
Journal of Computer Science 3 (2): 84-87, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: G. Mallikarjuna Rao, G. Narayanamma Institute of Technology and Science, Shaipet, Hyderabad-8,
India, Tel: 9440755716

84

Lizard Learning Algorithm for Invariant Pattern Recognition

1G. Mallikarjuna Rao, 2G. R. Babu and 3G. Vijaya Kumari

1G. Narayanamma Institute of Technology and Science, Shaipet, Hyderabad-8, India
2Jawaharlal Nehru Technological University, Hyderabad, India

3Computer Science Department, Jawaharlal Nehru Technological University, Hyderabad, India

Abstract: Researches are keen to know astonishing and intricate details of the nature. Each creature
has its own admiring abilities and performs their routine task in more efficient manner. The bug
navigation system has drawn keen attention among research community to know how they are able to
perform their routine task in utmost skillful manner. The lizard is capable of identifying slowly varying
features and able to trap the insects with more admiring skill set. The Lizard Learning Algorithm
(LLA) was proposed for tracking invariant features which uses modified slow feature analysis. The
article covers mathematical treatment for the slow feature analysis, proposed modification, higher
order neural network training and ORL database for experimentation purpose. The results are most
pleasing compared to conventional classifiers for the invariant features.

Key words: Slow feature analysis, higher order neural network, eye crapping, unsupervised feature

extraction, invariant pattern recognition

INTRODUCTION

 The bug-navigation system reveals most effective
techniques carried out by the small living creatures to
meet their bread and butter. It was shocking to note that
the small paddle bug is able to choose exact straight-line
path to reach their nest from unknown/new-location.
The ant column is triggered the development of more
efficient tracking algorithms. Further the small spider is
capable of choosing an optimal shortest path in a widely
spread environment. On the same line in this paper it is
proposed a lizard learning algorithm capable of tracking
invariant features. The study reveals that the effortless
techniques used by lizards while capturing the insects
are so effective. They capture the slowly varying
features of the insect while tracking and detecting its
exact location. These techniques are suitable for
implementing the invariant pattern recognition.
 Slow feature analysis (SFA)[1,2] is a new
unsupervised algorithm to learn nonlinear functions that
extract slowly varying signals from time series[1]. SFA
was originally conceived as a way to learn salient
features of time series in a way invariant to frequent
transformations[2]. Such a representation would of
course be ideal to perform classification in pattern
recognition problems. Most such problems, however, do
not have a temporal structure and it is thus necessary to
reformulate the algorithm. The basic idea is to construct
a large set of small time series with only two elements
chosen from patterns that belong to the same class. In
order to be slowly varying, the functions learned by
SFA will need to respond similarly to both elements of
the time series and therefore ignore the transformation

between the individual patterns. As a consequence,
patterns corresponding to the same class will cluster in
the feature space formed by the output signals of the
slowest functions, making it suitable to perform
classification with simple techniques such as Gaussian
classifiers.
 The higher order neural network require one pattern
should be presented only once during the learning stage.
This ability makes them faster compared to single order
multi-layered networks. However their computational
complexity exponentially grows with respect to the size
of the image. In this study some modifications are
suggested so that the network can be trained for OCR
database.

The SFA algorithm: We can now formulate the Slow
Feature Analysis (SFA) algorithm[2]

Mathematical constraints: Given a multidimensional
time series x(t) = (x1(t),... ,XN(T))T, t ε [t0,t1], find a set of
real-valued functions g1(x),..., gM(X) lying in a function
space F such that for the output signals yj(t) := gj(x(t))

2() : ()∆ =j j ty y is minimal (1)
Under the constraints
() 0=j ty (zero mean) (2)

2() 1=j ty (unit variance) (3)

, () 0∀ < =i j ti j y y
(decorrelation and order), (4)
with (.)t and y indicating time averaging and the time
derivative of y, respectively.

J. Computer Sci., 3 (2): 84-87, 2007

 85

 Equation (1) introduces a measure of the temporal
variation of a signal (the �-value of a signal) equal to
the mean of the squared derivative of the signal. This
quantity is large for quickly-varying signals and zero for
constant signals. The zero-mean constraint (2) is present
for convenience only, so that (3) and (4) take a simple
form. Constraint (3) means that each signal should carry
some information and avoids the trivial solution gj(x) =
0. Alternatively, one could drop this constraint and
divide the right side of (1) by the variance (yj)t-
Constraint (4) forces different signals to be uncorrelated
and thus to code for different aspects of the input. It also
induces an order, the first output signal being the
slowest one, the second being the second slowest, etc. .

Linear expansion: For the linear case the function gj(x)
becomes

() = T
j jg x w x (5)

Where x is the input vector and w is the weight vector.
 On solving the above function with the constraints
(1), (2), (3)

()∆ =j jy λ (6)
 The eigenvectors are stored in the ascending order
of eigenvalues to provide slowly varying signals with
smaller indices[3].

Nonlinear expansion: Expand the input data and
compute the mean over time h0 := (h(x))t to obtain the
expanded signal

0: ()= −z h x h (7)

1 0((),..., ())= −Mh x h x h (8)

Slow feature extraction: Solve the generalized
eigenvalue problem

=AW BWA (9)

: ()= ��T tA zz (10)

: ()= T
tB zz (11)

 The K eigenvectors w1,... ,wK (K � M)
corresponding to the smallest generalized eigenvalues �1
� �2 � ... � �K

[4] define the nonlinear input-output
functions g1(x),..., gK(X) ε F:

0() (())= −T
j jg x w h x h (12)

which satisfy Constraints (2)-(4) and minimize (1).

SFA for pattern recognition: The pattern recognition
problem can be summarized as follow. Given C distinct
classes c1,..., cC and for each class cm a set of Pm patterns
p1

(m).., p(m)
Pm we are requested to learn the mapping c(.)

between a pattern pj
(m) and its class c(pj

(m) = cm. We
define P := Σc

m=1 Pm to be the total number of patterns.
 In general in a pattern recognition problem the
input data does not have a temporal structure and it is

Fig. 1: Schematic description of a third-order network

thus necessary to reformulate the definition of the SFA
algorithm. Intuitively, we want to obtain a set of
functions that respond similarly to patterns belonging to
the same class. The basic idea is to consider time series
of just two patterns (pk

(m) , pl
(m)), where k and l are two

distinct indices in a class cm.
 Rewriting Equation (1) using the mean over all
possible pairs we obtain

()2() ()

1 , 1
1

() . () ()
= =

<

∆ = −��
mpc

m m
j j k j l

m k l
k

y a g p g p (13)

where the normalization constant a equals one over the
number of all possible pairs, i.e.

21

1

=

=
�

c

mm

a
P

 (14)

 We reformulate Constraints (2)-(4) by substituting
the average over time with the average over all patterns,
such that the learned functions are going to have zero
mean, unit variance and be de-correlated when applied
to the whole training data. This reduces to an
optimization problem.

()

1 1

1
() 0

= =

=��
mpc

m
j k

m k

g p
p

 (zero mean) (15)

2
()

1 1

1
() 1

mpc
m

j k
m k

g p
p = =

=�� (unit variance) (16)

() ()

1 1

1
, () () 0

mpc
m m

j k j k
m k

i j g p g p
p = =

∀ < =��

(de-correlation and order) (17)
* Additional material is available at

http://yann.lecun.com/exdb/mnist/. More
information about SFA is available[5]. Several
authors[4-6] proposed variant solutions for slow
feature analysis.

HONN architecture: The HONN (Higher Order Neural
Network)[7-9] out performs single order multi layered
networks. The HONN requires application of learning
pattern only once. Hence its response is faster. They are
able to exploit the inter-relations among the input data
while providing invariant pattern recognition. The third
order network is shown below.
 The output of a third-order network can be de-
scribed by the following equation:

� �= � �
� �
���i iabc a b c

a b c

y f w x x x (18)

J. Computer Sci., 3 (2): 84-87, 2007

 86

Fig. 2: Training with facial features ORL Database

where i is the output index, w is the weight associated
with a particular triangle, y is the actual output, x is a
binary input and a, b and c are the indices of the inputs.
A schematic description of this network is shown in
Fig. 1.
In the training phase, a perceptron-like rule is used:

()iabc i i a b cw t y x x xη∆ = − (19)
where t is the expected training output, y is the actual
output, g is the learning rate and x is a binary input. The
exponential increase of the triangles with the input
image is the major problem in higher order neural

(i)

(ii)
Fig. 3: Recognition with eye data using (i) BPF & (ii)

HONN

networks. By restricting to the contour cells (active
pixels) and similarities among the triangles are used to
reduce the number of triangles and weight classes
during the process of training. The following tabular
form gives the complexity problem of HONN with
image size[10,11].

Table 1: The number of triangles as a function of input image size
Input image size Number of triangles
4x4 560
8x8 41664
12x12 487 344
20x20 10586800
40x40 681387200
100 x100 1.6662x10"
256 x 256 4.6910 xlO13

 Number of weight classes is equal to the number of
triangles which is equal to

3CIN

!
(3)!3!

=
−
IN

NoT
IN

 (20)

J. Computer Sci., 3 (2): 84-87, 2007

 87

where IN is the number of input nodes. The number of
possible triangles for different input sizes is given in
Table 1.

HONN training:
1. The coordinates of active pixels on the contour are to be stored

in separate X,Y arrays for every pattern.
2. Compute the active triangles for every pattern using the

coordinates (xa,ya),(xb,yb),(xc,yc) and identify weight classes(W).
Similar triangles are to be placed in the same class.

3. Initialize the weights with the number of triangles contained by
them (Nk).

4. Compute the output
� �

= � �
� �
�i ij kj

j

y f w N

5. Update the concerned weight if Nkj >0 ()∆ = −ij i iw t yη

Example application: We illustrate our method by its
application to a person identification using eyes and
faces for invariant recognition. We consider the CBCL
and ORL face database, which contains of a 20 people
approximately 200 images for the person. From the
ORL database 10 eyes inclusive of left eye and right eye
are considered during the process of training (Fig. 2).
They are able to recognize the person in-spite of
variations due to the expressions.
 The features obtained from SFA are trained using
both conventional back-propagation algorithm and
higher order neural network. The higher order neural
network with eyes features given better recognition rate.

CONCLUSION

 Our experimental results show the higher order
neural network training gives 15% higher performance
conventional backpropagation (Fig. 3). We have tried
with double backpropagation training the results are not
uniformly encouraging. The work can be extended by
adding self similarity probabilities while capturing slow
features. Further this work can be extended for
seen/expression analysis.

REFERENCES

1. Wiskott, L., 1998. Learning Invariance Manifolds.

In: Niklasson, L., Boden, M., Ziemke, T. (Eds.),
Proc. Intl. Conf. on Artificial Neural Networks,
ICANN'98, Skovde. Perspectives in Neural
Computing. Springer, pp: 555-560.

2. Wiskott, L. and T. Sejnowski, 2002. Slow feature
analysis: Unsupervised learning of invariances.
Neural Computation, 14: 715-770.

3. Burges, C.J.C., 1998. A tutorial on support vector
machines for pattern recognition.

4. Gantmacher, F.R., 1959. Matrix Theory. Vol. 1.
AMS Chelsea Publishing.

5. Bishop, C.M., 1995. Neural Networks for Pattern
Recognition. Oxford University Press.

6. Bray, A. and D. Martinez, 2002. Kernel-based
extraction of Slow Features: Complex cells learn
disparity and translation invariance from natural
images. In: NIPS 2002 Proceedings.

7. Barnard, E. and D. Casasent, 1991. Invariance and
neural nets. IEEE Trans. Neural Networks, 2: 498-
507.

8. Chaudhuri, B.B. and U. Bhattacharya, 2000.
Efficient training and improved performance of
multilayer perceptron in pattern classification.
Neurocomputing, 34: 11-27.

9. He, Z., 1999. Invariant pattern recognition with
higher-order neural networks. M.Sc. Thesis, School
of Electrical and Computer Engineering, Nanyang
Technological University, Singapore.

10. Mahmoud, I.K. and M.B. Mohamed, 2000.
Invariant 2D object recognition using the wavelet
modulus maxima. Pattern Recogn. Lett., 21: 863-
872.

11. Spirkovska, L. and M.B. Reid, 1993. Coarse-coded
higher-order neural networks for PSRI object
recognition. IEEE Trans. Neural Networks, 4: 276-
283.

