
Journal of Computer Science 4 (4): 272-281, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Antônio Augusto Fröhlich, Laboratory for Software and Hardware Integration, Federal University of
Santa Catarina, 88049-900, Florianópolis, SC, Brazil

272

Operating System Support for Wireless Sensor Networks

Antônio Augusto Fröhlich and Lucas Francisco Wanner

Laboratory for Software and Hardware Integration,
Federal University of Santa Catarina, 88049-900, Florianópolis, SC, Brazil

Abstract: In a wireless sensor network, several sensor nodes obtain local data and communicate
among themselves in order to create a global vision of an object of study. The idea of a self-managed
network of low-power, autonomous devices, that collects data from an environment and propagates
information through a wireless link brought about several new challenges and requirements in
application run-time support. Several research projects have aimed at solving the problem of system
support for sensor networks. However, most of them have failed in dealing with two requirements:
transparent configuration of the data communication channel and efficient and unified sensor hardware
abstraction. In this work we designed and implemented a run-time support environment for wireless
sensor network applications based on the EPOS operating system. Through this environment,
applications were allowed to configure the communication channel according to their needs and to
acquire sensor data through a family-based, uniform, sensor data acquisition API. Our tests showed
that the introduction this environment did not incur in excessive overhead and presented significant
advantages in relation to the solutions found in other operating systems for sensor networks.

Key words: Embedded operating systems, sensor abstraction, configurable communication systems

INTRODUCTION

 Recent advances in hardware design and
miniaturization have enabled the emergence of a new
set of applications to the fundamental concept of
computer, in the form of low-power, wireless micro-
sensors. These micro-sensors are equipped with analog
or digital sensor devices (e.g., temperature, magnetic,
acoustic sensor), a digital processor, a wireless
communication module (e.g., low-power radio) and a
power module (e.g., battery, solar cell). Each individual
sensor is able to obtain a local vision of its environment
and to coordinate and communicate with other sensors
in order to create a global vision of a given object of
study.
 The idea of a self-managed network of autonomous
devices, which collect and forward data through a
wireless link, brings about a series of new challenges to
hardware design. In order to be unobtrusive and to
operate autonomously for long periods of time, the
sensor nodes must be small and low-power. To allow a
wide range of applications to share a common platform,
the nodes must be modular and allow different sensing
devices to be used according to the needs of specific
applications. Similarly, the communication hardware
should allow wide configuration of the data channel, so

that different applications may benefit from different
modulation and medium access control schemes. As the
complexity of wireless sensor network technologies
increases, the need for runtime support to mediate
hardware capabilities and application needs becomes
critical.
 System requirements for sensor networks include
basic operating system functionality, power
management, field reprogramming mechanisms,
sensing hardware abstraction and a configurable
communication stack. Restricted hardware capabilities
require these systems to operate with limited resources
and make the use and adaptation of traditional operating
systems impossible. Several research projects[1-3,5,7,9]
have aimed at solving the problem of system support
for sensor networks. However, most of them have failed
in dealing with two requirements: transparent
configuration of the data communication channel and
efficient and unified sensor hardware abstraction.
 The EPOS system[4,11] is a component-based
framework for the generation of dedicated runtime
support environments. The EPOS system framework
allows programmers to develop platform-independent
applications and analysis tools allow components to be
automatically adapted to fulfill the requirements of
these particular applications. By definition, one instance

J. Computer Sci., 4 (4): 272-281, 2008

 273

of the system aggregates all the necessary support for
its dedicated application and nothing else. EPOS
provides a wide set of operating system services
through platform-independent interfaces and supports a
wide range of platforms, such as IA32, PowerPC,
Sparc, MIPS, H8 and AVR
 This study shows the design and implementation of
a run-time support environment for wireless sensor
network applications based on the EPOS operating
system. This environment includes platform support,
power management services, configurable
communication through the C-MAC (Configurable
MAC) medium access control protocol, which allows
applications to configure the communication channel
according to their needs and a sensor data acquisition
system, which abstracts families of sensing devices in
an uniform fashion, without incurring excessive
overhead and presenting significant advantages in
relation to the solutions found in other operating
systems for sensor networks.

OPERATING SYSTEMS FOR SENSOR
NETWORKS

 In a sensor network, application-specific
requirements drive the entire hardware design, from
processing capabilities to radio bandwidth and sensor
modules, thus requiring the hardware to be modular.
However, these requirements have led to a huge variety
of hardware components, making wireless sensor
networks hardware not only modular, but also
heterogeneous. In this scenario, a sensor application
developed for a given platform will seldom be portable
to a different one, unless the run-time support systems
on those platforms deliver mechanisms that abstract and
encapsulate the sensor platform in an adequate manner.
At the same time, the limited resources typically found
in sensor networks hardware require any runtime
support for these systems to be efficient and not to use
excessive resources.
 The need for connectivity, hardware abstraction
and management of limited resources makes operating
system support imperative for sensor network
applications. Considering current research, technology
and applications[7], we may list a series of operating
system requirements for wireless sensor networks. Such
a system should:

Provide basic operating system functionality: In
order not to restrict the functionality and portability of
sensor networks applications, an operating system for
such devices should provide traditional operating
system services such as: hardware abstraction, process

management (usually following the mono-task, multi-
thread prism), timing services and memory
management.

Provide efficient power management mechanisms:
Efficient power management in the sensor nodes is a
determining factor for the network's life time. A
runtime support system for sensor networks
applications should provide power management
mechanisms to the applications, as well as use as little
power as possible to provide its services.

Provide field reprogramming mechanisms: Given
that the sensor nodes may be located in inhospitable
regions and that application requirements and
parameters may change with time, field reprogramming
through the communication network is an important
service in this type of networks. An operating system
for sensor networks should ideally provide total or
partial field reprogramming mechanisms for deployed
applications.

Abstract heterogeneous sensing hardware in a
uniform fashion: The application-specific
requirements of sensor networks make its hardware not
only modular, but also heterogeneous. In this scenario,
a sensor application developed for a given platform will
seldom be portable to a different one, unless the run-
time support systems on those platforms deliver
mechanisms that abstract and encapsulate the sensor
platform in an adequate manner. Architectural
differences aside, sensor modules (e.g., temperature,
light and motion sensors) present an even wider range
of variability. Sensor modules presenting the same
functionality often vary in their access interface,
operational characteristics and parameters. A properly
designed run-time support system could free application
programmers from such architectural dependencies and
promote application portability among different sensing
platforms.

Provide a configurable communication stack: Given
the specific communication requirements of different
applications, communication hardware for sensor
networks should be widely configurable. The operating
system should provide means to configure the
communication protocol stack, starting from the
medium access control protocols.

Operate with limited resources: As sensor nodes must
be low power, their hardware design will tradeoff
computation capabilities for lower power consumption.
As such, the nodes will have limited processing power

J. Computer Sci., 4 (4): 272-281, 2008

 274

and memory resources. An operating system for sensor
networks should deliver the required application
services without using a significant amount of the
computational resources available to the nodes.
 Typical embedded operating systems, such as
VxWorks, QNX, OS-9, WinCE and �Clinux provide a
programming environment similar to those existing in
traditional computers, usually through POSIX-
compliant services. Many of these operating systems
provide and thus require hardware support to, memory
protection. Although these systems are adequate for
mobile phones, set-top-boxes and other complex
embedded applications, their memory and processing
requirements makes their use in wireless sensor
networks impossible. Several systems have been
developed specifically for these networks, including
MagnetOS[2], Contiki[3] and AmbientRT[9]. However,
the most prominent of these systems are the TinyOS[7],
MANTIS OS[1] and SOS[5] systems.
 TinyOS is an event-based operating system for
sensor networks[7]. The system is organized as a
collection of components. Each TinyOS configuration
is composed by and application and its required
operating system services and consists in a scheduler
and a component graph. Each component is composed
by commands, event handlers, tasks and an execution
frame. Each component declares the commands to
which it responds and the events it signals. Commands
are non-blocking method calls and are typically used to
initiate software and hardware requests and,
conditionally, initiate tasks. Event handlers are used to
handle hardware interrupts and may call commands or
post tasks.
 The system provides a simplified concurrence
model, based in run-to-completion tasks, which may
only be preempted by interrupts. This model brings
about negative and positive consequences. In a
traditional thread-based model, where each thread has
its own stack, each thread must reserve space in the
node's limited memory for its execution context.
Depending on the architecture, context switching may
be a lengthy operation. By restricting this model,
TinyOS reduces most of this overhead, but also loses
most of the characteristics of a traditional multithread
model. This restriction of concurrence may also hinder
the system's ability to deal with real-time metrics.
TinyOS does not provide dynamic memory allocation
mechanisms. Timing services are provided by a Timer
interface. The component model of TinyOS, along with
its simplified concurrence model, allows the system to
run in platforms with less than 1KB of RAM.
 Power management in TinyOS is implemented by
the task scheduler, which makes used of the StdControl

interface to start and stop components. When the
scheduler queue is empty, the main processor is put in
sleep mode. This way, new tasks will only be posted in
the execution of an interrupt handler. This method
yields good results for the main microcontroller, but
leaves more aggressive methods (including starting and
stopping peripheral components) to the application.
 TinyOS features a three-tiered hardware
abstraction architecture, comprised by a Hardware
Presentation Layer, a Hardware Adaptation Layer and a
Hardware Interface Layer[6]. The Hardware
Presentation Layer is placed directly over the
underlying hardware and presents the hardware to the
operating system. Components in the Hardware
Presentation Layer are unique for each device they
present, but may share a common structure. The
Hardware Adaptation Layer groups the hardware-
specific components into domain-specific models, such
as Alarm or ADC Channel. The Hardware Adaptation
Layer provides the ‘best’ possible abstraction in terms
of effective resource usage, but also tries not to hinder
application portability. The Hardware Interface Layer
uses the adapted components to implement platform-
independent abstractions. The TinyOS application
developer may choose to use any of the available
interface levels, trading off application portability and
efficient resource usage.
 The TinyOS communication stack is based on the
B-MAC medium access control protocol[12]. The
protocol is implemented in layers (low-level hardware
control and protocol logic). The low-level control layer
allows static and dynamic configuration of basic
communication parameters (e.g., frequency,
transmission power). The system also allows some level
of configuration of protocol logic (duty cycle, free
channel detection algorithm, use of
acknowledgements).
 MANTIS OS (Multimodal networks of in situ
sensors)[1] is a multithread operating system for sensor
networks, with an application programming interface
inspired by POSIX adapted to the needs and restrictions
of wireless sensor networks. The architecture of
MANTIS is based on the classical layered
multithreaded design. The system's application
programming interface is preserved between different
platforms. The system kernel is comprised of a
scheduler and device drivers. A communication stack
and a command server are provided as user-level
services.
 The MANTIS scheduler provides a subset of the
POSIX thread package, with priority-based round-robin
scheduling. The system supports static and dynamic
heap allocation for threads. The scheduler is called

J. Computer Sci., 4 (4): 272-281, 2008

 275

periodically according to a timer, or through semaphore
operations. An idle thread is used as entry point for the
system's power management policies, which put the
processor in sleep mode whenever there are no threads
waiting for the processor. Timing and synchronization
services are provided through POSIX-like interfaces.
The complex scheduling mechanism used in MANTIS
incurs in greater overhead than that of a simpler, event-
based model. Thus, the system has a larger footprint
than, for example, TinyOS. However, the system is still
adequate for use in current sensor network prototypes.
 MANTIS uses a monolithic hardware abstraction
layer, with dev read(), dev write(), dev mode() and dev
ioctl() functions. Each function takes a device as a
parameter and a function table redirects general calls to
specific device drivers. Parameters for the dev mode()
and dev ioctl() are device-specific and there is no
unified abstraction for sensing hardware (each device
driver has specific semantics).
 The system provides a unified communication
interface through user-level threads. There is a unified
packet format for different communication interfaces
(e.g., serial interfaces, USB, radio). This
communication layer manages packet synchronization
and buffering. Underneath this communication API,
MANTIS uses traditional device drivers. The
monolithic nature of the MANTIS system may incur in
unnecessary overhead. On the other hand, the apparent
advantages of a single communication entry-point are
diminished due to the specific semantics and
parameters of the communication methods for each
interface.
 SOS[5] is a dynamically reconfigurable operating
system for sensor networks. The system's kernel
includes message passing services, dynamic memory
allocation and dynamic module loading. SOS is
organized as a series of binary modules that implement
specific tasks. These components are comparable in
functionality to TinyOS components. An application is
comprised by a series of interacting modules, which
present both a method call interface and a message
passing interface. Message passing is asynchronous and
coordinated by a scheduler that uses a priority-ordered
queue. Direct function calls are used for synchronous
operations between modules. Module loading and
distribution are implemented by kernel-independent
distribution protocols and meta-description structures.
The system integrates dynamic memory allocation and
garbage collection. As in the TinyOS and MANTIS
systems, SOS puts the processor in sleep mode
whenever there are no messages to schedule. The
dynamic reconfiguration model of SOS incurs in
considerably higher overhead than its static

counterparts. However, this overhead is still acceptable
for most sensor network applications[5].
 SOS provides services for dynamically including,
updating and removing modules to previously deployed
sensing programs. The system divides program memory
in pages and keeps state and context structures in RAM
for each module.
 The system uses the loadable kernel modules
mechanisms for sensing hardware abstractions.
Through this architecture device drivers can register
their services and associate it to a name, allowing
applications to access components through these names.
For instance, an analog sensor driver can bind itself to
an ADC Channel and register a sensor type as PHOTO.
When the application requests data from PHOTO, the
kernel uses the registered driver to obtain the
appropriate ADC reading. This semantic abstraction of
sensor readings promotes application portability.
However, since the operating system has to keep a table
of function pointers indexed by name, the registering of
drivers incurs in some memory overhead.

THE EPOS SYSTEM

 EPOS (Embedded Parallel Operating System)[4,11]
is a component-based framework for the generation of
dedicated runtime support environments. The EPOS
system framework allows programmers to develop
platform-independent applications and analysis tools
allow components to be automatically adapted to fulfill
the requirements of these particular applications. By
definition, one instance of the system aggregates all the
necessary support for its dedicated application and
nothing else.
 The modular design of EPOS was guided by the
Application-Oriented System Design (AOSD)
methodology. AOSD elaborates on the well-known
domain decomposition strategies behind Family-Based
Design (FBD) and Object-Orientation (OO), i.e.,
commonality and variability analysis, to add the
concept of aspect identification and separation yet at the
early stages of design[4]. In this way, AOSD guides
domain engineering towards families of components, of
which execution scenario dependencies are factored out
as ‘aspects’ and external relationships are captured in a
component framework. This domain engineering
strategy consistently addresses some of the most
relevant issues in component-based software
development:

Reusability: Components tend to be highly reusable,
for they are modeled as abstractions of real elements of
a given domain and not as parts of a target system.

J. Computer Sci., 4 (4): 272-281, 2008

 276

Moreover, by factoring out execution scenario
dependencies as aspects, components can be reused
unmodified in a variety of scenarios simply by defining
new aspect programs.

Complexity management: The identification and
separation of execution scenario dependencies
implicitly reduces the number of components in each
family, since those components that would have been
modeled to express a variation in the domain that
originates from a scenario dependency are suppressed
whenever the dependency can be modeled as an aspect.
Simply stated, a set of 100 components could be
modeled as a set of 10 components plus a set of 10
aspects and a mechanism to apply aspects to
components. The overall complexity (and functionality)
in the new set of 100 generated components is the
same, but it is now confined in fewer constructs. This
directly improves maintainability.

Composability: By capturing component relationships
in a component framework, AOSD enables components
to be more easily combined while generating a system
instance. It also put some limits to the misbehaviors that
can arise from applying aspect programs to pre-
validated components. Feature-based models are of
great value at this point to capture configuration
knowledge and thus make system generation a more
predictable procedure.
 Figure 1 shows the application-oriented system
design domain decomposition process. Abstractions are
identified from the problem domain and arranged in
families according to their common characteristics.
Scenario dependencies are modeled as aspects that may
be applied through scenario adapters. Families of
abstractions are visible to applications through inflated
interfaces, which export their members as a single
super-component. System architectures are captured in
component frameworks, which are defined in terms of
scenario aspects.
 Families of abstractions in EPOS represent
traditional operating system abstractions and implement
services such as memory and process management,
process coordination, timing and communication.
Abstractions are designed and implemented
independently from execution scenarios and
architectures. All architecture-dependent hardware units
are abstracted as hardware mediators which export,
though their platform independent interfaces, the
functionality demanded by abstractions. Due to the use
of static meta-programming and function inlining,
hardware mediators implement their functionality
without forming a conventional hardware abstraction

Fig. 1: AOSD domain decomposition process

layer. Through the use of hardware mediators, EPOS 's
abstractions have reached a level of reusability that
allows, for example, the same family of Thread
abstractions to be used in a mono-task or multitask
environment, as part of a �kernel or completely
embedded in the application, in an 8-bit microcontroller
or a 64-bit processor.
 Processes in EPOS are managed by the Thread and
Task abstractions. Each Thread stores its context in its
own stack. The Context abstraction defines all data that
must be stored for an execution flow and this way, each
architecture defines its own context.
 Time is handled by the Timepiece family of
abstractions. These abstractions are supported through
the Timer, Timestamp Counter (TSC) and Real-Time
Clock (RTC) mediators. The Clock abstraction is
responsible for keeping track of current time and is
available only on systems that feature a real-time clock
device. The Alarm abstraction can be used to generate
events that can wake-up a thread or call a function.
Alarms also have a master event with high priority that
is associated with a certain period of time. This master
event is used to call the process scheduling algorithm at
each quantum of time, when the active scheduler
feature is configured on the system. Finally, the
Chronometer abstraction is used to perform time
measurements.

J. Computer Sci., 4 (4): 272-281, 2008

 277

 The Synchronizer family of abstractions provides
mechanisms to ensure data consistency in a concurrent
process environment. The Mutex member implements a
simple mutual exclusion mechanism that supplies two
atomic operations: lock and unlock. The Semaphore
member realizes a semaphore variable, that is a integer
variable whose value can only be manipulated
indirectly through the atomic operations p and v. The
Condition member realizes a system abstraction
inspired on the condition variable language concept,
which allows a thread to wait for a predicate to
become true.
 In EPOS, details pertaining to address space
protection and translation, as well as memory
allocation, are abstracted through the MMU (Memory
Management Unit) family of mediators. The Address
Space abstraction is a container for chunks of physical
memory called segments. It does not implement any
protection, translation or allocation duties, handing then
over to the MMU mediator. The Flat Address Space
defines a memory model in which logical and physical
addresses match, thus eliminating the need for MMU
hardware. In platforms that do not feature a MMU, the
MMU mediator simply mantains the interface contract
with the Flat abstraction, providing empty method
implementations whenever necessary. Methods
concerning memory allocation operate on bytes in a
way that is similar to libc's malloc function.
 Input/Output control for peripheral devices in
EPOS is provided by the hardware's corresponding
mediator. The Machine mediator stores I/O locations
and handles dynamic interrupt registering. The IC
(Interrupt Controller) mediator handles enabling and
disabling individual interrupts. In order to deal with
different interrupts available in different platforms and
contexts, EPOS assigns platform-independent name and
syntax to interrupts pertinent to the system (e.g., timer
interrupt).

RESULTS AND DISCUSSION

 Wireless sensor network applications present
specific requirements in addition to traditional
operating system services. These include efficient
power management, field reprogramming, uniform
abstraction of heterogeneous sensor devices and
configurable communication services. In this work, we
introduced extensions to the EPOS operating system in
order to fulfill these requirements.
 EPOS provides application-driven power
management services that allow power aware operation
of deeply embedded systems, without compromising
application portability and without incurring excessive

overhead. The goal of our power management system is
to allow applications to express when certain software
components are not being used, permitting the system
to migrate hardware resources associated with these
components to lower power levels. Several issues
regarding architectural differences between different
hardware devices and concurrent access of hardware
resources by different software components emerged
from this goal. In order to deal with these issues, our
system was built upon a generic power management
interface, a message propagation system and on the
formalization of changes in operating modes[8].
 In our power management strategy, the application
programmer is expected to specify in his source code,
whenever certain components will not be used. Thus, a
uniform API to allow power management was defined.
This interface allows interaction between the
application and the system, between system
components and hardware devices and directly between
application and hardware. In order to free the
application programmer from having to wake up
components whenever they are needed, the power
managing mechanism abstracted by this interface
ensures that components return to their previous
operational states whenever they are used.
 The application may, for example, access a global
component (System) that has knowledge of every other
component in the system, triggering a system-wide
power mode change. Another way the application may
use this interface is through subsystems (e.g., Inter-
Process Communication (IPC), Processing and
Sensing). In this way, messages are propagated only to
the components used in the implementation of each
subsystem. The application may also access the
hardware directly, using the API available in the device
drivers, such as Network Interface Card (NIC), CPU,
Thermistor. The same API is also used between the
system's components.
 In order to attain application portability and to
facilitate application development, the power managing
interface was defined with a minimal set of methods
and universal operating modes with unified semantics
throughout the system. Portability comes from the fact
that the application does not need to implement specific
procedures for each device in order to change its
operating mode. These procedures are abstracted by the
API. Easiness of use comes from the fact that the
application programmer does not need to analyze
specific hardware manuals in order to identify available
operating modes, the procedures to change those modes
and the consequences of these changes.
 In order to map coherent connectivity between
different abstraction levels in the system, a formal

J. Computer Sci., 4 (4): 272-281, 2008

 278

operating mode migration net was defined. In this
study, we describe this formal mechanism, which was
defined through Petri nets. These nets feature clear
graphical representation and a wide range of
mathematical analysis models. These models allow
proof of liveness and reachability of desirable states, as
well unreachability of incorrect states. Although the
procedures to migrate power states are specific to each
component (both software and hardware), the control
and dispatch of these migrations may be expressed in a
generic form. In order to allow that, a network of mode
migrations, that specifies the transitions between
different operating modes was formalized.
 By using the hierarchical architecture by which
system components are organized in EPOS, effective
power management was achieved for deeply embedded
systems without the need for costly techniques or
strategies, thus incurring in no unnecessary processing
or memory overheads. Case studies[8] have shown
significant power savings, with minimal application
intervention. This hierarchical power management
infra-structure is also used by an active, opportunistic
power manager, which is executed either periodically or
when there are no tasks to schedule. This power
manager checks the utilization timestamps of each
registered component against the current timestamp of
the system. A configurable power management
heuristic then decides if and when to change a
component's power mode. In its simplest form, the
power manager puts all idle components (components
that have not been accessed for a pre-set period of time)
into sleep mode.
 In order to allow field reprogramming, EPOS
makes use of an indirection mechanism similar to
Remote Procedure Calls. In this infrastructure, the
invocation of a component’s method of the client
application passes through a Proxy that sends a message
to an Agent. After the method execution, a message
with the return value is sent back to the application.
With this structure, an indirection level is created
among the application method calls, making the Agent
the only entity aware of component’s position in the
system memory. The Agent controls the access to the
component’s method through a synchronizer
(Semaphore), not allowing calls to a component that is
currently being updated. A system thread is responsible
for receiving an update request and the new component
code. This request is sent to agent, which overwrites the
old code by the new one. The framework infrastructure
for system update is transparent to the application and
may be ‘turned off’ without overhead. However, when
update support enabled in the system, system footprint
increases and the component method calls suffer a
small delay.

 In order to provide sensing support for
applications, EPOS relies on software/hardware
interface that is able to abstract families of sensing
devices in a uniform fashion[14]. We define classes of
sensing devices based on their finality (e.g., sensing
acceleration, sensing temperature) and establish a
common substrate for each class. Each individual
device in a class is able to describe itself and its
properties, in a similar fashion to the IEEE 1451
standard sensors transducer electronic data sheet. A thin
software layer adapts individual devices (e.g., converts
ADC readings into contextualized values, performs
calibration) to fit the minimal requirements of its sensor
class. Thus, a simple thermistor is exported to an
application in the exact same fashion as a complex
digital temperature sensor. Software-based self-
description allows applications to use individual
sensors' extended characteristics. Thus, an application
may use a Thermometer abstraction, without having to
address a particular temperature sensor.
 In the EPOS sensing subsystem, common methods
for all sensing devices are defined by the Sensor
Common interface. The get() method provides a single
sensor, single channel reading (i.e., enables the device,
waits for data to be ready, reads the sensor, disables the
device and returns readings converted into pre-
determined physical units). The enable(), disable(), data
ready() and get raw() methods allow the operating
system and applications to perform fine-grain control
over sensor readings (e.g., performing sequential
readings, obtaining raw sensor values). The convert(int
v) method may be used to convert raw sensor readings
(e.g., ADC or duty-cycle outputs) into scientific or
engineering units. The calibrate() method performs a
device and platform specific calibration method, which
may require user interaction, depending on the sensor.
 Each sensor family may extend the Sensor
Common interface in order to properly abstract specific
family characteristics. The Magnetometer family may
add, for example, method for sampling and reading
different axes. A Thermistor family, on the other hand,
will probably not need to extend the basic common
interface. Each family also defines a specific Descriptor
structure, which defines specific fields for operation,
accuracy, timing, calibration data and physical units.
Every sensing device implements one of the defined
interfaces and may provide specific methods for
calibration, configuration and operation. Furthermore,
each sensing device fills a family-specific Descriptor
structure with device-specific values. Default
configuration parameters (e.g., frequency, gain, etc.) for
each device are stored in a configuration traits
structure.

J. Computer Sci., 4 (4): 272-281, 2008

 279

Table 1: Sensing components footprint
 Footprint (bytes)

 TinyOS Mantis EPOS
 ------------------- ------------------ ------------------
Sensor Code Data Code Data Code Data
System 10188 455 25500 596 7046 213
AVR ADC 550 4 538 9 64 3
ADXL202 722 4 936 10 266 9
Thermistor 1366 12 1050 11 1064 3
Photocell 1366 12 1050 11 1064 3
HMC1002 748 7 910 10 246 9

Table 2: Maximum sampling rate
 Sampling rate (Hz)

Sensor TinyOS Mantis EPOS
AVR ADC 8084 3685 24597
ADXL202 7657 3401 21711
Thermistor 5766 3107 10999
Photocell 6009 3117 11121
HMC1002 7494 3408 23024

 Whenever the operating system or an application
need to refer to a sensing device, they may either refer
to the specific device (e.g., MicaSB Temperature) and
perform device-specific operations, or refer to the
device class (e.g., Temperature Sensor) and restrict to
operations defined by that class. The configuration
traits structure lists all the devices in a given class
which are present in a given system configuration. A
statically meta-programmed realization of the device
class interface aggregates all the devices listed by the
configuration traits. This realization is concrete when
all the devices in a class are of the same type and
polymorphic when different sensor types are present in
a class.
 Table 1 shows the memory footprint for sensing
components in EPOS and their equivalents in TinyOS
and MANTIS. Table 2 shows the maximum sampling
rate obtained in tests with the three systems. The lowest
overhead and higher sampling rate in EPOS are a direct
result of the system's design, which minimizes
dependencies between sensing components and the rest
of the system. In EPOS, a component which abstracts
an analog sensor usually depends only on the platform's
analog-to-digital converter and its I/O subsystem,
which is in turn abstracted by inline or meta-
programmed operators. This minimizes overhead, even
considering that EPOS includes conversion and
calibration functions which the other systems do not
include in equivalent components.
 The EPOS communication infra-structure relies on
the C-MAC protocol to provide low-level
communication support. C-MAC[13] is a Configurable
Protocol for medium access control in wireless sensor

networks equipped with low power radio transceivers.
Its configurable characteristic allows the user to adjust
several communication parameters (e.g.,
synchronization, data detection, acknowledgments,
contention, sending and receiving), in order to adjust
the protocol to the needs of different applications.
 Given the simplicity of communication hardware
for sensor networks, Medium Access Control protocols
and other data link layer services must be implemented
in software. Services such as data packet detection,
error detection and treatment, addressing, packet
filtering and others traditionally implemented in
hardware become one of the main parts of a
communication stack implemented by operating
systems for wireless sensor networks.
 Medium access control protocols for sensor
networks compromise performance (latency,
throughput) for cost (power consumption). Power
consumption is minimized mainly by shortening the
period in which the radio listens to the channel when
there are no communications (idle listening).
 Contention-based protocols, such as B-MAC[12]
attain energy efficiency by increasing the message
preamble, allowing the radio channel to be verified with
lower periodicity. Slot-based protocols, such as S-
MAC[15], reduce power consumption by limiting
communication to well-defined periods. Comparisons
in different application scenarios show that there is no
‘optimal’ protocol for sensor networks[10]. The choice
of an adequate MAC protocol for a wireless sensor
network application depends on the level of
compromise between power efficiency and
communication flexibility. Characteristics such as:
complexity, special hardware requirements (e.g.,
synchronization hardware) and application data
communication patterns must be taken into
consideration when determining the ideal MAC for a
given scenario. In what regards communication support
in an operating system for sensor networks applications,
configuration flexibility may be considered the most
desirable trait.
 In the EPOS system, the C-MAC protocol uses a
meta-programmed framework to build a configurable
communication kernel, over which other protocols may
be composed. Protocol configuration is performed at
compile-time and run-time configuration of protocol
characteristics is not treated in the current C-MAC
architecture. The overhead of maintaining several
configuration possibilities programmed in the node and
the need of a second protocol for synchronization
makes the use of a run-time configuration system
impracticable for a protocol as widely configurable as
C-MAC. The main C-MAC configuration points
include:

J. Computer Sci., 4 (4): 272-281, 2008

 280

Basic communication characteristics: These
configurations are handled by the communication
hardware and include: transmission frequency and
power (which may be altered in runtime); modulation
type (e.g., Manchester, NRZ); transmission data rate.

Duty cycle and organization: The duty cycle
determines the active period in which the radio may
operate. In a simple CSMA-based configuration, the
radio may transmit at any time it detects the channel is
free. On the other hand, in a slot-based protocol, the
duty cycle is limited to the active part of the protocol's
time slot.

Collision-avoidance mechanism: The collision-
avoidance mechanism in a wireless sensor networks
MAC protocol may be comprised of a carrier sense
algorithm, the exchange of contention packets (Request
to Send (RTS) and Clear to Send (CTS), or a
combination of both. Furthermore, there must be the
possibility to not use any collision-avoidance
mechanism, for example, in a sparse network with little
communication, in which eventually retransmitting
corrupted packets is less costly than the mechanism
itself.

Collision-detection mechanism: As hardware for
communications in wireless sensor networks is mostly
half-duplex, the most widely used mechanism for
collision detection is the use of acknowledgment
packets, sent from the receiving node to indicate that
the data was correctly received. In situations where
packet loss is not a problem (e.g., a densely installed
network, where many information packets are
redundant), the collision detection mechanism may be
eliminated from the protocol configuration, thus
increasing power efficiency.

Collision handling mechanism: When a collision is
detected, the protocol may retransmit the packet, or
simply increment a packet loss counter.
 C-MAC's configurable characteristics are selected
by the programmer through Configurable Traits in
EPOS. Configurable Traits are parameterized classes
whose static members describe the properties of a
certain class. When a certain property is selected, the
functionality it describes is included into the protocol.
On the other hand, due to the use of function inlining
and static meta-programming when a certain
characteristic is not selected, no overhead associated
with it is added to the final object code of the protocol.
Furthermore, C-MAC's modular design allows different
radio transceivers to be used with no alterations in the
protocol's logic.

 Tests with C-MAC have presented slightly superior
performance than a protocol configured in an
equivalent fashion, with smaller memory footprint[13].
This advantage is magnified by C-MAC's configuration
system, which allows the creation of application-
specific protocols, with only the necessary overhead.

CONCLUSION

 This work presented the design and
implementation of a runtime support environment for
wireless sensor network applications based on the
EPOS system. This environment includes a power
management strategy, a field reprogramming strategy, a
sensor data acquisition system and a configurable
medium access control protocol for sensor network
radios.
 Our power management strategy allows
applications to express when certain software
components are not being used, permitting the system
to migrate hardware resources associated with these
components to lower power levels and features an
autonomous, opportunistic power manager. Our field
reprogramming strategy allows dynamic update of
applications and the system through a transparent
indirection mechanism. Our uniform abstraction of
families of sensing device allows applications to collect
data from sensors without having to deal with specific
hardware details and without incurring excessive
overhead. The C-MAC (Configurable MAC) protocol,
allows applications to configure the communication
channel according to their needs, including in the final
protocol only the services selected by the application
developer.

REFERENCES

1. Abrach, H., S. Bhatti, J. Carlson, H. Dai, J. Rose,

A. Sheth, B. Shucker, J. Deng and R. Han.
MANTIS: System support for multimodal
networks of in-situ sensors. In: 2nd ACM
International Workshop on Wireless Sensor
Networks and Applications, September, San Diego,
USA, pp: 50-59. DOI: 10.1145/941350.941358.

2. Barr, R., J.C. Bicket, D.S. Dantas, B. Du,
T.W.D. Kim, B. Zhou and E.G. Sirer, 2002. On the
need for system-level support for ad-hoc and
sensor networks. SIGOPS Operat. Syst. Rev.,
36: 1-5. DOI: 10.1145/509526.509528.

3. Dunkels, A., B. Grönvall and T. Voigt, 2004.
Contiki-a lightweight and flexible operating system
for tiny networked sensors. In: Proceedings of the
First IEEE Workshop on Embedded Networked
Sensors, November, Tampa, USA, pp. 455-462.
DOI: 10.1109/LCN.2004.38.

J. Computer Sci., 4 (4): 272-281, 2008

 281

4. Fröhlich, A.A., 2001. Application-Oriented
Operating Systems. GMD-Forschungszentrum
Informationstechnik, Sankt Augustin, Germany.
First Edition. ISBN: 3-88457-400-0.

5. Han, C.C., R. Kumar, R. Shea, E. Kohler and
M. Srivastava, 2005. A dynamic operating system
for sensor nodes. In: Proceedings of the 3rd
International Conference on Mobile Systems,
Applications and Services, June, ACM Press, New
York, USA, pp: 163-176. DOI:
10.1145/1067170.1067188.

6. Handziski, V., J. Polastre, J. Hauer and C. Sharp,
2004. Flexible hardware abstraction of the TI
MSP430 microcontroller in TinyOS. In:
Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems. November,
ACM, New York, pp: 277-278. DOI:
10.1145/1031495.1031534.

7. Hill, J., R. Szewczyk, A. Woo, S. Hollar, D. Culler
and K. Pister, 2000. System architecture directions
for networked sensors. In: Proceedings of the 9th
International Conference on Architectural Support
for Programming Languages and Operating
Systems, November, Cambridge, USA, pp: 93-104.
DOI: 10.1145/356989.356998.

8. Hoeller Junior, A.S., L.F. Wanner and
A.A. Fröhlich, 2006. A hierarchical approach for
power management on mobile embedded systems.
In: 5th IFIP Working Conference on Distributed
and Parallel Embedded Systems, October, Braga,
Portugal, pp: 265-274. DOI: 10.1007/978-0-387-
39362-9_28.

9. Hofmeijer, T., S. Dulman, P. Jansen and
P. Havinga, 2004. AmbientRT-Real time system
software support for data centric sensor networks.
In: 2nd International Conference on Intelligent
Sensors, Sensor Networks and Information
Processing, December, IEEE Computer Society
Press, Melbourne, Australia, pp: 61-66. DOI:
10.1109/ISSNIP.2004.1417438.

10. Langendoen, K. and G. Halkes, 2005. Embedded
Systems Handbook. Chapter Energy-Efficient
Medium Access Control. CRC Press. ISBN:
9780849328244

11. Marcondes, H., A.S. Hoeller Junior, L.F. Wanner
and A.A. Fröhlich, 2006. Operating systems
portability: 8 bits and beyond. In: 11th IEEE
International Conference on Emerging Technology
and Factory Automation, September, Prague,
pp: 124-130. DOI: 10.1109/ETFA.2006.355371.

12. Polastre, J., J. Hill and D. Culler, 2004. Versatile
low power media access for wireless sensor
networks. In: Proceedings of the 2nd International
Conference on Embedded Networked Sensor
Systems, November, ACM Press, New
York, USA, pp: 95-107. DOI:
10.1145/1031495.1031508.

13. Wanner, L.F., A.B. de Oliveira and A.A. Fröhlich,
2007. Configurable medium access control for
wireless sensor networks. In: International
Embedded System Symposium, May, Irvine, CA,
USA, pp: 401-410. DOI: 10.1007/978-0-387-
72258-0_34.

14. Wanner, L.F., A.S. Hoeller Junior,
A.B. de Oliveira and A.A. Fröhlich, 2006.
Operating system support for data acquisition in
wireless sensor networks. In: 11th IEEE
International Conference on Emerging Technology
and Factory Automation, September, Prague, pp:
582-585. DOI: 10.1109/ETFA.2006.355355.

15. Ye, W., J. Heidemann and D. Estrin, 2002. An
energy-efficient MAC protocol for wireless sensor
networks. In: 21st Conference of the IEEE
Computer and Communications Societies, Vol. 3,
June, IEEE, New York, USA, pp: 1567-1576. DOI:
10.1109/INFCOM.2002.1019408.

