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Abstract: In this article, we discuss an efficient algorithm for tree mapping problem in XML 
databases. Given a target tree T and a pattern tree Q, the algorithm can find all the embeddings of Q in 
T in O(|T||Q|) time while the existing approaches need exponential time in the worst case. 
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INTRODUCTION 

 
 XML uses a tree-structured model for representing 
data. Queries in XML languages (such as Xpath[1], 
Xquery[2,3], XML-QL[4] and Quilt[5,6]) also typically 
specify selection patterns as a kind of tree-structured 
relations. For instance, the XPath expression: 

book[title = ‘Art of Programming’]//author[fn = 
‘Donald’ and ln = ‘Knuth’] 

matches author elements that (i) have a child 
subelement fn with content ‘Donald’, (ii) have a child 
subelement ln with content ‘Knuth’ and are descendants 
of book elements that have a child title subelement with 
content ‘Art of Programming’. This expression can be 
represented as a tree structure as shown in Fig. 1.  

 
 
 
 
 
 
 
 
 

Fig. 1: A query tree 
 
 In this tree structure, a node v is labeled with an 
element name or a string value, denoted label(v). In 
addition, there are two kinds of edges: child edges (c-
edges) for parent-child relationships and descendant 
edges (d-edges) for ancestor-descendant relationships. 
A c-edge from node v to node u is denoted by v → u in 
the text and represented by a single arc; u is called a c-
child of v. A d-edge is denoted v ⇒ u in the text and 
represented by a double arc; u is called a d-child of v. 
Such a query is often called a twig pattern.  

 In any DAG (directed acyclic graph), a node u is 
said to be a descendant of a node v if there exists a path 
(sequence of edges) from v to u. In the case of a twig 
pattern, this path could consist of any sequence of c-
edges and/or d-edges. Based on these concepts, the tree 
embedding can be defined as follows. 
 
Definition 1: An embedding of a twig pattern Q into an 
XML document T is a mapping f: Q → T, from the 
nodes of Q to the nodes of T, which satisfies the 
following conditions: 
i. Preserve node label: For each u ∈ Q, u and f(u) are 

of the same label (or more generally, u’s predicate 
is satisfied by f(u).) 

ii. Preserve c/d-child relationships: If u → v in Q, 
then f(v) is a child of f(u) in T; if u ⇒ v in Q, then 
f(v) is a descendant of f(u) in T.  

 If there exist a mapping from Q into T, we say, Q   
can  be imbedded into T, or say, T contains Q. 
 Notice that an embedding could map several nodes 
of the query (of the same type) to the same node of the 
database. It also allows a tree mapped to a path. This 
definition is quite different from the tree matching 
defined in[7]. 
 There is much research on how to find such a 
mapping efficiently and all the proposed methods can 
be categorized into two groups. By the first group[2,8-17], 
a tree pattern is typically decomposed into a set of 
binary relationships between pairs of nodes, such as 
parent-child and ancestor-descendant relations. Then, 
an index structure is used to find all the matching pairs 
that are joined together to form the final result. By the 
second group[18-23], a query pattern is decomposed into a 
set of paths. The final result is constructed by joining 
all the matching paths together. For all these methods, 
the join operations involved require exponential time in 
the worst case. For example, if we decompose a twig 
pattern into paths to find all the matching paths from a 

book 

title author 

Art of Programming fn ln 

Donald Knuth 
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database, we need O(pλ) time to join them together, 
where p is the largest length of a matching path and λ is 
the number of all such paths.  
 In this study, we proposed a new algorithm with no 
join operations involved. The algorithm runs in 
O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where Tleaf and 
Qleaf represent the numbers of the leaf nodes in T and in 
Q, respectively. 
 

TREE ENCODING 
 

To facilitate the checking of reachability (whether a 
node can be reached from another node through a path), 
a tree encoding is used[24]. 
 Consider a tree T. By traversing T in preorder, 
each node v will obtain a number pre(v) to record the 
order in which the nodes of the tree are visited. In a 
similar way, by traversing T in postorder, each node v 
will get another number post(v). These two numbers 
can be used to characterize the ancestor-descendant 
relationships as follows. 
 Let v and v’ be two nodes of a tree T. Then, v’ is a 
descendant of v iff pre(v’) > pre(v) and post(v’) < 
post(v)[24].  
 As an example, have a look at the pairs associated 
with the nodes of the tree shown in Fig. 2. The first 
element of each pair is the preorder number of the 
corresponding node and the second is its postorder 
number. Using such labels, the ancestor-descendant 
relationships can be easily checked.  
 
 
 
 
 
 
 
 
 
 
Fig. 2: Labeling a tree 
 
 For instance, by checking the label associated with 
b against the label for f, we see that b is an ancestor of f 
in terms of Proposition 1. Note that b’s label is (2, 4) 
and f’s label is (4, 1) and we have 2 < 4 and 4 > 1. We 
also see that since the pairs associated with g and c do 
not satisfy the condition given in Proposition 1, g must 
not be an ancestor of c and vice versa. 
 Let (p, q) and (p’, q’) be two pairs associated with 
nodes u and v, respectively. We say that (p’, q’) is 
subsumed by (p, q), denoted (p’, q’) (p, q), if p’ > p and 

q’ < q. Then, u is an ancestor of v if (p’, q’) is 
subsumed by (p, q). 
 In addition, if p’ < p and q’ < q, u is to the left of v. 
 Finally, we can associate each node v with a level 
number l(v) (the nesting depth of the element in a 
document). In conjunction with the tree encoding, this 
number can be utilized to tell whether a node is the 
parent of another node. For example, if pre(v’) > pre(v), 
post(v’) < post(v) and l(v) = l(v’) + 1, then v’ is a child 
node of v.  
 

ALGORITHM FOR SIMPLE CASES 
 

Here, we describe an algorithm for simple cases that a 
twig pattern contains only d-edges. First, we give a 
basic algorithm to show the main idea in 3.1. Then, in 
3.2, we discuss how this algorithm can be substantially 
improved. In 3.3, we prove the correctness of the 
algorithm and analyze its computational complexities. 
 
Basic algorithm: The basic algorithm to be given 
works in a bottom-up way. During the process, two data 
structures are maintained and computed to facilitate the 
discovery of subtree matchings. 
• Each node v in T is associated with a set, denoted 

α(v), contains all those nodes q in Q such that Q[q] 
can be imbedded into T[v], where T[v] represents a 
subtree of T rooted at v. 

• Each q in Q is associated with a value δ(q), defined 
as follows: 

 Initially, for each q ∈ Q, δ(q) is set to φ. During the 
tree matching process, δ(q) is dynamically changed as 
below: 
1. Let v be a node in T with parent node u.  
2. If q appears in α(v), change the value of δ(q) to u. 
 Then, each time before we insert q into α(v), we 

will do the following checkings: 
 (i) Check whether label(q) = label(v). 
 (ii) Let q1, ..., qk be the child nodes of q. For each 

qi (i = 1, ..., k), check whether δ(qi) is equal to 
v or to a descendent of v. 

 If both (1) and (2) are satisfied, insert q into α(v). 
 Below is a bottom-up algorithm, working in a 
recursive way and taking a node v in T as the input 
(which represents T[v]). Initially, the input is the root of 
T. The algorithm will mark any node u in T[v] if it finds 
that T[u] contains Q. In the process, two functions are 
called: 
• node-check(u, q) - It checks whether T[u] contains 

Q[q]. If it is the case, return {q}. Otherwise, it 
returns an empty set ∅. 

a (1, 7) 

(2, 4) b g (6, 5) h (7, 6) 

(3, 2) c e (5, 3) 

f (4, 1) 



J. Computer Sci., 3 (7): 487-493, 2007 
 

 489

• leaf-node-check(u) - It returns a set of leaf nodes in 
Q: {q1, ..., qk} such that for each qi (1 ≤ i ≤ k) 
label(u) = label(qi). 

 
Algorithm tree-matching(v) 
input: v - a node of tree T. 
output: mark any node u in T[v] if T[u] contains Q. 
begin 
1. S := ∅; S1 := ∅; S2 := ∅; 
2. if v is not a leaf node in T then  
3. {let v1, ..., vk be the child nodes of v; 
4. for i = 1 to k do call tree-matching(vi); 
5. α := α(v1) ∪ ... ∪ α(vk);  
6. for each q ∈ α do  
7. {δ(q) := v; S := S ∪ {q’s parent};} 
8. remove all α(vj) (j = 1, ..., k);  
9. for each q in S do 
10. S1 := S1 ∪ node-check(v, q); 
11. } 
12. S2 := leaf-node-check(v); 
13. α(v) := α ∪ S1 ∪ S2; 
end 
 
Function node-check(u, q) 
begin 
1. S1 := ∅; 
2. if label(q) = label(u) then 
3. {let q1, ..., qk be the child nodes of q; 
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u 
5. or to a descendant of u 
6. then {S1 := S1 ∪ {q};  
7. if q is root then mark u};} 
8. return S1; 
end 
 
Function leaf-node-check(u) 
begin 
1. S2 := ∅; 
2. for each leaf node q in Q do 
3. {if type(q) = type(u) then {S2 := {q}; 
4. if q is root then mark u;} 
5. return S2; 
end 
 The algorithm tree-matching( ) searches T bottom-
up in a recursive way (see line 4). During the process, 
for each encountered node v in T, we first check 
whether it is a leaf node (see line 2). If it is a leaf node, 
the function leaf-node-check( ) is called (see line 12), 
by which all the matching leaf nodes in Q will be stored 
in a temporary variable S2 that will be added to α(v) 
(see line 13). If v is an internal node, lines 3 - 10 are 

first conducted and then the function leaf-node-check( ) 
is invoked (see line 12). By executing line 4, tree-
matching( ) is recursively called for each child node vi 
of v. After that, for each q appearing in α(vi), its δ value 
is set to be v (see line 7). In addition, q’s parent is 
inserted   into   S,  a  temporary  valuable to be used in a  
next step. Since α(vi)’s will not be used any more after 
this step, they are simply removed (see line 8). By 
executing lines 9 - 10, we check, for each q’ in S, 
whether v matches q’ by calling node-check( ), in which 
the δ values of q’s child nodes are utilized to facilitate 
the checkings (see lines 3 - 5 in node-check( )). The 
following example helps for illustration. 
 
Example 1: Consider T and Q shown in Fig. 3. 
 The algorithm works in a bottom-up way. First, v3 
in T is visited. It is a leaf node, matching q3 of the two 
leaf nodes in Q. Therefore, α(v3) = {q3} (see lines 12). 
In the same way, we will set α(v5) = {q2}.  
 
 
 
 
 
 
 
Fig. 3: A document tree and a query tree 
 
 In a next step, v4 is encountered. It is the parent of 
v5. In terms of α(v5) = {q2}, δ(q2) is set to be v4 (Fig. 4) 
After that, node-check(v4, q1) is invoked. (Note that q1 is 
the parent of q2. See lines 9 - 10.) Since label(v4) ≠ 
label(q1), it returns S1 = ∅. leaf-node-check(v4) also 
returns S2 = ∅. So α(v4) = α(v5) ∪ S1 ∪ S2 = {q2} (see 
line 13). When v2 is met, we will first set δ(q2) = δ(q3) = 
v2 (in terms of α(v4) = {q2} and α(v3) = {q3}, 
respectively). Next, we call node-check(v2, q1), in 
which we will check whether label(v2) = label(q1). It is 
the case. So we will further check whether δ(qi) (i = 2, 
3) is equal to v2. Since both δ(q2) and d(q3) are equal to 
v2, we have that T[v2] contains Q[q1]. Therefore, S1 = 
{q1}. Thus, we set α(v2) = α(v3) ∪ α(v4) ∪ S1 ∪ S2 = 
α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ = {q1, q2, q3} 
 
 
 
 
 
 
 
Fig. 4: Sample trace 

c v3 e v4 

b v5 

a v1 

a v2 c v6 

T: a q1 

b q2 c q3 

Q: 

e v4 

a v2 

T: 

c v3 

b v5 

a v1 

c v6 

a q1 

b q2 c q3 

Q: 

α(v3) = {q3} 
α(v4) = {q2} 

α(v5) = {q2} 

α(v5) = 
{q1, q2, q3} 

δ(q2) = v4 

δ(q2) is set to v4 

since α(v5) = {q2}. 
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 In a next step, we will meet v6. It is a leaf node, 
matching q3. Therefore, α(v6) = {q3}. Finally, we will 
meet v1 and set δ(q1) = v1 and δ(q3) = v1. Since label(v1) 
= label(q1), δ(q2) = δ(q3) = v1, we have that T[v1] 
contains Q[q1] and α(v1) = {q1, q2, q3}. 
 
Improvements: The above algorithm can be 
substantially improved by elaborating the construction 
of α(v)’s. 
First, we notice that in the case that v is a leaf node in T, 
α(v) is a set of the leaf nodes in Q, which match v. Such 
nodes can be stored in a linked list as illustrated below: 
 
 
 
Fig. 5: Linked list to store 
 
with the left-most node appearing first and the right-
most node last. Then, for any 1 ≤ i ≤ j ≤ k, we have 
pre(qi) < pre(qj) and post(qi) < post(qj). That is, in α(v), 
qi’s are sorted according to their preorder and postorder 
values. 
Now we consider two α-lists α and α’ sorted according 
to their nodes’ preorder and postorder numbers. Define 
a merging operation over α and α’, denoted merge(α, 
α’), as follows: 
1. Assume that α = {v1, ..., vp} and α’ = {v1’, ..., vq’}. 

We step through both α and α’ from left to right. 
Let vi and vj’ be the nodes encountered. We’ll make 
the following checkings. 

2. If pre(vi) > pre(vj’) and post(vi) > post(vj’), insert 
vj’ into a after vi-1 and before vi and move to vj+1’ 
(in α’).  

3. If pre(vi) > pre(vj’) and post(vi) < post(vj’), remove 
vi from α and move to vi+1. (*vi is subsumed by 
vj’.*) 

4. If pre(vi) < pre(vj’) and post(vi) > post(vj’), ignore 
vj’ and move to vj+1’ (in α’). (*vj’ is subsumed by 
vi.*) 

5. If pre(vi) < pre(vj’) and post(vi) < post(vj’), ignore 
vi and move to vi+1.  

6. If pre(vi) = pre(vj’) and post(vi) = post(vj’), ignore 
both vi and vj’ and move to vi+1 and vj+1’ in α and 
α’, respectively. 

 The result of merge(α, α’) is stored in α and α’ 
remains unchanged. Especially, the changed α is still 
sorted according to their nodes’ preorder and postorder 
numbers.  
 In terms of the above discussion, we have the 
following algorithm to merge two sorted a-lists 
together. 

Algorithm merge(α, α’) 
Input: α and α’ - sorted α-lists. 
Output: modified α, containing all the nodes in α and 
α’ with all the subsumed nodes removed. 
begin 
1. p ← first-element(α); 
2. q ← first-element(α’); 
3. while p ≠ nil do{ 
4.  while q ≠ nil do{ 
5.  if (pre(p) > pre(q) ∧ post(p) > post(q)) 
6. then {insert q into α before p; 
7.  q ← next(q);} (*next(q) represents 
    the node next to q in α’.*) 
8.  else if (pre(p) > pre(q) ∧ post(p) < post(q))  
9.  then {p’ ← p; (*p is subsumed by q; 
   remove p from α.*) 
10. remove p from α; 
11.  p ← next(p’);} (*next(p’) represents 

the node next to p’ in α.*) 
12. else if (pre(p) < pre(q)  
   ∧ post(p) > post(q)) 
13. then {q ← next(q);} (*q is subsumed 
  by p; move to the node next to q.*) 
14. else if (pre(p) < pre(q) 
  ∧ post(p) < post(q)) 
15. then {p ← next(p);} 
16.  else if (pre(p) = pre(q) 
   ∧ post(p) = post(q))  
17. then {p ← next(p); 
   q ← next(q);}}} 
18.if p = nil ∧ q ≠ nil 
 then {attach the rest of α’ to the end of α;} 
end 
 We can extend the merging operation over to more 
than two sorted α-lists: 
 merge(α1, ..., αk-1, αk) 
 = merge(merge((α1, ..., αk-1), αk). 
Using this operation, the algorithm tree-matching( ) is 
rewritten as follows. 
 
Algorithm tree-matching(v) 
input: v - a node of tree T. 
output: mark any node u in T[v] if T[u] contains Q. 
begin 
1. S := ∅; 
2. if v is not a leaf node in T then  
3. {let v1, ..., vk be the child nodes of v; 
4. for i = 1 to k do call tree-matching(vi); 
5. α := merge(α(v1), ..., α(vk)); 
6. assume that α = {q1, ..., qj }; 

q1 qk … … 
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7. for i = 1 to j do  
8. {δ(qi) := v; 
9. if (qi’s parent ≠ qi-1’s parent) then 
10. S := S ∪ {qi’s parent};} 
11. remove all α(vj) (j = 1, ..., k);  
12. for each q in S do 
13. S1 := S1 ∪ node-check(v, q); 
14. } 
15. S2 := leaf-node-check(v); 
16. α(v) := merge(α, S1, S2); 
end 
 This algorithm is almost the same as the previous 
one, but with the merge operation involved, which 
effectively reduces the size of each α(v) from O(|Q|) to 
O(Qleaf). Special attention should also be paid to line 7, 
by which we generate a set S that contains the parent 
nodes of all those nodes appearing in α(vj)’s (j = 1, ..., 
k), where vj is a child node of the current node v. Since 
the nodes in α (α = merge(α1, ..., αk-1, αk)) are left-to-
right sorted (according to the nodes’ preorder and 
postorder numbers), if there are more than one nodes in 
a sharing the same parent, they must appear 
consecutively in the list. So each time we insert a parent 
node q’ (of some q in α) into S, we need to check 
whether it is the same as the previously inserted one. If 
it is the case, q’ will be ignored. Thus, the size of S is 
also bounded by O(Qleaf).  
 
Correctness and computational complexity: In this 
subsection, we prove the correctness of the algorithm 
tree-matching( ) and analyze its computational 
complexities. 
 
Proposition 1: Let v be a node in T. Then, for each q in 
α(v) generated by tree-matching( ), we have T[v] 
contains Q[q]. 
 
Proof: We prove the proposition by induction on the 
height of Q, height(Q). 
 
Basic step: When height(Q) = 1, the proposition 
trivially holds.  
 
Induction step: Assume that the proposition holds for 
any query tree Q’ with height(Q’) ≤ h. We consider a 
query tree Q of height h + 1. Let rQ be the root of Q. Let 
q1, ..., qk be the child nodes of rQ. Then, we have 
height(Q[qj]) ≤ h (j = 1, ..., k). In terms of the induction 
hypothesis, for each q in Q[qj] (j = 1, ..., k), if it appears 
in α(vi) (where vi is a child node of v), we have T[vi] 
contains Q[q] and δ(q) will be set to be v. Especially, if 
T[vi] contains Q[qj] (j = 1, ..., k), we have qj ∈ α(vi) and 

δ(qj) will be set to be v before v is checked against rQ. 
Obviously, if label(v) = label(rQ) and for each qj (j = 1, 
..., k), δ(qj) is equal to v or a descendant of v, Q can be 
embedded into T[v]. So rQ is inserted into α(v). 
 Now we consider the time complexity of the 
algorithm, which can be divided into four parts: 
1. The first part is the time spent on merging α(v1), ..., 

α(vk), where vi (i = 1, ..., k) is a child node of some 
node v in T. This part of cost is bounded by  

  O( ∑
T

i
leafiQd ) = O(|T|Qleaf), 

 where di represents the ourdegree of a node vi in T. 
2. The second part is the time used for generating S 

from a merged α-list. Since the size of the α-list is 
bounded by O(Qleaf), so this part of cost is also 
bounded by O(Qleaf). 

3. The third part is the time for checking a node vi in 
T against each node qj in an S. Denote Si the set of 
the nodes in Q, which are checked against vi. We 
estimate this part of cost by the following sum: 

  O( ∑∑
T

i

S

j
j

i

c ) = O(|T|Qleaf), 

 where cj represents the ourdegree of a node qj in Si. 
4. The fourth part is the time for checking each node 

in T against the leaf nodes in Q. Obviously, this 
part of cost is bounded by 

  O( ∑
T

i
leafQ ) = O(|T|Qleaf). 

In terms of the above analysis, we have the following 
proposition. 
 
Proposition 2: The time complexity of tree-matching( ) 
is bounded by O(|T|Qleaf). 
 
Proof: See the above discussion.    
 Since at each time point at most Tleaf nodes in T are 
associated with a α-list, the space overhead is bounded 
by O(Tleaf⋅Qleaf). 
 

GENERAL CASES 
 

The algorithm discussed earlier can be easily extended 
to general cases that a query tree contains both c-edges 
and d-edges. We only need to make the following 
changes: 
• For each child node qi of q that is being checked 

against v, if (q, qi) is a c-edge, we will check 
whether δ(qi) is equal to v. If (q, qi) is a d-edge, we 
simply check whether pre(δ(qi) ≥ pre(v) and 
post(δ(qi)) ≤ post(v). 

• Accordingly, the algorithm node-check described 
earlier should be slightly modified. 
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Function general-node-check(u, q) 
begin 
1. S1 := ∅; 
2. if label(q) = label(u) then 
3. {let q1, ..., qg be the child nodes of q; 
4. flag := true; i := 1; 
5. while (i ≤ g ∧ flag) do 
6. {if ¬(((q, qi) is a c-edge) ∧ (δ(qi) = v)) ∨  
7. ((q, qi) is a d-edge) ∧ 
8. (pre(δ(qi) ≥ pre(u)) ∧ 
9. (post(δ(qi) ≤ post(u)))) 
10. then flag := false;} 
11. if i > g then {S1 := S1 ∪ {q};  
12.  if q is root then mark u;} 
13. return S1; 
end 
 This algorithm is similar to the function node-
check( ). The only difference is that a general 
subsumption checking process is used, by which c-
edges and d-edges are checked in different ways. 
 In addition, the lines 5 - 10 in the algorithm tree-
matching( ) given in 3.2 should be replaced with the 
following segment of code: 
 for i = 1 to k do { 
  for q ∈ α(vi) do { 
   let q’ be the parent of q; 
  if ((q’, q) is a d-edge) or  
  ((q’, q) is a c-edge and q matches vi)) 
  then {δ(q) := v; 
    let q’’ be the last element in S; 
  if (q’s parent ≠ q’’) 
  then S := S ∪ {q’s parent};} 
  else remove q from α(vi); 
  }} 
 α := merge(α(v1), ..., α(vk)); 
 Concerning the correctness of the algorithm, we 
have to answer a question: whether any c-edge in Q is 
correctly checked. 
 First, we note that any c-edge in Q cannot be 
matched to any path with length larger than 1 in T. That 
is, it can be matched only to a single edge in T. It is 
exactly what is done by the algorithm. 
 Each time we check a node v in T against some q in 
Q, we will first set d values for any qi appearing in 
α(vj)’s, where vj is a child node of v. When doing this, 
for some qi’s, their δ values are changed (to v). Assume 
that the current δ value for qi is v’ (i.e., δ(qi) = v’). 
Then, v’ must be a descendant of v since the algorithm 
searches T in a bottom-up way. However, we need to 
change δ(qi) from v’ to v since a c-edge can match only 
a single edge in T and the fact that qi matches vj should 

be recorded so that the c-edge matching is not missed 
(see Fig. 6 for illustration). 
 In Fig. 6, v’’ is a descendant of v and matches q2. 
So δ(q2) will be set to v’. However, (q, q2) is a c-edge. 
Therefore, the fact that v’’ matches q2 makes no 
contribution to the matching of v with q. Since q2 also 
matches v2, δ(q2) will be changed to v, which enables us 
to find that T[v] contains Q[q]. 
 
 
 
 
 
 
Fig. 6: Illustration for c-edge checking 
 
 In conjunction with Proposition 1, the above 
analysis shows the correctness of the algorithm. We 
have the following proposition. 
 
Proposition 3: Let Q be a twig pattern containing both 
c-edges and d-edges. Let v be a node in T. For each q in 
α(v) generated by tree-matching( ) with general-node-
check( ) being used, we have T[v] contains Q[q].  
 
Proof: See the above discussion.    
 The time and space complexities for the general 
cases are the same as for the simple cases. 
 

CONCLUSION 
 
 In this article, a new algorithm is proposed for a 
kind of tree matching, the so-called twig pattern 
matching. This is a core operation for XML query 
processing. The main idea of the algorithm is to explore 
both T and Q bottom-up, by which each node q in Q is 
associated with a value (denoted δ(q)) to indicate a 
node v in T, which has a child node v’ such that T[v’] 
contains Q[q]. In this way, the tree embedding can be 
checked very efficiently. In addition, by using the tree 
encoding, as well as the subsumption checking 
mechanism, we are able to minimize the size of the lists 
of the matching query nodes associated with the nodes 
in T to reduce the space overhead. The algorithm runs 
in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where Tleaf 
and Qleaf represent the numbers of the leaf nodes in T 
and in Q, respectively. More importantly, no costly path 
join operation is necessary. 
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