
Journal of Computer Science 2 (12): 885-888, 2006 
ISSN 1549-3636 
© 2006 Science Publications 

Corresponding Author: Sameh   Ghwanmeh, Director   of   Computer     Center , Yarmouk   University,  Irbid,   Jordan    
885 

 
Efficient Data Compression Scheme using Dynamic Huffman Code Applied on Arabic 

Language 
 

1Sameh Ghwanmeh, 2Riyad Al-Shalabi and 2Ghassan Kanaan 
1Director of Computer Center, Yarmouk University, Irbid-Jordan 

2Arab Academy for Banking and Financial Sciences, Amman-Jordan 
 

Abstract: The development of an efficient compression scheme to process the Arabic language 
represents a difficult task. This paper employs the dynamic Huffman coding on data compression with 
variable length bit coding, on the Arabic language. Experimental tests have been performed on both 
Arabic and English text. A comparison is made to measure the efficiency of compressing data results 
on both Arabic and English text. Also a comparison is made between the compression rate and the size 
of the file to be compressed. It has been found that as the file size increases, the compression ratio 
decreases for both Arabic and English text. The experimental results show that the average message 
length and the efficiency of compression on Arabic text is better than the compression on English text. 
Also, results show that the main factor which significantly affects compression ratio and average 
message length is the frequency of the symbols on the text. 
 
Key words: Data compression, dynamic Huffman code, Arabic language 

 
INTRODUCTION 

 
 Among numerous types of information produced 
broadcasted or recorded by electronic information 
processing systems and tools, the degree of duplication 
in data is adequately high to allow the output flow to 
contain considerably fewer bits than the input flow. In 
conditions, the output flow may contain more bits than 
the input flow. The real ratio of the numbers of bits is 
dependent on the uniqueness of the actual input data 
flow. Compression by this algorithm is lossless, i.e. it is 
probable to restore exactly the original version of data 
by earnings of a corresponding decompression 
algorithm. The algorithm contains features which assist 
its implementation in data storage and retrieval tools 
which handles, in a sequential way, data records of 
varying extent. Compression is used just about 
everywhere. All the images you get on the web are 
compressed, typically in the JPEG or GIF formats, most 
modems use compression, HDTV will be compressed 
using MPEG-2 and several file systems automatically 
compress files when stored [1]. 
 The oldest and most widely used codes, ASCII and 
EBCDIC, are examples of block-block codes, mapping 
an alphabet of 64 (or 256) single characters onto 6-bit 
(or 8-bit) codewords. The codes featured in this survey 
are of the block-variable, variable-variable and 
variable-block types. For example, in text file 
processing each character may constitute a message, or 
messages may be defined to consist of alphanumeric 
and non-alphanumeric strings[2]. The compression 
algorithms allow for records of different size and 
compressibility, along with File Marks, to be efficiently 
encoded into an output stream in which little or no 

additional control information is needed to later decode 
user data[3]. 
 In addition to the categorization of data 
compression schemes with respect to message and 
codeword lengths, these methods are classified as either 
static or dynamic. A static method is one in which the 
mapping from the set of messages to the set of 
codewords is fixed before transmission begins, so that a 
given message is represented by the same codeword 
every time it appears in the message ensemble. The 
classic static defined-word scheme is Huffman coding. 
In Huffman coding, the assignment of codewords to 
source messages is based on the probabilities with 
which the source messages appear in the message 
ensemble. Messages which appear more frequently are 
represented by short codewords; messages with smaller 
probabilities map to longer codewords. These 
probabilities are determined before transmission begins. 
A code is dynamic if the mapping from the set of 
messages to the set of codewords changes over time. 
For example, dynamic Huffman coding involves 
computing an approximation to the probabilities of 
occurrence "on the fly", as the ensemble is being 
transmitted. The assignment of codewords to messages 
is based on the values of the relative frequencies of 
occurrence at each point in time. A message x may be 
represented by a short codeword early in the 
transmission because it occurs frequently at the 
beginning of the ensemble, even though its probability 
of occurrence over the total ensemble is low. Later, 
when the more probable messages begin to occur with 
higher frequency, the short codeword will be mapped to 
one of the higher probability messages and x will be 
mapped to a longer codeword[2]. There are two methods 
to represent data before transmission:  



J. Computer Sci., 2 (12): 885-888, 2006 
 

 886

Fixed length code: In this method it allows computers 
to efficiently process data which means that all 
characters are of equal length, even though they are not 
transmitted with equal frequency E.g. vowels, blanks 
used more often consonants, etc. ASCII is an example 
of a fixed length code. There are 100 printable 
characters in the ASCII character set and a few non 
printable characters, giving 128 total characters. Since 
log 128 = 7, ASCII requires 7 bits to represent each 
character. The ASCII character set treats each character 
in the alphabet equally and makes no assumptions about 
the frequency with which each character occurs[4]. 
 
Variable length code: In this method most frequently 
transmitted characters are compressed; represented by 
fewer bits than least frequently transmitted and 
compressing data saves on data communications costs. 
A variable length code is based on the idea that for a 
given alphabet, some letters occur more frequently than 
others. This is the basis for much of information theory 
and this fact is exploited in compression algorithms. To 
use as few bits as possible to encode data without 
“losing” information. More sophisticated compression 
techniques can use compression techniques that actually 
discard information[4]. 
 There are two dimensions along which each of the 
schemes discussed here may be measured, algorithm 
complexity and amount of compression. When data 
compression is used in a data transmission application, 
the goal is speed. Speed of transmission depends upon 
the number of bits sent, the time required for the 
encoder to generate the coded message and the time 
required for the decoder to recover the original 
ensemble. In a data storage application, although the 
degree of compression is the primary concern[2]. Many 
lossless data compression algorithms exist. Some of the 
main techniques in use are the Huffman[5]. 
 When compressed data is retrieved from storage or 
received over a communications link, it is expanded 
back to its original form, based on the code. 
 A Huffman Code is an optimal prefix code that 
guarantees unique decodability of a file compressed 
using the code. The code was devised by Huffman as 
part of a course assignment at MIT in the early 1950s. 
Huffman code constructed by using a code tree, but 
starting at the leaves and it provide compact code by 
using the binary Huffman code construction method 
and it has uniquely decodable code or a prefix- free 
code which requires that no codeword is a proper prefix 
of any other codeword[4]. 
 The Huffman coding algorithm produces an 
optimal variable length prefix code for a given alphabet 
in which frequencies are preassigned to each letter in 
the alphabet. Symbols that occur more frequently have 
shorter Code words than symbols that occur less 
frequently. The two symbols that occur least frequently 
will have the same codeword length[6]. Entropy is a 

measure of the information content of data. The entropy 
of the data will specify the amount of lossless data 
compression can be achieved. However, finding the 
entropy of data sets is non trivial[7]. We have to notice 
that there is no unique Huffman code because 
Assigning 0 and 1 to the branches is arbitrary and if 
there are more nodes with the same probability, it 
doesn’t matter how they are connected.  
 The average message length as a measure of 
efficiency of the code has been adopted in this work. 
 
Avg L = L1 * P (1) + L2 * P (2) + ….. + Li * P (i) 
Avg L = ∑ Li * P (i) 
  
Also the compression ratio as a measure of efficiency 
has been used. 
Comp. Ratio = Compressed file size / source file size * 
100 % 
 The task of compression consists of two 
components, an encoding algorithm that takes a 
message and generates a “compressed” representation 
(hopefully with fewer bits) and a decoding algorithm 
that reconstructs the original message or some 
approximation of it from the compressed 
representation[1]. 
 
Demonstration examples 
Example 1: This example is derived from reference[4] 
 Suppose that we have a file of 100K characters. To 
keep the example simple, suppose that each character is 
one of the 8 letters from a through h. Since we have just 
8 characters, we need just 3 bits to represent a 
character, so the file requires 300K bits to store. 
Suppose that we have more information about the file: 
the frequency which each character appears. The idea is 
that we will use a variable length code instead of a 
fixed length code (3 bits for each character), with fewer 
bits to store the common characters and more bits to 
store the rare characters. At one obvious extreme, if 
only 2 characters actually appeared in the file, we could 
represent each one with just one bit and reduce the 
storage from 300K bits to 100K bits (plus a short 
header explaining the encoding). It turns out that all 
characters can appear, but that as long as each one does 
not   appear     nearly equally often (100K/8 times in 
our case), then we can probably save space by 
encoding. 
 For example, suppose that the characters appear 
with the following frequencies and following codes as 
shown in Table 1. Then the variable-length coded 
version will take not 300K bits but 45K. 1 + 13K. 3 + 
12K. 3 + 16K. 3 + 9K. 4 + 5K. 4 = 224K bits to store, a 
25% saving. In fact this is the optimal way to encode 
the 6 characters present. 
 We consider only codes in which no code is a 
prefix of any other code; such codes are called prefix 
codes (though perhaps they should be called prefix-free  

 



J. Computer Sci., 2 (12): 885-888, 2006 
 

 887

Table 1: Fixed length vs. variable length representation 
 a b C d e f g h 
Frequency 45k 13k 12k 16k 9k 5k 0k 0k 
Fixed length code 000 001 010 011 001 101 110 111 
Variable length code 0 101 100 111 1101 1100 - - 
 
codes). The attraction of such codes is that it is easy to 
encode and decode data. To encode, we need only 
concatenate the codes of consecutive characters in the 
message. So for example “face” is encoded as 
“110001001101”. To decode, we have to decide where 
each code begins and Ends, since they are no longer all 
the same length. But this is easy, since, no codes share a 
prefix. This means we need only scan the input string 
from left to right and as soon as we recognize a code, 
we can print the corresponding character and start 
looking for the next code. In the above case, the only 
code that begins with “1100...” or a prefix is “f”, so we 
can print “f” and start decoding “0100...” get “a”, etc. 
 To see why the no-common prefix property is 
essential, suppose that we tried to encode “e” with the 
shorter code “110” and tried to decode “1100”; we 
could not tell whether this represented “ea” or “f”. 
(Furthermore, one can show that one cannot compress 
any better with a non-prefix code, although we will not 
show this here.) 
 We can represent the decoding algorithm by a 
binary tree, where each edge represents either 0 or 1 
and each leaf corresponds to the sequence of 0s and 1s 
traversed to reach it, i.e. a particular code. Since no 
prefix is shared, all legal codes are at the leaves and 
decoding a string means following edges, according to 
the sequence of 0s and 1s in the string, until a leaf is 
reached. Fig. 1 shows the tree for the above code. 
 
Fixed Length Code  Variable Length Code 

 
Fig. 1: Fixed length vs. variable length representation 
 
 Each leaf is labeled by the character it represents 
(before the colon), as well as the frequency with which 
it appears in the text (after the colon, in 1000s). Each 
internal node is labeled by the frequency with which all 
leaf nodes under it appear in the text (i.e. the sum of 
their frequencies). The bit string representing each 
character is also shown beneath each leaf. 
 
Example 2: Suppose we want to decode the message 
 using Huffman code. Table 2 ”بسم االله الرحمن الرحيم“
shows the Huffman data compression and Fig. 2 shows 
the Huffman representation tree. 

Table 2: Huffman data compression 
Symbol Occurrence Probability Codeword 
 000001 1/22 1 ب
 000000 1/22 1 س
 101 3/22 3 م
 001 3/22 3 ا
 01 4/22 4 ل
 10000 1/22 1 هـ
 1001 2/22 2 ر
 0001 2/22 2 ح
 10001 1/22 1 ن
 00001 1/22 1 ي
Space 3 3/22 11 
Sum 22 1  
 
Average search length: 
Avg L = ∑ Li * P (i) 
  = 6*1/22 + 6*1/22 + 3*3/22 + 3*3/22 + 2*4/22 + 
5*1/22 + 4*2/22   + 4*2/22 + 5*1/22 + 5*1/22 + 
2*3/22 
  = 75/22 
  = 3.41 
Space required to store the original message = 
22*8=176 bit 
Space required to store the decoded message= 75 bit 
Comp. Ratio = 42.61 % 
 

 
Fig. 2: Huffman tree 

 
RESULTS 

 
 A series of experimental tests have been performed 
to measure the efficiency of compressing data results on 
both Arabic and English text. We compare both Arabic 
and English texts of different sizes using Huffman 
compression algorithm. It has been shown that as the 
file size increases, the compression ratio on Arabic Text 
decreases as well as the average message length. This is 
expected because when the file size increases the 
frequency of the symbols will increase, so we have 
better compression on larger files. 



J. Computer Sci., 2 (12): 885-888, 2006 
 

 888

Table 3: The effect of file size on compression for Arabic text 
File Size Statistics 
-------------------------------- -------------------------------------------- 
Source Compressed Comp. Rate Avg. ML Time 
1 KB 653 63.77% 5.102 0.02 
2 KB 1236 60.35% 4.828 0.03 
3 KB 1814 59.05% 4.724 0.05 
4 KB 2408 58.79% 4.703 0.07 
5 KB 3009 58.77% 4.702 0.08 
6 KB 3601 58.61% 4.689 0.1 
7 KB 4175 58.24% 4.66 0.1 
8 KB 4729 57.73% 4.618 0.13 
9 KB 5323 57.76% 4.621 0.14 
10 KB 5872 57.34% 4.588 0.15 
 
Table 4: The effect of file size on compression for English text 
File Size Statistics 
-------------------------------- -------------------------------------------- 
Source Compressed Comp. Rate Avg. ML Time 
1 KB 691 67.48% 5.398 0.02 
2 KB 1401 68.41% 5.473 0.04 
3 KB 2015 65.59% 5.247 0.06 
4 KB 2636 64.36% 5.148 0.07 
5 KB 3265 63.77% 5.102 0.09 
6 KB 3745 60.95% 4.876 0.09 
7 KB 4226 58.96% 4.717 0.11 
8 KB 5099 58.86% 4.709 0.16 
9 KB 5969 57.74% 4.619 0.16 
10 KB 6300 57.74% 4.627 0.16 
 

File Size Vs. Comp.Rate

54.00%
56.00%
58.00%
60.00%
62.00%
64.00%
66.00%

I
KB

2
KB

3
KB

4
KB

5
KB

6
KB

7
KB

8
KB

9
KB

10
KB

Source File Size

C
om

pr
es

si
on

 R
at

e

Arabic Text

 
Fig. 3: The effect of file size on compression for 

Arabic text 
File Size Vs. Compression Rate

50.00%

60.00%

70.00%

I KB2 KB3 KB4 KB5 KB6 KB7 KB8 KB9 KB10 KB

Source File Size

C
om

p.
 R

at
e

English Text+3ةقرو!

 
Fig. 4: Effect of the file size on compression for 

English text 
 
Table 3 and Fig. 3 show the effect of file size on 
compression for different Arabic text. Also same 
resulted for English text, when the file size increases 
the compression rate and the average message length 
decreases. Clearly Table 4 and Fig. 4 show the effect of 
file size on compression for different English text. Also  
we found that the time required to compress files 
increases as file size increases. However, the rate of 

Comparesion Bettween Arabic & English Text On Compression

50.00%
55.00%
60.00%

65.00%
70.00%

I KB2 KB3 KB4 KB5 KB6 KB7 KB8 KB9 KB10 KB

Size

Co
m

p 
Ra

tio

Arabic

English

 
Fig. 5: Comparison between compression on Arabic 

and English Text 
 
change of the time required to compress files with 
larger sizes is small (Table 3 and Table 4). Additionally 
it has been found  that the efficiency of compression on 
Arabic language is better than on English language 
(Fig. 5). 

CONCLUSION 
 It has been found that the compression on both 
Arabic and English text saves space and reduces 
transmission time. Also we found that as the file size 
increases the compression ratio decreases for both 
Arabic and English text as will as the average message 
length and that is expected because when the file size 
increases the frequency of the symbols will increase, so 
we expect to have better compression on large files. We 
also found that the efficiency of compression on Arabic 
text is better than compression on English text. 
Additionally, results show that the main factor which 
significantly affects compression ratio and average 
message length is the frequency of the symbols on the 
text. 

ACKNOWLEDGMENTS 
The authors gratefully acknowledge and highly 

appreciate the financial support and the remarkable 
resources provided by Yarmouk University, Irbid, 
Jordan. 

REFERENCES 
 
1. Blelloch, E., 2002. Introduction to Data 

Compression. Computer Science Department, 
Carnegie Mellon University.  

3. Cormak, V. and S. Horspool, , 1987. Data 
compression using dynamic Markov modelling. 
Comput. J., 30: 541–550. 

2. Vo Ngoc and M. Alistair, 2006. Improved word-
aligned binary compression for text indexing. IEEE 
Trans. Knowledge & Data Engineering, 18: 857-861. 

4. Kaufman, K. and T. Shmuel, 2005. Semi-lossless 
text compression. Intl. J. Foundations of Computer 
Sci., 16: 1167-1178. 

5. Capocelli, M., R. Giancarlo and J. Taneja, 1986. 
Bounds on the redundancy of Huffman codes. 
IEEE Trans. Inf. Theory, 32: 854–857. 

6. Gawthrop, J. and W. Liuping, 2005. Data 
compression for estimation of the physical 
parameters of stable and unstable linear 
systems. Automatica, 41: 1313-1321. 

7. Kesheng, W., J. Otoo and S. Arie, 2006. 
Optimizing bitmap indices with efficient 
compression. ACM Trans. Database Systems, 31: 
1-38.  


