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Abstract: In distributed database systems the global database is partitioned into a collection of local 
databases stored at different sites. In this era of growing technology and fast communication media, 
security has an important role to play. In this paper we presented a secure concurrency control protocol 
(SCCP) based on the timestamp ordering, which provides concurrency control and maintains security. 
We also implemented SCCP and a comparison of SCCP is presented in three cases (High, Medium and 
Low security levels). In this experiment, It is observed that throughput of the system decreases as the 
security level of the transaction increases, i.e., there is tradeoff between the security level and the 
throughput of the system. 
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INTRODUCTION 

 
A distributed database system is described as “one 

in which multiple database sites are linked by a 
communications system in such a way that the data at 
any site is available to users at other sites” [1]. This is a 
system which has several characteristics such as: (1) 
provides an interface to user which is transparent to 
where the data actually resides; (2) ability to locate the 
data; (3) a DBMS to process queries; (4) network-wide 
concurrency control and recovery procedures; and, (5) 
mediators to provide translation of queries and data 
between heterogeneous systems. 

In a secure distributed database system a security 
level is assigned to each transaction and data. A 
security level for a transaction represents its clearance 
level and the security level for a data represents its 
classification level. A secure distributed database 
management system restricts database operations based 
on the security level and provides security classes. 
Concurrency control is an integral part of the database 
systems. It is used to manage the concurrent execution 
of operations by different transactions on the same data 
item such that consistency is maintained. The most 
common instances of totally ordered security levels are 
the Top-Secret (TS), Secret (S), Confidential(C), and 
Unclassified (U) security levels encountered in the 
military and government sectors. 

Communications in a distributed system is a 
complicated and rapidly changing field [1]. There are 

three basic components in any data communications 
system: the source, the medium and the sink. The 
message originates at the source, the path that the 
message travels is the medium, and the mechanism that 
presents the data to the user is the sink. There are many 
different links, channels, or circuits over which the data 
can travel resulting in a complex communication 
medium. In addition, there are many characteristics that 
must be considered when transferring the data: path 
establishment time, network delay, transfer rate, and 
reliability [1]. 

In this paper, we use three security levels: high, 
medium and low. Transaction can be delayed or aborted 
by a high security level transaction due to shared data 
access. Thus, by delaying low security level 
transactions in a predetermined manner, high security 
level information can be indirectly transferred to the 
lower security level. This is called a covert channel 
problem [3]. To handle of covert channel needs 
modifications in conventional Distributed Database 
Management System (DDBMS) allows users to access 
a database concurrently from geographically dispersed 
locations interconnected by a network. Concurrent 
accesses to the database have to be synchronized in 
order to maintain data consistency and to ensure 
correctness.  
 
System Model: In a secure distributed database system, 
the global database is partitioned into a collection of 
local databases stored at different sites. It consists of a 



J. Computer Sci., 3 (7): 561-565, 2007 
 

 562 

set of N  number of sites, where each site iN  is having 
a secure database, which is a partition of global 
database scattered on all the N sites. Each site has an 
independent processor connected via secure (trusted) 
communication links to other sites.  

The secure distributed database is defined as a five 
tuples >< vcstt LSTTD ,,,, , where tD is the set of data 
items, rT is the set of distributed transactions, sT is the 
timestamp provided by coordinator as shown in  Fig. 1, 
each transaction is provided a timestamp in ascending 
order, cS is the partially ordered set of security levels 
with an ordering relation ≤ , and vL  is a mapping from 

rt TD ∪ to cS . Security level icS  is said to dominate 
security level jcS  if icjc SS ≤ . For every 

cvt SxLDx ∈∈ )( , and for every cvr STLTT ∈∈ )(, . 
Every data object x , as well as every distributed 
transactionT  has a security level associated with it. 
Each secure database N  is also mapped to an ordered 
pair of security classes )(min NLv and )(max NLv , where 

)(min NLv , )(max NLv ∈  cS , 
and )()( maxmin NLNL vv ≤ . In other words, every 
secure database in the distributed database has a range 
of security levels associated with it. For every data item 
x stored in an secure database N , 

)()()( maxmin NLxLNL vvv ≤≤ . Similarly, for every 

transaction T executed 
at N , )()()( maxmin NLTLNL vvv ≤≤ . A site iN  is 
allowed to communicate with another site jN  only 

if )()( maxmax jviv NLNL = . The security policy used is 

based on the Bell-LaPadula model[4] and enforces the 
following restrictions: 
Simple Security Property: A transaction T (subject) is 
allowed to read a data item (object) x , only if 

)()( TLxL vv ≤ . 
Restricted Property: A transaction T is allowed to 

write a data item x  only if )()( TLxL vv = . Thus, a 
transaction can read objects at its level or below, but it 
can write objects only at its level. As in [6] we also 
disallow transactions that write to higher levels for the 
sake of database integrity [4, 5]. In addition to these two 
requirements, a secure system must guard against 
illegal information flows through covert channels. 

A user at any site can issue a global transaction 
against the global schema. The global schema is 
accessible to all users by one of the following 
configurations:  
1. Replicate the global schema on all sites. 

2. Select only one site (called the coordinator) to 
maintain the global schema and the global 
transaction manager, and direct requests against the 
global schema to that site. 

3. Select number of sites (coordinators) to maintain 
copies of the global schema and the global 
transaction manager, and direct requests against the 
global schema to the nearest coordinator. 
 
We favor the second or the third alternative over 

the first one because it is difficult to maintain a copy of 
the global schema at every site. It also hinders the 
expandability and simplicity of the system. The 
coordinator solves the problem of assigning timestamps 
in Step 2, which is responsible for assigning timestamps 
to all global transactions. In this article this case is 
considered, and in future we will consider a variation of 
the mechanism, which supports the configuration in 
Step 3.  
 
System Architecture: In our architecture, coordinator 
( rGT  Global Transaction Manager) is a software 
module which translates and decomposes the 
transaction against the global schema into 
subtransactions against local schemas, and coordinates 
the execution of the subtransactions. rGT  is divided 
into various layers as shown in Fig. 1. The description 
of various layers is as follows: First layer Transaction 
Interface, this layer of architecture will receive the 
global transaction from the outer sites (requesting site), 
i.e., this is the only interface with which requesting sites 
send their requests in the form of transaction (Queries). 
This layer is responsible for the compatibility with the 
global transactions coming from the other sites. Second 
layer is Authentication Check Layer: This layer checks 
the authentication of the requester, i.e., whether the 
particular requester is authorized for the data items he is 
requesting for? This layer also checks security level of 
the requested data item. This may be checked according 
to user name and password and security level of the 
data items. Security Level Assignment layer: This layer 
of the coordinator will allocate the security class to the 
authorized transaction, received from the previous 
layer. This assignment is implemented with the help of 
a table. All the transactions are allotted a security 
class/level. This is the major task of the coordinator for 
securing the complete transaction. 

Fourth layer is having two parts, transaction 
manager and data manager. Transaction Manager: This 
manager takes the security assigned and authorized 
transaction from previous layer. It is also responsible 
for resolving the global transaction into sub transaction. 
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Transaction Manager also allots the timestamp to all the 
sub transaction and decides the data, a requester need. 
This layer is also doing site allocation with the help of 
index, which contains the IP addresses of the sites that 
holds the partition of the database. The sub transaction 
further dispatched to the respected sites, where the data 
item resides. Data Manager: This manager is 
responsible for handling the complete data, i.e., all the 
data received and given to the requester. Data 
partitioning is also handled by this phase according to 
the information received from the transaction manager. 

The Data Access Tracker: In the proposed scheme, 
timestamps are not maintained with the data items. 
Instead, the list of timestamps associated with each data 
item is stored in the Data Access Tracker (DAT) as a 
part of the rGT . Each time a data item is added into a 
component database, a corresponding timestamp list is 
inserted in the DAT which is initially made empty. A 
list of timestamps associated with data item x comprises 
the timestamp of the last global subtransaction that has 
written that data item, denoted by )(xWTs , and the 
timestamp of the last global subtransaction that has read 
it, denoted by )(xRTs . Each global subtransaction, upon 
its initiation, is assigned a unique timestamp, and 
timestamps are assigned in ascending order. Using the 
DAT, the rGT can detect the direct conflicts between 
Global transactions, and the rGT  uses this information 
to submit global subtransactions to each rLT  in a 
serializable order, as will be explained in the next 
section. 

The rLT  is also divided into various layers as 
shown in Fig. 1, which are as follows: First layer is sub 
transaction interface layer. This layer resolves the 
transaction (which is a sub transaction), and decides the 
data required by the transaction at local Processing site. 
Sub Query Manager: this layer resolves the required 
data i.e., it calculates the actual data needed from the 
local database. All the relevant information is passed to 
the next Data Administrator Layer for further accessing 
of data. 
Data Administrator Layer: This layer is fully 
responsible for the data management. This layer is also 
responsible for security checks on the data items. This 
layer also sends DAT update massage. The algorithm 
presented in this paper is a part of this layer.  
Local Database: This is the actual database within 
which data item resides. This database is a partition of 
the global database.  
 
 Assumptions: The proposed transaction model is 
based on the following assumptions: There is only one 

global transaction manager (which works like 
coordinator) per federation of databases. No 
modifications are allowed to rLT . A global transaction 
can have at most one sub-transaction. No site or 
communication failure is considered. The processing of 
a transaction requires the use of CPU and data items 
located at local site or remote site. No replication of 
data items at various sites is considered here. Arrivals 
of transactions at a site are independent of the arrivals 
at other sites. The model assumes that each global 
transaction is assigned a unique identifier. Each global 
transaction is decomposed into subtransactions to be 
executed by rLT , and these subtransactions inherit the 
identifier of the global transaction. The problem of 
finding a correct decomposition for a given transaction 
will not be addressed in this paper. Transactions make 
requests for the data items and concurrency control is 
implemented at the data item level. A secure (trusted) 
communication network interconnects the sites. There 
is no global shared memory in the system and all sites 
communicate via messages exchange over the secure 
(trusted) communication network. 
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Fig. 1: System Architecture 

 
 Implementation 
 Serializing Global Subtransactions: For the 
concurrency control of global transactions, the rGT  
uses the information available in the DAT to produce a 
correct serialized order for global transactions. This 
order is enforced at local sites by the interface process 
at each site. For example, let GS  be the set of global 
subtransactions to be executed at a local site. Global 
database consistency is guaranteed if there exists a total 
ordering of subtransactions from GS such that, if a 
subtransaction iS  precedes a subtransaction Sj  in this 
ordering, then for every pair of atomic operations iO  
and jO , from  iS  and Sj , respectively, iO proceeds jO  
in each local schedule [7]. Therefore, if the rGT  submits 
global subtransactions to the involved rLT in a 
serializable order, we can guarantee the concurrency 
control of the global transactions. Serializing the global 
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subtransactions can be done by applying the timestamp 
ordering protocol using the information in the DAT. 
 
 Modifying the Local Transaction Managers: Global 
serializability can be guaranteed if Local 
Transactions rLT  provide the local serialized orders to 
the Global Transactions ( rGT ). Since some rLT  do not 
provide the serialized order, Sugihara [2] suggested the 
creation of a local controller at each site. The local 
controller maintains the serializability graph of that site 
and is responsible for detecting a cycle. A global 
schedule is serializable if the global graph does not 
have a cycle. Concurrency control based on distributed 
cycle detection solves the global concurrency control 
problem and achieves higher degree of concurrency at 
the expense of violating the local autonomy. 
 
Simulation Model: To evaluate the performance of 
developed concurrency control algorithm, we have 
developed simulation model for the distributed 
database. Architecture of the simulation model is shown 
in Fig. 2. The model consists of a global database which 
is partitioned into a collection of local databases. These 
local databases stored at N sites which is connected 
through network. There is no replication of data items. 
There are one coordinator which generates the 
transactions and dispatch to the relevant sites (for which 
that request is). This coordinator is responsible for 
generating the workload for each data site and assigning 
time stamp to each transaction. 
 

 

Sink 

Memory 

Blocked 

Ready Queue 

Database 
Operation 

Computation 

Commit 

Terminate 

Wait Queue 

Transaction 
Arrival 

Site1 Network 
Manager 

Site2 

Site3 

Transaction 
Dispatcher 

Coordinator 
Transaction 
Generator 

Transaction 
Manager 

Site4 

 
 

Fig. 2: Simulation Model 
Each transaction in the system is distinguished by a 

globally unique transaction id. Each other processing 
site consists of transaction manager, a concurrency 
controller, a CPU, a ready queue, a local database, a 
communication interface, a sink, a wait queue. For 
every operation on the data object, it has to go through 

the concurrency control component to obtain a lock on 
the object. If the request is denied, the transaction is 
placed in to the wait queue. The waiting transaction will 
be awakened when the requested lock is released and 
all the locks are available. If the request of all the locks 
is granted, the transaction will access the memory and 
perform computation on data items. Transactions may 
commits or aborts and release all the locks it has been 
holding. The sink component of the model is 
responsible for gathering the statistics for the 
committed or terminated transactions. 
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Fig. 3: Transactions Vs Miss Ratio 
 
 A Secure Concurrency Control Protocol: This 
section presents a global concurrency control 
mechanism based on the timestamp ordering. A 
transaction against the global schema issued at any 
component is handled by the rGT . This is also act as 
coordinator. A rGT  is a software module which 
translates and decomposes the transaction against the 
global schema into subtransactions against local 
schemas, and coordinates the execution of the 
subtransactions.  

 
Algorithm for write operation on data item x issued 

by subtransaction iS  with timestamp iTs : 
If  ( iTxRTs s>)( )  {  

Abort  ( iS )  ;  
}  ElseI f  ( iTxWTs s>)( )  {  

Ignore ( iS ) ;  
}ElseI f( )()( ivv SLxL == )  /* )(&)( ivv SLxL is  
securi ty leve l  o f data  i tem x & transact ion iS  
*/   
{  

Write lockTo( x ) ;   
Execut ion( x ) ;  

)(xWTs = iTs  ;   
Update DAT to  iTs  ;  

}Else{ 
Abort( iS ) ; /* access denied due to  

securi ty */  
}   
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Algorithm for read operation on data item x issued 
by sub transaction iS  with timestamp iTs :  

 
If ( iTxWTs s>)( ){  

Abort( iS );  
Rollback( iS );  

}ElseIf( )()( ivv SLxL ≤ ){   
ReadlockTo( x );   
ExecuteOn( x );  

)(xRTs = iTs  ;  
Update DAT to  iTs  ;  

}Else{  
Abort( iS );  
Rollback( iS );   

}  
If a global subtransaction is rolled back by the 

mechanism, it will cause all other subtransactions 
pertaining to the same global transaction to roll back as 
well. By rolling back a global transaction at the 
coordinator site, before sending its subtransactions to 
the relevant rLT , the execution autonomy of rLT  will 
be enhanced [8]. This is the result of maintaining the 
DAT with the rGT . However, global transactions are 
not likely to be rolled back frequently. 
 
Performance Study: This section presents the 
performance results of our simulation experiments. The 
aim of the experiments is to obtain a measure of the 
performance price that needs to be paid to provide 
security in a distributed database system. This price was 
measured as a comparison between the throughput of 
transactions of non-secure concurrency protocol and 
that of secure concurrency protocol at three security 
levels, (i.e., high, medium and low). The throughput is 
the number of transactions committed per second. Thus, 
our primary performance measure is the proportion of 
missed deadlines or miss ratio (MR) which is defined as 
the percentage of input transactions that system is 
unable to complete on or before their deadlines, i.e., 
MR = number of transactions aborted / number of 
transactions submitted to system for processing. 

Fig. 3 shows the transaction throughput as a 
function of the transaction arrival rate per site. It can be 
seen that the throughput of both concurrency control 
protocols initially increases with the increase in arrival 
rates then decreases when arrival rate becomes more 
than 5. However the overall throughput of secure 
concurrency protocol is always less than non- secure 
concurrency protocol. We also observe that the 
throughput of high security level transactions is lower 
than that of low security level transactions as arrival 
rate increases. This is because higher priority is given to 
low security level transaction. The high security level 
transaction is aborted and restarted after some delay 

whenever a data conflicts occur between a high security 
level transaction and low security level transaction.  

 
CONCLUSIONS  

 
In this paper we have presented an algorithm for 
controlling the concurrency secure mode. This 
algorithm provides security to the data while providing 
a concurrent access to the data from database. It is 
observed that throughput of the system decreases as the 
security level of the transaction increases, i.e., the 
probability of successful execution of transactions is 
decreasing. It means there are a tradeoff between the 
security level and the throughput of the system.  

We are in the process of investigating schemes by 
which the performance of high security level 
transactions can be improved without compromising 
with the security. Further we are looking to secure real 
time distributed systems by which the performance of 
high security level transactions can be improved 
without compromising the security. 
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