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Abstract: The exponential chip weighting waveforms have been designed with the purpose of multiple 
access interferences (MAI) rejection based on the concept that the optimum despreading sequence in 
reference emphasizes the transitions in the received spreading signal of interest. The despreading 
sequence weighted by exponential chip waveforms was determined by only one parameter. The 
objective of this study, was to introduce neural networks (NN) to facilitate the computing of the bit 
error rate (BER) performance of a direct sequence code division multiple access (DS/CDMA) system 
over a Rayleigh multipath fading with power control error, for both coherent and noncoherent 
receivers, by producing the despreading sequences weighted (WDS) by exponential chip weighting 
waveforms. Numerical results show that the parameter values of the exponential chip weighting 
waveforms produced by the proposed network are nearly optimal and satisfactory in viewpoint of the 
achieved bit error rate (BER) performance. 
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INTRODUCTION 
 
 The major limitation in the bit error rate (BER) and 
system performance and hence capacity, is due to 
multipath fading, (MAI) and imperfect power control. 
With the objective of MAI rejection, most of works had 
been made on CDMA performance in presence of 
multipath fading and are based on the fact that power 
control is perfect[1-3], which is not really possible in 
practice.  
 In a previous work[4], the BER performance of a 
DS/CDMA system was analyzed with power control 
error over a multipath Rayleigh fading channel using 
both coherent and noncoherent receptions, the receivers 
under consideration employ the despreading sequences 
weighted (WDS) by adjustable exponential chip 
waveforms optimized for MAI rejection. The chip 
weighting waveforms employed are determined by only 
one parameter that leads to easy tuning of the 
waveforms in practice to achieve the best performance.  
 

It is useful to note that the derived closed-form 
solutions, which enable to calculate de BER in[4], 
require perfect definition of the spreading sequences for 
the signals of all users. Also, a number of 
computational efforts are needed to define the 
parameters of each spreading sequence.  
 In this work, Our objective is to reduce the 
computational intensity and shorten the process time to 
obtain optimal values of the parameter by using the 
learning ability and the high-speed computational 
capacity features of neural networks. Throughout the 
study, we have assumed that a receiver in the 
DS/CDMA system is perfectly capable of regenerating 
the reference spreading codes corresponding to each of 
the users’ transmissions.  
 
System description 
Transmitter model: From the transmitter model 
presented in[4] which suppose that there are K users 
sharing the channel in a DS/CDMA system, the 
transmitted signal by the kth user is given by : 
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( )k k k k kS t PG b t a t t0( ) 2 ( ) ( )cos ω θ= +  (1) 
Where P and 0ω , common to all users, are the 
transmitted power and the carrier frequency, 
respectively and kθ is the phase introduced by the kth 
modulator. The parameter kG  represents the power 
control error for the kth user and is modeled as a 
random variable uniformly distibuted in [ ]m m1 ,1ε ε− +  
where mε  represents the maximum value of power 
control error for all users. ( )ka t  and ( )kb t  are the 
spreading sequences and the binary data sequences for 
the kth user, respectively, they are given by: 
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Where cT and bT as the chip and data durations, 
respectively and ( )xP y 1=  for x y0≺ ≺  and zero 

otherwise. ( )k
ja  and ( )k

jb  take the values +1 and -1 
randomly and independantly with equal probabilities. It 
is assumed that the spreading sequence is periodic with 

period b

c

T
N

T
= and ( ) ( )k k

j j Na a +=  for all j−∞ +∞≺ ≺ . 

 
Channel model: In the following, it is assumed that the 
channel is frequency selective multipath for the uplink. 
The equivalent complex low-pass representation of the 
channel for the kth user is given by: 

( ) ( )
p
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=
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Where random variables klβ , klτ  and klη  are the lth 
path gain, delay and phase respectively, for the kth user. 
In[4], the following assumptions are considered: 
 For different users and pathsin each link, the 
random variables klβ , klτ  and klη are all statistically 
independent. 
The random phases klη  are uniformly distributed over 

[ ]0,2π  and the path delays klτ  are uniformly 

distributed over [ ]bT0, . 
 There are pL  paths for each user and these 
different paths are separated in time from each other by 
more than cT2 . 

For each user, the path gain klβ  is a random variable 
with Rayleigh distibution given by: 
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 The fading rate in the channel is slow compared to 
the bit rate, so that the random parameters associated. 
with the channel do not vary significantly over tow 
consecutive bit intervals. 
 The received signal at the central station r(t), mixed 

with AWGN n(t) with two sided spectral density 
N0

2
, 

is given by: 
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Where kl kl kl kl0Φ θ η ω τ= + −  and the term ( )cn t  et 

( )sn t  are low-pass equivalent components of the 

AWGN ( )n t . 
 
Receiver model: For BPSK modulation, [4]described 
the structure of one of the paths of a RAKE receiver 
using coherent detection: 
 In the goal to reject MAI, a bank of single path 
matched filters, each of which is matched to different 
paths, have the same impulse response matched to 

( ) ( ) ( )
bk Ta t t P t0ˆ2 cos ω  where ( )ka tˆ  is the weighted 

despreading sequence with details given below. The 
outputs of all single matched filters ( )klξ κ , 

[ ]Rl L0, 1∈ − , where RL  is the order of diversity, are 
weighted the corresponding path gains and then 
summed to form a single decision variable ( )kξ κ . The 
weighted despreading function of the kth user’s RAKE 
receiver can be expressed as: 
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the jth chip weighting waveforms for the kth receiver 
conditioned on the status of three consecutive chips 
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y x0≺ ≺  and 0 otherwise. The jth chip conditional 
weighting waveforms for the kth receiver is defined 
by[1] as: 
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 The elements of the chip weighting waveform 
vector ( ) ( ) ( ) ( ){ }1 2 3 4cw t ,cw t ,cw t ,cw t are given by: 
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[ ]0,γ ∈ ∞  is the parameter of the chip weighting 
waveforms. For DPSK modulation, the structure of path 
l of kth user’s RAKE demodulator using noncoherent 
detection is described in[4]: 
 In this case, the outputs of all single path receiver 

( ) ( )*
kl kle[ 1 ]ℜ ϑ κ ϑ κ −  summed to form a single 

decision variable ( )kϑ κ . 
System performance: The evaluation of the system 
performance requires calculating the bit error rate 
(BER). In[4] a detailed analyses give the BER 
expressions for coherent ([4], eq. (38)) and noncoherent 
([4], eq. (55)) reception: 
For coherent reception: 
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For noncoherent reception: 
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Where ( )m
ˆa 1 H= + ε , ( )m

ˆb 1 H= − ε and Ĥ is the 
average signal to interference plus noise ratio per 
channel, given by ([4], eq. (36)): 
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Where, γ  is the parameter of the exponential chip 

weighting waveforms tuned to maximize Ĥ , K is the 
number of active users, bk is the signal to noise 

ratio, kN̂
Nχ = , kN  is a random variable which 

represents the number of occurrences of 
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 for all [ ]j 0, N 1∈ −  in the kth 

user’s spreading sequence. Each element of { }1 2 3v , v , v  
takes values +1 or -1 with equal probabilities.  
 
A neural networks based determination: The most 
common neural network model is the Multi-Layered 
Perceptrons MLP[5]. This type of neural network is 
known as a supervised network because it requires a 
desired output in order to learn. The notation R-S1-S2-
S refers to a MLP with two hidden layers. The first 
layer have R neurons is called the input layer, the last is 
the output layer equipped with S neurons and the 
intermediate layers are the hidden layers with S1, S2 
neurons. Each neuron of a layer is connected to all the 
neurons of the following layer (feed-forward neural 
network). 
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 We associate a weighting coefficient (synaptic 
weight) to each connection. These weights are stored in 
the matrices of weight noted W1, W2 and W3 (example 
: R-S1-S2-S network). The element (i,j) of a weight 
matrix represents the connection weight connecting 
neuron i of the downstream layer to neuron j of the 
upstream layer. 
 Each layer (except that of input) is connected to a 
special cell with a constant output of value 1. The 
corresponding weights are stored in a vector called bias 
and noted b1, b2 and b3 in the case of two hidden 
layers. Each neuron i of the first hidden layer computes 
his input net1[i] and his output (its activation) a1[i] as 
follow: 
net1[i] W1[i], p b1[i]= +≺ ;  (14) 

( )a1[i] F1 net[i]=  (15) 
Where W1[i] is the ith line of W1, < > is the notation 
for the usual scalar product, p is the input vector and F1 
is the activation function associates to the first hidden 
layer. The activation functions are non linear and of 
sigmoid type, i.e: 

x
1F(x)

1 e−
=

+
 (16) 

 The activations stored in the vector a1 are 
propagated to the cells of the following layer. In a 
similar way, we calculate the second activation vector: 

( )a2[i] F2 W2[i],a1 b2[i]= +≺ ;  (17) 
 This mechanism continues to the last layer and 
makes it possible to obtain the output vector t 
corresponding to the input p. The network inputs 
consist of vectors of size R stored in a matrix P with N 
columns. Each column p of P is associated a desired 
vector q of the output Q with size S stored in a matrix 
Q. The outputs computed by the network are stored in a 
matrix T. 
 The required goal, is the learning of associations 
(p,q) : the network must restore the desired output q (or 
an output rather close to Q) when the form p is 
presented as an input. The training of the MLP 
networks consists in computing the weights of 
connections between the neurons in order to minimise a 
square criterion E: 

 
N

p
p 1

1E E
N =

= ∑  (18) 

 ( )
s

2
p

j 1

1E Q[ j][p] T[ j][p]
2 =

= −∑  (19) 

 For the real applications, we do not know the pace 
of the error function E in the space of the weights, what 
has as consequence when the non-linear training 

algorithm converges, we are never assured that the 
obtained minimum is global. 
 Backpropagation algorithm was created by 
generalizing the Widrow-Hoff learning rule to multiple-
layer networks and non-linear differentiable transfer 
functions.The standard backpropagation is a gradient 
descent algorithm in which the network weights are 
moved along the negative of the gradient of the 
performance function E. An iteration of this algorithm 
can be written: 
( ) ( ) ( )ww k 1 w k g k+ = − ε  (20) 

Where: 

( ) ( ) ( )

T

w
1 n

E Eg k ,...........,
w k w k

 ∂ ∂
=   ∂ ∂ 

 (21) 

 The gradient error evaluated in w(k). n is the 
number of the connections of the network, k an index of 
the iteration, ( ) ( ) ( ) T

1 nw k (w k ,.........., w k )= is The 
weight vector in the iteration k and ε  is a learning rate 
( )0ε ; . 
 Parameter ε  regulates the size of the gradient step. 
The performance of the algorithm is very sensitive to 
the proper setting of the learning rate. If the learning 
rate is set too high, the algorithm may oscillate and 
becomes unstable. If the learning rate is too small, the 
algorithm will take too long to converge. The greatest 
disadvantage of this algorithm is that it does not even 
ensure convergence towards a local minimum[6]. 
Several algorithms are proposed to land to this problem. 
In this work, we have used the Levemberg-Marquardt 
algorithm[7] that combines the best features of Gauss-
Newton and gradient descent method was used to 
estimate the parameters of the neural networks model 
(weights). 
 The neural networks employed has eight inputs and 
one output, seven of the inputs are bound directly to the 
used code: 
 
{ } { } { } { } { } { } { } { }

(k) (k) (k) (k) (k) (k) (k) (k)

k1, 1, 1 1, 1, 1 1, 1, 1 1,1,1 1,1, 1 1,1, 1 1,1, 1 1,1,1
ˆ, , , , , and N

− − − − − − − − − − − −
Γ Γ + Γ Γ + Γ Γ Γ Γ  

The last input is bsnr k= and the output of the neural 
networks model is γ . The bk values of training data 
have been taken from the range of [ ]0,22 dB . 
 

NUMERICAL RESULTS 
 
 Here, we present the numerical results of our 
proposed method. The used codes in Table 1 are those 
of Gold having N = 31 for their good correlation 
properties[8,9]. The number of users is K = 9, Table 2  
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Table 1: Code of N=31 
Code 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 
Code 2 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0  
Code 3 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0  
Code 4 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 
Code 5 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1  
Code 6 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0  
Code 7 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 
Code 8 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 
Code 9 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 
 
Table 2: Quantities { }1 2 3

(k)
v ,v ,vΓ  and kN̂  of the code set having N=31 

Code 
(k) (k) (k) (k) (k) (k) (k) (k)

k
{ 1, 1, 1} { 1, 1,1} {1, 1, 1} { 1,1,1} {1,1, 1} { 1,1, 1} {1, 1,1} {1,1,1}

N̂
− − − − − − − − − − − −

Γ Γ + Γ Γ + Γ Γ Γ Γ  

1 10 8 4 4 2 3 20 
2 2 4 8 4 6 7 12 
3 4 8 8 4 4 3 16 
4 2 8 8 2 2 9 12 
5 4 8 8 4 4 3 16 
6 2 8 8 6 6 1 16 
7 9 10 6 3 1 2 20 
8 4 8 8 4 4 3 16 
9 3 10 10 3 3 2 16 
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Fig. 1: The neural network model: γ  tuned to 

maximize Ĥ versus their number 
 
gives { }1 2 3

(k)
v ,v ,vΓ and kN̂ for each code. From these 

datas, code 1 is used as reference to train the neural 
networks model employed varying bsnr k= . After 
learning, the neural networks model generalize the 
relation between γ  tuned to maximize Ĥ and the 
spreading codes varying snr (Fig. 1), it was tested with 
unseen snr values. 
 Figure 2 and 3 give the BER calculated by WDS 
generated by neural network model versus snr for 
various values LR=1,2,3,4 respectively, for coherent and 
noncoherent reception when LP=4 and m 0ε = . 
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Fig. 2: BER calculated by WDS generated by neural 

network model versus snr for various values 
RL 1, 2,3, 4=  for coherent reception 

( p mL 4, 0= ε = ) 
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Fig. 3: BER calculated by WDS generated by neural 

network model versus snr for various values 
RL 1, 2,3, 4=  for noncoherent reception 

( p mL 4, 0= ε = ) 
 
 It is obvious that any performance degradation 
does not result from using the obtained values in place 
of the optimal values (γ o maximize Ĥ ), for these 
selected codes. Also, we tested the network with the 
other codes existing in the code set as a reference and 
see that it produces similar satisfactory results for those, 
too. 
 It is worth mentioning that all calculations took 
almost 0.1–0.4 sec on a personal computer with a 
Pentium IV processor running at 2.8 GHz to obtain a 
result against an arbitrary set of parameters. When the 
calculation time is considered for the optimal values, it 
can be said that the proposed approach is almost six 
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times faster than the classical technique. As a result, the 
neural approach is efficient and useful for the 
determination process of the despreading sequences 
weighted by exponential chip waveforms. 
 

CONCLUSION 
 
 A new approach based on NN has been 
successfully presented in this study to help the 
determination process of the exponentially weighted 
despreading sequences for a DS/CDMA system. In this 
approach, the nearly optimal values of the parameter 
are simply and quickly computed. Using the results 
computed by the neural approach does not cause any 
degradation on the performance of the system. 
Moreover, the approach presented in this study can be 
used for DS-CDMA systems having different 
processing gain and employ exponentially weighted 
despreading sequences in the receivers. Even if the 
training time takes a few seconds, the proposed method 
provides simplicity after training. Instead of 
complicated mathematical functions, there are a number 
of weight multiplication and summation in the structure 
of the neural model. So, the neural model is very simple 
and useful. The obtained neural structure can be easily 
implemented or inserted in a neural hardware available 
in the market. The neural hardware might be used not 
only in base stations but also for mobile units. 
 

REFERENCES 
 
1. Huang, Y. and T.S. Ng, 1999. A DS-CDMA 

system using despreading sequences weighted by 
adjustable chip waveforms. IEEE Trans. Commun., 
47: 1884-1896. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Jabrane, Y., R. Iqdour, B. Ait Essaid and N. Naja, 
2006. A simple and efficient procedure for 
calculating the tuning values of exponential chip 
weighting waveforms in DS/CDMA. Physical and 
Chemical News J., (In press). 

3. Jabrane, Y., R. Iqdour, B. Ait Essaid and N. Naja, 
2006. Determination of weighted despreading 
sequences for a DS/CDMA system using a new 
method. IEEE section, 4th Intl. Conf. JTEA 12-14 
May, Tunisie. 

4. Huang, Y. and T.S. Ng, 1999. DS-CDMA with 
power control error using weighted despreading 
sequences over a multipath Rayleigh fading 
channel. IEEE Trans.Veh.Technol., 48: 1067-1079. 

5. Hopfield, J., 1982. Neural networks and physical 
systems with emergent collective computational 
abilities. Proc. of the Natl. Acd. Sci., 79: 2554-
2558. 

6. Iqdour, R. and A. Zeroual, 2006. The multi-layered 
perceptrons neural networks for the prediction of 
daily solar radiation. Intl. J. Signal Processing, 
World Enformatika Society, 3: 24-29. 

7. Dayhoff, J., 1990. Neural Networks Architectures. 
Editions Van Norstrand Reynold. 

8. Dinan, H,E. and B. Jabbari, 1998. Spreading codes 
for direct sequence CDMA and wideband CDMA 
cellular networks. IEEE Comm. Mag., 36: 48-54. 

9. Kârkkainen, H.A. and K.P.A. Leppânen, 2000. The 
influence of initial-phases of a PN code set on the 
performance of an asynchronous DS/CDMA 
system. Wirless Pers. Commun., 13: 279-293. 

 


