
Journal of Computer Science 3 (7): 487-493, 2007
ISSN 1549-3636
© Science Publications, 2007

Corresponding Author: Yangjun Chen, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
487

An Efficient Algorithm for Tree Mapping in XML Databases

Yangjun Chen

University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

Abstract: In this article, we discuss an efficient algorithm for tree mapping problem in XML
databases. Given a target tree T and a pattern tree Q, the algorithm can find all the embeddings of Q in
T in O(|T||Q|) time while the existing approaches need exponential time in the worst case.

Key words: Tree mapping, XML databases, query evaluation, tree encoding

INTRODUCTION

 XML uses a tree-structured model for representing
data. Queries in XML languages (such as Xpath[1],
Xquery[2,3], XML-QL[4] and Quilt[5,6]) also typically
specify selection patterns as a kind of tree-structured
relations. For instance, the XPath expression:

book[title = ‘Art of Programming’]//author[fn =
‘Donald’ and ln = ‘Knuth’]

matches author elements that (i) have a child
subelement fn with content ‘Donald’, (ii) have a child
subelement ln with content ‘Knuth’ and are descendants
of book elements that have a child title subelement with
content ‘Art of Programming’. This expression can be
represented as a tree structure as shown in Fig. 1.

Fig. 1: A query tree

 In this tree structure, a node v is labeled with an
element name or a string value, denoted label(v). In
addition, there are two kinds of edges: child edges (c-
edges) for parent-child relationships and descendant
edges (d-edges) for ancestor-descendant relationships.
A c-edge from node v to node u is denoted by v → u in
the text and represented by a single arc; u is called a c-
child of v. A d-edge is denoted v ⇒ u in the text and
represented by a double arc; u is called a d-child of v.
Such a query is often called a twig pattern.

 In any DAG (directed acyclic graph), a node u is
said to be a descendant of a node v if there exists a path
(sequence of edges) from v to u. In the case of a twig
pattern, this path could consist of any sequence of c-
edges and/or d-edges. Based on these concepts, the tree
embedding can be defined as follows.

Definition 1: An embedding of a twig pattern Q into an
XML document T is a mapping f: Q → T, from the
nodes of Q to the nodes of T, which satisfies the
following conditions:
i. Preserve node label: For each u ∈ Q, u and f(u) are

of the same label (or more generally, u’s predicate
is satisfied by f(u).)

ii. Preserve c/d-child relationships: If u → v in Q,
then f(v) is a child of f(u) in T; if u ⇒ v in Q, then
f(v) is a descendant of f(u) in T.

 If there exist a mapping from Q into T, we say, Q
can be imbedded into T, or say, T contains Q.
 Notice that an embedding could map several nodes
of the query (of the same type) to the same node of the
database. It also allows a tree mapped to a path. This
definition is quite different from the tree matching
defined in[7].
 There is much research on how to find such a
mapping efficiently and all the proposed methods can
be categorized into two groups. By the first group[2,8-17],
a tree pattern is typically decomposed into a set of
binary relationships between pairs of nodes, such as
parent-child and ancestor-descendant relations. Then,
an index structure is used to find all the matching pairs
that are joined together to form the final result. By the
second group[18-23], a query pattern is decomposed into a
set of paths. The final result is constructed by joining
all the matching paths together. For all these methods,
the join operations involved require exponential time in
the worst case. For example, if we decompose a twig
pattern into paths to find all the matching paths from a

book

title author

Art of Programming fn ln

Donald Knuth

J. Computer Sci., 3 (7): 487-493, 2007

 488

database, we need O(pλ) time to join them together,
where p is the largest length of a matching path and λ is
the number of all such paths.
 In this study, we proposed a new algorithm with no
join operations involved. The algorithm runs in
O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where Tleaf and
Qleaf represent the numbers of the leaf nodes in T and in
Q, respectively.

TREE ENCODING

To facilitate the checking of reachability (whether a
node can be reached from another node through a path),
a tree encoding is used[24].
 Consider a tree T. By traversing T in preorder,
each node v will obtain a number pre(v) to record the
order in which the nodes of the tree are visited. In a
similar way, by traversing T in postorder, each node v
will get another number post(v). These two numbers
can be used to characterize the ancestor-descendant
relationships as follows.
 Let v and v’ be two nodes of a tree T. Then, v’ is a
descendant of v iff pre(v’) > pre(v) and post(v’) <
post(v)[24].
 As an example, have a look at the pairs associated
with the nodes of the tree shown in Fig. 2. The first
element of each pair is the preorder number of the
corresponding node and the second is its postorder
number. Using such labels, the ancestor-descendant
relationships can be easily checked.

Fig. 2: Labeling a tree

 For instance, by checking the label associated with
b against the label for f, we see that b is an ancestor of f
in terms of Proposition 1. Note that b’s label is (2, 4)
and f’s label is (4, 1) and we have 2 < 4 and 4 > 1. We
also see that since the pairs associated with g and c do
not satisfy the condition given in Proposition 1, g must
not be an ancestor of c and vice versa.
 Let (p, q) and (p’, q’) be two pairs associated with
nodes u and v, respectively. We say that (p’, q’) is
subsumed by (p, q), denoted (p’, q’) (p, q), if p’ > p and

q’ < q. Then, u is an ancestor of v if (p’, q’) is
subsumed by (p, q).
 In addition, if p’ < p and q’ < q, u is to the left of v.
 Finally, we can associate each node v with a level
number l(v) (the nesting depth of the element in a
document). In conjunction with the tree encoding, this
number can be utilized to tell whether a node is the
parent of another node. For example, if pre(v’) > pre(v),
post(v’) < post(v) and l(v) = l(v’) + 1, then v’ is a child
node of v.

ALGORITHM FOR SIMPLE CASES

Here, we describe an algorithm for simple cases that a
twig pattern contains only d-edges. First, we give a
basic algorithm to show the main idea in 3.1. Then, in
3.2, we discuss how this algorithm can be substantially
improved. In 3.3, we prove the correctness of the
algorithm and analyze its computational complexities.

Basic algorithm: The basic algorithm to be given
works in a bottom-up way. During the process, two data
structures are maintained and computed to facilitate the
discovery of subtree matchings.
• Each node v in T is associated with a set, denoted

α(v), contains all those nodes q in Q such that Q[q]
can be imbedded into T[v], where T[v] represents a
subtree of T rooted at v.

• Each q in Q is associated with a value δ(q), defined
as follows:

 Initially, for each q ∈ Q, δ(q) is set to φ. During the
tree matching process, δ(q) is dynamically changed as
below:
1. Let v be a node in T with parent node u.
2. If q appears in α(v), change the value of δ(q) to u.
 Then, each time before we insert q into α(v), we

will do the following checkings:
 (i) Check whether label(q) = label(v).
 (ii) Let q1, ..., qk be the child nodes of q. For each

qi (i = 1, ..., k), check whether δ(qi) is equal to
v or to a descendent of v.

 If both (1) and (2) are satisfied, insert q into α(v).
 Below is a bottom-up algorithm, working in a
recursive way and taking a node v in T as the input
(which represents T[v]). Initially, the input is the root of
T. The algorithm will mark any node u in T[v] if it finds
that T[u] contains Q. In the process, two functions are
called:
• node-check(u, q) - It checks whether T[u] contains

Q[q]. If it is the case, return {q}. Otherwise, it
returns an empty set ∅.

a (1, 7)

(2, 4) b g (6, 5) h (7, 6)

(3, 2) c e (5, 3)

f (4, 1)

J. Computer Sci., 3 (7): 487-493, 2007

 489

• leaf-node-check(u) - It returns a set of leaf nodes in
Q: {q1, ..., qk} such that for each qi (1 ≤ i ≤ k)
label(u) = label(qi).

Algorithm tree-matching(v)
input: v - a node of tree T.
output: mark any node u in T[v] if T[u] contains Q.
begin
1. S := ∅; S1 := ∅; S2 := ∅;
2. if v is not a leaf node in T then
3. {let v1, ..., vk be the child nodes of v;
4. for i = 1 to k do call tree-matching(vi);
5. α := α(v1) ∪ ... ∪ α(vk);
6. for each q ∈ α do
7. {δ(q) := v; S := S ∪ {q’s parent};}
8. remove all α(vj) (j = 1, ..., k);
9. for each q in S do
10. S1 := S1 ∪ node-check(v, q);
11. }
12. S2 := leaf-node-check(v);
13. α(v) := α ∪ S1 ∪ S2;
end

Function node-check(u, q)
begin
1. S1 := ∅;
2. if label(q) = label(u) then
3. {let q1, ..., qk be the child nodes of q;
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u
5. or to a descendant of u
6. then {S1 := S1 ∪ {q};
7. if q is root then mark u};}
8. return S1;
end

Function leaf-node-check(u)
begin
1. S2 := ∅;
2. for each leaf node q in Q do
3. {if type(q) = type(u) then {S2 := {q};
4. if q is root then mark u;}
5. return S2;
end
 The algorithm tree-matching() searches T bottom-
up in a recursive way (see line 4). During the process,
for each encountered node v in T, we first check
whether it is a leaf node (see line 2). If it is a leaf node,
the function leaf-node-check() is called (see line 12),
by which all the matching leaf nodes in Q will be stored
in a temporary variable S2 that will be added to α(v)
(see line 13). If v is an internal node, lines 3 - 10 are

first conducted and then the function leaf-node-check()
is invoked (see line 12). By executing line 4, tree-
matching() is recursively called for each child node vi
of v. After that, for each q appearing in α(vi), its δ value
is set to be v (see line 7). In addition, q’s parent is
inserted into S, a temporary valuable to be used in a
next step. Since α(vi)’s will not be used any more after
this step, they are simply removed (see line 8). By
executing lines 9 - 10, we check, for each q’ in S,
whether v matches q’ by calling node-check(), in which
the δ values of q’s child nodes are utilized to facilitate
the checkings (see lines 3 - 5 in node-check()). The
following example helps for illustration.

Example 1: Consider T and Q shown in Fig. 3.
 The algorithm works in a bottom-up way. First, v3
in T is visited. It is a leaf node, matching q3 of the two
leaf nodes in Q. Therefore, α(v3) = {q3} (see lines 12).
In the same way, we will set α(v5) = {q2}.

Fig. 3: A document tree and a query tree

 In a next step, v4 is encountered. It is the parent of
v5. In terms of α(v5) = {q2}, δ(q2) is set to be v4 (Fig. 4)
After that, node-check(v4, q1) is invoked. (Note that q1 is
the parent of q2. See lines 9 - 10.) Since label(v4) ≠
label(q1), it returns S1 = ∅. leaf-node-check(v4) also
returns S2 = ∅. So α(v4) = α(v5) ∪ S1 ∪ S2 = {q2} (see
line 13). When v2 is met, we will first set δ(q2) = δ(q3) =
v2 (in terms of α(v4) = {q2} and α(v3) = {q3},
respectively). Next, we call node-check(v2, q1), in
which we will check whether label(v2) = label(q1). It is
the case. So we will further check whether δ(qi) (i = 2,
3) is equal to v2. Since both δ(q2) and d(q3) are equal to
v2, we have that T[v2] contains Q[q1]. Therefore, S1 =
{q1}. Thus, we set α(v2) = α(v3) ∪ α(v4) ∪ S1 ∪ S2 =
α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ = {q1, q2, q3}

Fig. 4: Sample trace

c v3 e v4

b v5

a v1

a v2 c v6

T: a q1

b q2 c q3

Q:

e v4

a v2

T:

c v3

b v5

a v1

c v6

a q1

b q2 c q3

Q:

α(v3) = {q3}
α(v4) = {q2}

α(v5) = {q2}

α(v5) =
{q1, q2, q3}

δ(q2) = v4

δ(q2) is set to v4

since α(v5) = {q2}.

J. Computer Sci., 3 (7): 487-493, 2007

 490

 In a next step, we will meet v6. It is a leaf node,
matching q3. Therefore, α(v6) = {q3}. Finally, we will
meet v1 and set δ(q1) = v1 and δ(q3) = v1. Since label(v1)
= label(q1), δ(q2) = δ(q3) = v1, we have that T[v1]
contains Q[q1] and α(v1) = {q1, q2, q3}.

Improvements: The above algorithm can be
substantially improved by elaborating the construction
of α(v)’s.
First, we notice that in the case that v is a leaf node in T,
α(v) is a set of the leaf nodes in Q, which match v. Such
nodes can be stored in a linked list as illustrated below:

Fig. 5: Linked list to store

with the left-most node appearing first and the right-
most node last. Then, for any 1 ≤ i ≤ j ≤ k, we have
pre(qi) < pre(qj) and post(qi) < post(qj). That is, in α(v),
qi’s are sorted according to their preorder and postorder
values.
Now we consider two α-lists α and α’ sorted according
to their nodes’ preorder and postorder numbers. Define
a merging operation over α and α’, denoted merge(α,
α’), as follows:
1. Assume that α = {v1, ..., vp} and α’ = {v1’, ..., vq’}.

We step through both α and α’ from left to right.
Let vi and vj’ be the nodes encountered. We’ll make
the following checkings.

2. If pre(vi) > pre(vj’) and post(vi) > post(vj’), insert
vj’ into a after vi-1 and before vi and move to vj+1’
(in α’).

3. If pre(vi) > pre(vj’) and post(vi) < post(vj’), remove
vi from α and move to vi+1. (*vi is subsumed by
vj’.*)

4. If pre(vi) < pre(vj’) and post(vi) > post(vj’), ignore
vj’ and move to vj+1’ (in α’). (*vj’ is subsumed by
vi.*)

5. If pre(vi) < pre(vj’) and post(vi) < post(vj’), ignore
vi and move to vi+1.

6. If pre(vi) = pre(vj’) and post(vi) = post(vj’), ignore
both vi and vj’ and move to vi+1 and vj+1’ in α and
α’, respectively.

 The result of merge(α, α’) is stored in α and α’
remains unchanged. Especially, the changed α is still
sorted according to their nodes’ preorder and postorder
numbers.
 In terms of the above discussion, we have the
following algorithm to merge two sorted a-lists
together.

Algorithm merge(α, α’)
Input: α and α’ - sorted α-lists.
Output: modified α, containing all the nodes in α and
α’ with all the subsumed nodes removed.
begin
1. p ← first-element(α);
2. q ← first-element(α’);
3. while p ≠ nil do{
4. while q ≠ nil do{
5. if (pre(p) > pre(q) ∧ post(p) > post(q))
6. then {insert q into α before p;
7. q ← next(q);} (*next(q) represents
 the node next to q in α’.*)
8. else if (pre(p) > pre(q) ∧ post(p) < post(q))
9. then {p’ ← p; (*p is subsumed by q;
 remove p from α.*)
10. remove p from α;
11. p ← next(p’);} (*next(p’) represents

the node next to p’ in α.*)
12. else if (pre(p) < pre(q)
 ∧ post(p) > post(q))
13. then {q ← next(q);} (*q is subsumed
 by p; move to the node next to q.*)
14. else if (pre(p) < pre(q)
 ∧ post(p) < post(q))
15. then {p ← next(p);}
16. else if (pre(p) = pre(q)
 ∧ post(p) = post(q))
17. then {p ← next(p);
 q ← next(q);}}}
18.if p = nil ∧ q ≠ nil
 then {attach the rest of α’ to the end of α;}
end
 We can extend the merging operation over to more
than two sorted α-lists:
 merge(α1, ..., αk-1, αk)
 = merge(merge((α1, ..., αk-1), αk).
Using this operation, the algorithm tree-matching() is
rewritten as follows.

Algorithm tree-matching(v)
input: v - a node of tree T.
output: mark any node u in T[v] if T[u] contains Q.
begin
1. S := ∅;
2. if v is not a leaf node in T then
3. {let v1, ..., vk be the child nodes of v;
4. for i = 1 to k do call tree-matching(vi);
5. α := merge(α(v1), ..., α(vk));
6. assume that α = {q1, ..., qj };

q1 qk … …

J. Computer Sci., 3 (7): 487-493, 2007

 491

7. for i = 1 to j do
8. {δ(qi) := v;
9. if (qi’s parent ≠ qi-1’s parent) then
10. S := S ∪ {qi’s parent};}
11. remove all α(vj) (j = 1, ..., k);
12. for each q in S do
13. S1 := S1 ∪ node-check(v, q);
14. }
15. S2 := leaf-node-check(v);
16. α(v) := merge(α, S1, S2);
end
 This algorithm is almost the same as the previous
one, but with the merge operation involved, which
effectively reduces the size of each α(v) from O(|Q|) to
O(Qleaf). Special attention should also be paid to line 7,
by which we generate a set S that contains the parent
nodes of all those nodes appearing in α(vj)’s (j = 1, ...,
k), where vj is a child node of the current node v. Since
the nodes in α (α = merge(α1, ..., αk-1, αk)) are left-to-
right sorted (according to the nodes’ preorder and
postorder numbers), if there are more than one nodes in
a sharing the same parent, they must appear
consecutively in the list. So each time we insert a parent
node q’ (of some q in α) into S, we need to check
whether it is the same as the previously inserted one. If
it is the case, q’ will be ignored. Thus, the size of S is
also bounded by O(Qleaf).

Correctness and computational complexity: In this
subsection, we prove the correctness of the algorithm
tree-matching() and analyze its computational
complexities.

Proposition 1: Let v be a node in T. Then, for each q in
α(v) generated by tree-matching(), we have T[v]
contains Q[q].

Proof: We prove the proposition by induction on the
height of Q, height(Q).

Basic step: When height(Q) = 1, the proposition
trivially holds.

Induction step: Assume that the proposition holds for
any query tree Q’ with height(Q’) ≤ h. We consider a
query tree Q of height h + 1. Let rQ be the root of Q. Let
q1, ..., qk be the child nodes of rQ. Then, we have
height(Q[qj]) ≤ h (j = 1, ..., k). In terms of the induction
hypothesis, for each q in Q[qj] (j = 1, ..., k), if it appears
in α(vi) (where vi is a child node of v), we have T[vi]
contains Q[q] and δ(q) will be set to be v. Especially, if
T[vi] contains Q[qj] (j = 1, ..., k), we have qj ∈ α(vi) and

δ(qj) will be set to be v before v is checked against rQ.
Obviously, if label(v) = label(rQ) and for each qj (j = 1,
..., k), δ(qj) is equal to v or a descendant of v, Q can be
embedded into T[v]. So rQ is inserted into α(v).
 Now we consider the time complexity of the
algorithm, which can be divided into four parts:
1. The first part is the time spent on merging α(v1), ...,

α(vk), where vi (i = 1, ..., k) is a child node of some
node v in T. This part of cost is bounded by

 O(∑
T

i
leafiQd) = O(|T|Qleaf),

 where di represents the ourdegree of a node vi in T.
2. The second part is the time used for generating S

from a merged α-list. Since the size of the α-list is
bounded by O(Qleaf), so this part of cost is also
bounded by O(Qleaf).

3. The third part is the time for checking a node vi in
T against each node qj in an S. Denote Si the set of
the nodes in Q, which are checked against vi. We
estimate this part of cost by the following sum:

 O(∑∑
T

i

S

j
j

i

c) = O(|T|Qleaf),

 where cj represents the ourdegree of a node qj in Si.
4. The fourth part is the time for checking each node

in T against the leaf nodes in Q. Obviously, this
part of cost is bounded by

 O(∑
T

i
leafQ) = O(|T|Qleaf).

In terms of the above analysis, we have the following
proposition.

Proposition 2: The time complexity of tree-matching()
is bounded by O(|T|Qleaf).

Proof: See the above discussion.
 Since at each time point at most Tleaf nodes in T are
associated with a α-list, the space overhead is bounded
by O(Tleaf⋅Qleaf).

GENERAL CASES

The algorithm discussed earlier can be easily extended
to general cases that a query tree contains both c-edges
and d-edges. We only need to make the following
changes:
• For each child node qi of q that is being checked

against v, if (q, qi) is a c-edge, we will check
whether δ(qi) is equal to v. If (q, qi) is a d-edge, we
simply check whether pre(δ(qi) ≥ pre(v) and
post(δ(qi)) ≤ post(v).

• Accordingly, the algorithm node-check described
earlier should be slightly modified.

J. Computer Sci., 3 (7): 487-493, 2007

 492

Function general-node-check(u, q)
begin
1. S1 := ∅;
2. if label(q) = label(u) then
3. {let q1, ..., qg be the child nodes of q;
4. flag := true; i := 1;
5. while (i ≤ g ∧ flag) do
6. {if ¬(((q, qi) is a c-edge) ∧ (δ(qi) = v)) ∨
7. ((q, qi) is a d-edge) ∧
8. (pre(δ(qi) ≥ pre(u)) ∧
9. (post(δ(qi) ≤ post(u))))
10. then flag := false;}
11. if i > g then {S1 := S1 ∪ {q};
12. if q is root then mark u;}
13. return S1;
end
 This algorithm is similar to the function node-
check(). The only difference is that a general
subsumption checking process is used, by which c-
edges and d-edges are checked in different ways.
 In addition, the lines 5 - 10 in the algorithm tree-
matching() given in 3.2 should be replaced with the
following segment of code:
 for i = 1 to k do {
 for q ∈ α(vi) do {
 let q’ be the parent of q;
 if ((q’, q) is a d-edge) or
 ((q’, q) is a c-edge and q matches vi))
 then {δ(q) := v;
 let q’’ be the last element in S;
 if (q’s parent ≠ q’’)
 then S := S ∪ {q’s parent};}
 else remove q from α(vi);
 }}
 α := merge(α(v1), ..., α(vk));
 Concerning the correctness of the algorithm, we
have to answer a question: whether any c-edge in Q is
correctly checked.
 First, we note that any c-edge in Q cannot be
matched to any path with length larger than 1 in T. That
is, it can be matched only to a single edge in T. It is
exactly what is done by the algorithm.
 Each time we check a node v in T against some q in
Q, we will first set d values for any qi appearing in
α(vj)’s, where vj is a child node of v. When doing this,
for some qi’s, their δ values are changed (to v). Assume
that the current δ value for qi is v’ (i.e., δ(qi) = v’).
Then, v’ must be a descendant of v since the algorithm
searches T in a bottom-up way. However, we need to
change δ(qi) from v’ to v since a c-edge can match only
a single edge in T and the fact that qi matches vj should

be recorded so that the c-edge matching is not missed
(see Fig. 6 for illustration).
 In Fig. 6, v’’ is a descendant of v and matches q2.
So δ(q2) will be set to v’. However, (q, q2) is a c-edge.
Therefore, the fact that v’’ matches q2 makes no
contribution to the matching of v with q. Since q2 also
matches v2, δ(q2) will be changed to v, which enables us
to find that T[v] contains Q[q].

Fig. 6: Illustration for c-edge checking

 In conjunction with Proposition 1, the above
analysis shows the correctness of the algorithm. We
have the following proposition.

Proposition 3: Let Q be a twig pattern containing both
c-edges and d-edges. Let v be a node in T. For each q in
α(v) generated by tree-matching() with general-node-
check() being used, we have T[v] contains Q[q].

Proof: See the above discussion.
 The time and space complexities for the general
cases are the same as for the simple cases.

CONCLUSION

 In this article, a new algorithm is proposed for a
kind of tree matching, the so-called twig pattern
matching. This is a core operation for XML query
processing. The main idea of the algorithm is to explore
both T and Q bottom-up, by which each node q in Q is
associated with a value (denoted δ(q)) to indicate a
node v in T, which has a child node v’ such that T[v’]
contains Q[q]. In this way, the tree embedding can be
checked very efficiently. In addition, by using the tree
encoding, as well as the subsumption checking
mechanism, we are able to minimize the size of the lists
of the matching query nodes associated with the nodes
in T to reduce the space overhead. The algorithm runs
in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where Tleaf
and Qleaf represent the numbers of the leaf nodes in T
and in Q, respectively. More importantly, no costly path
join operation is necessary.

REFERENCES

1. Florescu, D. and D. Kossman, 1999. Storing and

querying XML data using an RDMBS. IEEE Data
Eng. Bull., 22: 27-34.

a v

c
a v1 b v2

a q

d v’

T:

c q1 b q2

Q:

b v’’

J. Computer Sci., 3 (7): 487-493, 2007

 493

2. World Wide Web Consortium. XML Path
Language (XPath), W3C Recommendation,
Version 1.0, Nov. 1999, http://www.w3.org/TR/x-

 path.
3. World Wide Web Consortium. XQuery 1.0: An

XML Query Language, W3C Recommendation,
Version 1.0, Dec. 2001, http://www.w3.org/TR/x-

 query.
4. Dutch, A., M. Fernandez, D. Florescu, A. Levy and

D.Suciu, 1999. A query language for XML. Proc.
8th World Wide Web Conf., pp: 77-91.

5. Chamberlin, D.D., J. Clark, D. Florescu and M.
Stefanescu. XQuery1.0: An XML Query
Language. http:/ /www.w3.org/TR/ query-data-

 model/.
6. Chamberlin, D.D., J. Robie and D. Florescu, 2000.

Quilt: An XML query language for heterogeneous
data sources. WebDB 2000.

7. Hoffmann, C.M. and M.J. O’Donnell, 1982.
Pattern matching in trees. J. ACM, 29: 68-95.

8. Abiteboul, S., P. Buneman and D. Suciu, 1999.
Data on the web: From relations to semistructured
data and XML. Morgan Kaufmann Publisher, Los
Altos, CA 94022.

9. Chung, C., J. Min and K. Shim, 2002. APEX: An
adaptive path index for XML data. ACM
SIGMOD.

10. Cooper, B.F., N. Sample, M. Franklin, A.B.
Hialtason and M. Shadmon, 2001. A fast index for
semistructured data. Proc. VLDB, pp: 341-350.

11. Goldman, R. and J. Widom, 1997. DataGuide:
Enable query formulation and optimization in
semistructured databases. Proc. VLDB, pp: 436-
445.

12. McHugh, J. and J. Widom, 1999. Query
optimization for XML. Proc. of VLDB.

13. Li, Q. and B. Moon, 2001. Indexing and querying
XML data for regular path expressions. Proc.
VLDB, pp: 361-370.

14. Wang, H. and X. Meng, 2005. On the sequencing
of tree structures for XML indexing. Proc. Conf.
Data Eng., Tokyo, Japan, pp: 372-385.

15. Zhang, C., J. Naughton, D. Dewitt, Q. Luo and G.
Lohman, 2001. On supporting containment queries
in relational database management systems. Proc.
ACM SIGMOD.

16. Kaushik, R., P. Bohannon, J. Naughton and H.
Korth, 2002. Covering indexes for branching path
queries. ACM SIGMOD.

15. Schmidt, A.R., F. Waas, M.L. Kersten, D.
Florescu, I. Manolescu, M.J. Carey and R. Busse,
2001. The XML benchmark project. Technical
Report INS-Ro1o3, Centrum voor Wiskunde en
Informatica.

18. Bruno, N., N. Koudas and D. Srivastava, 2002.
Holistic twig hoins: Optimal XML pattern
matching. Proc. SIGMOD Intl. Conf. on
Management of Data, Madison, Wisconsin, pp:
310-321.

19. Chen, T., J. Lu and T.W. Ling, 2005. On boosting
holism in XML twig pattern matching. Proc.
SIGMOD, pp: 455-466.

20. Choi, B., M. Mahoui and D. Wood, 2003. On the
optimality of holistic algorithms for twig queries.
Proc. DEXA, pp: 235-244.

21. Chen, S. et al., 2006. Twig2Stack: Bottom-up
processing of generalized-tree-pattern queries over
XML Documents. Proc. VLDB, Seoul, Korea, pp:
283-323.

22. Lu, J., T.W. Ling, C.Y. Chan and T. Chan, 2005.
From region encoding to extended dewey: On
efficient processing of XML twig pattern matching.
Proc. VLDB, pp: 193-204.

23. Seo, C., S. Lee and H. Kim, 2003. An Efficient
Index Technique for XML Documents Using
RDBMS. Inform. Software Technol., 45: 11-22,
Elsevier Science B.V.

24. Knuth, D.E., 1969. The Art of Computer
Programming. Vol.1, Addison-Wesley, Reading.

