by the agent. Then, only 
the serialized agent needs to be transmitted between the 
AH of the itinerary. No additional tasks are necessary. 
A special case is also the last hop of a mobile agent. 
This is the migration back to the home AS. Thereby, the 
collected data and the serialized agent are transmitted 
only. Thus, there is no optimization for this hop. A 
similar optimization variant is to optimize the migration 
for more than one hop (not only for the next hop). The 
computation of transmission times is made for all 
migrations. Thereby, the migration strategy is fixed for 
all hops. This method can be improved, if the migration 
strategy is not fixed at all. The complexity of the 
computation is increased for this method. We have to 
check this method in more detail before we implement 
it. 
 An automatic code server initialization might be 
useful in a case where it takes more time to download 
tasks from the home AS than from a near code server 
with a fast connection. Such a code server is the code 
base for further migrations as long as there is a good 
connectivity. This is useful only for pull strategies 
(downloading tasks code dynamically). The 
optimization is simply based on a comparison of 
migration times with and without a code server 
initialization. With a low optimization degree, the 
module compares the migration time with the home AS 
as a code server and with a local code server on the 
current AH. A medium optimization degree is reached, 
if all available code servers are taken into account. As a 
variation of the low degree optimization, the migration 
times for further migrations with a dynamic code server 
initialization are computed (high optimization degree). 
The initialization of a mirror server depends on whether 
an agent wants to transmit collected data to home site. 
Collected data loads the network again and again when 
the agent migrates. In a case, where a mobile agent does 
not need this collected data for further computations, 
the data should be sent home site. Now, the Migration 
Planner computes whether it is cheaper to initialize a 
mirror server or to use the home AS to upload data. 
Automatic data upload variant calculates the migration 
time to the next AH, if all data is carried along with the 
agent. The result is compared with the time to upload 
collected data and to migrate without unnecessary data. 
The introduced optimization variants are some 
approaches to reduce network load and migration time 
of a mobile agent. New variants and combinations of 
variants result from the mentioned optimizations. The 
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implementation of these optimizations is not finished 
yet. Thus, we are not able to present measurement 
results at the moment. A complete evaluation of all 
optimization variants is also difficult due to the lack of 
a large global infrastructure for testing.  
 
Analysis: The Map Module is used by a mobile agent 
to locate services and to access information on network 
connection qualities. Connection qualities are especially 
important for the Route Planner and the Migration 
Planner to achieve optimizations. Map Module cares for 
precise and up-to-date knowledge (maps) within its 
local domain and provides a rough, summarized view 
of the linked remote domains. Map Module consists of 
several network sensors (Latency Sensors, Bandwidth 
Sensors) for computation. A mobile agent is able to 
locate points of interest within the network of AH (Map 
Module). Once a list of interesting AH has been 
determined, another system component - the Route 
Estimator can be used by the agent to plan an 
itinerary[8]. As long as we have an itinerary, a mobile 
agent may also use a so-called Migration Planner 
Module. 
 For computing the overhead on the network we 
have taken few assumptions which are- Total Nodes = 
TN, Nodes of Interest = NI . Packets per Node = pN , 

Size of Packet = pS , Requested Packet = pR , =u  

Requested Packet ( pR )/Total Packets Available ( pN ) 

and Traffic due to one node = pN . pS . Thus, Total 
Traffic due to all nodes of Interest can be given by 

�=
PI

PSPNNIT
1

 

and Traffic due to relevant Packet on network will be 
PPI uST = . Overhead )( MMO  can be defined as (Total 

Traffic due to all nodes of Interest - Traffic due to 
Relevant Packet on network) is given by 

P
NI

i
PP uSSN� −

=1
 => � −

=

NI

i
pP uNS

1
. 

 Route Estimator component is able to calculate the 
shortest trip through the net based on the map data. This 
module may be used by mobile agents to optimize the 
sequence of AH to visit, i.e., the itinerary. Itinerary is 
based on the map data. This component uses classic 
local optimization algorithms. Minimum path can be 
found out with the help of distance matrix. Distance 
matrix is calculated simply by using the reciprocal 
values of measured bandwidth and this matrix has to be 
updated dynamically. A path finder algorithm is applied 
in order to get a distance matrix with shortest paths 

between two places. We have assumed →iτ  be 

measured bandwidth of thi node and where i = 1 to N, 
the distance matrix iD for N  is given by 
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 Thus, 

iiiia τ
1= where iia  is calculated from the 

reciprocal value of iiτ . Where iia ’s stands for places 

or point of interest for which we find out the shortest 
distance. Assume iP  be a distance matrix that is found 
out from iD  by applying a pathfinder algorithm. 
Elements of iP  gives us the shortest path between two 

places and ib ’s are the elements of matrix iP . iib ’s 
stands for shortest path between two places. 
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 Distance matrix is not symmetrically because of 
varying bandwidth values and non-symmetrical 
connections measured by the Map Module. For TSP, 
there are algorithms for asymmetrical (ATSP)[16] and 
for symmetrical matrices (STSP)[17]. As all of the 
working of Route Estimator is done locally so no traffic 
is present on the network to go from one place to 
another only algorithms are used for local calculations 
of path so we assume the overhead is negligible in this 
case. 
 During execution, an agent consists of three parts: 
the agent’s state and data and its set of tasks. As long as 
we have an itinerary, a mobile agent may also use a 
Migration Planner Module to optimize each single 
migration included in the itinerary. This module is 
mainly designed to reduce network load by selecting 
and transmitting only those code and data portions of 
the agent that are needed at the upcoming remote AH. 
This is also used to optimize time during transmission. 
Network load is the traffic on the network due the 
migration of mobile agents. Total traffic and overhead 
is calculated as given below so that we optimize the 
network load. Mobile agent carries its code and state 

across the network. For each hop j traffic is j
MPT . 

 Traffic generated due migration planner is given by 

P
j

MAP
j

MP SSCRT = , where →PR Requested Packet, 

→MAC Code for mobile agent, →jS Size of the state 
of agent at hope j and →PS Size of a Packet. Thus, size 
of state of the agent is given by 

�++=
i

Plistj uSdS
1

ω , where →listd  Size of the 

list, →ω  Size of the other internal data structure 
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representing the state of computation� →j
PuS1  

Indicate   the   useful   information collected by the 
agent at each, Visited node. listd  , u , PS  and ω  do not 
depend on the node and for simplicity 

ωω += listd . Thus Overall Traffic 

)(0 �+++�= =
j
i PMAPP

N
jMP uSCSRT ω  and Traffic 

Overhead are given by 1−= MPMP TO , 

i.e., ( )( ) ( ) 112/11 −+++++ NNMAPP IICSR ω  

=> ( )( ) ( )12/11 −++++ NNMAPP IICSR ω . 
 

RELATED WORK 
 
In[4], authors refer to some performance 

evaluations[19,20] and comparisons[21,22] for mobile agent 
systems. These performance evaluations only consider 
one-hop migrations for non Java-based systems. The 
performance comparisons of different mobile agent 
systems turned out to be difficult. A comparison has to 
consider that each system has implemented different 
security strategies, different migration and transmission 
strategies, etc. Regarding migration times, a system 
with security issues is not comparable with a system 
without such a feature. Thus, we have compared 
PMADE with Aglets and other systems extensively. 
Furthermore as far as we know, there is no comparable 
framework for optimizing agent’s travel through the 
agent systems infrastructure. Similar approaches to 
obtain network information can be found in the area of 
active networks. Such a network consists of active 
nodes. An active node is a network node which is able 
to detect smart packets and execute the embedded code 
e.g., a router with a special execution environment. 
In[23] active nodes on a path are used to measure 
characteristics of the path’s sections as well as 
characteristics of the nodes. The measured 
characteristics are highly detailed. Our framework is 
able to detect intermediate network nodes and also a 
destination oriented end-to-end view. The information 
on the network characteristics is adequate for Route 
estimating and migration strategy decisions. 
 

CONCLUSION AND FUTURE WORKS 
 
 In this paper we presented an evaluation of system 
components for a mobile agent system. These system 
components provide a framework for mobile agents to 
improve their performance as well as their autonomy 
and pro-activity for the navigation through the agent 
system framework infrastructure. For the evaluation, 
our focus was the quality of the modules as well as their 
performance advantage for mobile agents.  
 We took a look at some reference measurements in 
a network with the help of the OS-Ping. The 

comparison showed that the measured round trip time 
has a quite constant deviation and is nearly as good as 
the OS-Ping. Furthermore, we made some 
measurements in defined the quality of data which is 
collected by sensors of the Map Module. Therefore, we 
made network environments. The throughput measured 
by the bandwidth sensor reflects the actual network 
quality quite good. Caused by the bad granularity of 
time intervals in Java, we decided to do the bandwidth 
measurements with a quite large packet size. 
 We also made first measurements with the Route 
Estimator. Caused by the lack of a larger infrastructure, 
we had to use generated distance matrices to evaluate 
the performance of this module. In most cases, we 
assume the distance matrix is an asymmetrical one. 
Thus, we use a combination of algorithms for ATSP. 
The measurements showed that the module is able to 
calculate a nearly optimal path through the net within a 
very short time. We also started first measurements 
within a real network. Our first impression is that this 
Route estimating process works, but we are not able to 
present qualitative statements, as yet.  
 Finally, we introduced some optimization variants 
of the Migration Planner. Thereby, the computation of 
expected migration times is used for the selection of a 
migration strategy. This computation is based on the 
map’s data. Variation in values falsifies the results also 
in this case. The comparison of migration strategies is 
based on the computation of the code tasks’ 
transmission times. 
 With this framework, we made a qualitative step in 
the development of PMADE. This framework is an 
extension of PMADE, which is designed to be plug-
able into other Java-based mobile agent systems. In the 
past, without this framework, the programmer or even 
the end user had to integrate routing information into 
PMADE agents. Now, agents can do this task on their 
own (in an autonomous fashion) and even more, 
dynamically adjust the itinerary. Thus, the performance 
gain cannot quantitatively be measured within our 
system. 
 The developed prototypes have to be updated and 
completed. Furthermore, a sample application will be 
developed to show the interaction of the framework’s 
modules and to test their applicability in more detail. 
We are currently in the process of implementing this 
system for cluster computing and mobile transaction 
management.  
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