
Journal of Computer Science 4 (6): 447-453, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Hamed Al Rjoub, Irbid National University, Irbid-Jordan
447

Deterministic Parallel Sorting Algorithm for 2-D Mesh of Connected Computers

1Hamed Al Rjoub, 2Arwa Zabian and 3Ahmad Odat

1,3Irbid National University, Irbid-Jordan
2Jadara University, Irbid-Jordan

Abstract: Sorting is one of the most important operations in database systems and its efficiency can
influences drastically the overall system performance. To accelerate the performance of database
systems, parallelism is applied to the execution of the data administration operations. We propose a
new deterministic Parallel Sorting Algorithm (DPSA) that improves the performance of Quick sort in
sorting an array of size n. where we use p Processor Elements (PE) that work in parallel to sort a
matrix r*c where r is the number of rows r = 3 and c is the number of columns c = n/3. The simulation
results show that the performance of the proposed algorithm DPSA out performs Quick sort when it
works sequentially.

Key words: Parallel sorting, deterministic algorithms, Quicksort, Parallel Quicksort

INTRODUCTION

 Sorting is one of the most common operations in
parallel processing applications. For example, it is
central to many parallel data base operations and
important area such as image processing, statistical
methodology, search engine etc…. It is well known that
sorting can be done with O (n log n) comparisons for
Quick sort. This order can be reduced if we use the
parallelism, where we can sort n elements in one round
using 2n processors to make all the comparison at once.
A number of different types of parallel sorting scheme
have been developed. Parallel deterministic sorting
algorithms are based on Compare-and- Exchange (CE)
operations. The lower bound on the number of CE
operations to sort n element is Ω (nlogn). Several
optimal sequential algorithms are known, such as
Quicksort[4] and Heapsort[4]. A vast number of parallel
sorting algorithms have been described in the
literatures, some of them are cost-optimal PRAM
parallel sorting algorithms[16]. The most fundamental
one is called Cole’s Merge Sort[5,14], it sorts n numbers
using n processors in time O (logn). Others are
synthetically optimal mesh sorting algorithms, in which
for N = n2 numbers can be sorted on N-2D mesh (n, n)
in time kn where k is a constant between 2 and 3, n is
the dimension of the mesh. The number of sorting steps
is bounded by the diameter of M (n,n), which is 2n-2.
The most important sorting algorithms for sorting n
numbers on N-nodes hypercube networks is Batcher’s
Merge Sort[6] which needs O(log2 n) steps.
 There exists deterministic parallel algorithms for
sorting n numbers on n-node hypercube network in O

(log n (log log n)) CE steps but the hidden constant is
very large.
 Parallel Bubblesort[7], is an oblivious sorting on-
mesh, it takes precisely n steps to sort n numbers on 1-
D mesh which is optimal due to the diameter of the
mesh. The idea is obvious, alternate CE operations
between odd-even and even-odd transposition sort. The
cost of the algorithm is O (n2).
 Even-odd transposition sorting algorithms for n>p
numbers on p processors, it performs P sequential
operations with n/p numbers and each operation takes θ
(n/p) CE operation and the total parallel time is θ (n/p
log n/p) + θ (n/p).
 The scalability of even-odd transposition sort is
therefore very poor, since to keep a constant efficiency,
input data size must grow exponentially with the
number of processors. Shearsort[8,9], it is based on the
even-odd-transposition, it works for any 2-D mesh.
Shearsort on M (n,n) consists of 2logn+1 phases and
logn column phase to sort nm numbers. Each row
(phase) takes θ (m) times and each column takes θ (n)
time.
 The goal of our work is to demonstrate that using
Quicksort in parallel in sorting an array of size n, can
reduce the sorting time significantly respect to the case
where Quicksort sorts the same array. For that, we
propose a deterministic parallel algorithm that sort (3,
n/3) mesh in n/3 deterministic steps with running time
is equal to O (n/3log n/3).

Deterministic Parallel Sorting Algorithm (DPSA):
Algorithm description: Given an array A of size n, our
algorithm must be able to sort A in a polynomial time O

J. Computer Sci., 4 (6): 447-453, 2008

 448

A

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12A0 A13

A0 A1 A2 A3 A4

A5 A6 A7 A8 A9

A10 A11 A12A13 Ap

R0

R1

R2

Sorting
rows

A0A1A2 A3 A4

A5 A6A7 A8 A9

A10A11 A12A13Ap

A0

A1

A3 A4A6

A7

A8

A9

A10

A11

A12

A13A2

Ap

A5

Sorting columns

A1

Ap

A10

Shift +sorting
columns

A11

A6

A3 A4A2

A5

A7

A1

A0 A12 A9

A8A13

X

X

A2 A9

R00

R3n/3

R00

Fig. 1: The description of DPSA

(n/3logn/3).The array A id divided into a matrix R×C
where R is the number of rows (R = 3) and C is the
number of columns that must be an odd number
calculated as follow C = n/3. If 1≤n mod 3≤3 then C =
n/3 +1 else C 0 = n/3.
 P0, P1, P2 are three element processors will be
assigned to R0, R1, R2 (rows) respectively to sort them
in parallel. Then P0, P1, P2, Pc are element processors
will be assigned to C columns to sort them in parallel.
After each sorting operation to the columns, two sorted
elements are generated and will be placed in parallel in
the final array A1 (Fig. 1).
 The algorithm works in two phases:

First phase:

• To each element in A assign a Processor Elements

(PE), have the role to perform the following
operations: read, write (shift).

• Dividing the array A into three rows R0, R1, R2 with
fixed length C, C = n/3 here we have the following
cases:

• If n mod 3 = 1 and C is an odd number, add two
elements with highest digits to the last column (for
example, if the biggest element of A is composed
on three digits we add an element with 4 digits).
These elements will be sorted and deleted initially.

• If n mod 3 = 2 and C is an odd number, add only
one element with highest digit and will be treated
as in the previous case.

• If C is not an odd number, add three elements (one
column) with highest digit as in the first case
(worst case).

• Use Quick sort to sort R0, R1 and R2 in parallel.

Second phase:

• Assign P0, P1, P2 and Pc, to sort C columns in

parallel
• When the sorting operation is finished, the

elements in the first and last location in the matrix
will be the maximum and minimum elements
respectively in the array, these elements will be
added to their location in the final array A1 (that
correspond the first and the last element in the
array A1).

• Shift the elements in the first row one location to
the left and the elements in the last row on location
to the right.

 These two steps (2, 3) will be repeated until all the
elements in the first and the last row (Ro, R2) are sorted,
that means the number of iterations will be n/3
iterations. As a natural result after we finished sorting
and shifting operations for R0, R2 we obtained a sorted
elements for the middle row R1, which will be merged
in parallel in one step to its correspondent location in
A1.

Example: Figure 1, represent an array A of size n = 14,
in the first phase (number1) A is divided to R0, R1, R2
where n mod 3 = 2. That means an element Ap with the
highest digit will be added to the final column of the
array. C = 5 is an odd number. In the middle part of
Fig. 1, it is clear that after the sorting rows operation
and the sorting columns operation Ap is joined to the
location R00 and will be sorted and deleted. In the
second shifting and sorting operations (the last step in
Fig. 1) it is clear that two sorted elements in the
location R00, R3n/3 are added to the final array A1 in
parallel. Figure 2a, represents a numerical example with
an array A of size n = 15. It is clear that after each
sorting operation two elements are added to the final
array A1. Figure 2b shows that after the second shifting
operation the middle element denoted by a circle will
be stay in its location and never change it. Figure 2a
and b, demonstrate that the sorting operations is equal
to n/3 = 5 and is noted from Fig. 2b that after 5
iterations the middle row will be already sorted and will
be added in parallel to its location in the final array A1.

J. Computer Sci., 4 (6): 447-453, 2008

 449

6 8 10 11 100 30 50 77 88 400 300 0 3 2 1

6 8 10 11 100

30 50 77 88 400

300 0 3 2 1

81011

507788

03 2

100 6

400 30

300 1

Sorting rows

Sorting columns 1

81011

507788

03 2100 1

300

400 30

6

400 0

81011

507788

3 2100 1

X

X

6300

30

Shift

810

11

50

77

3 2

6

30
300

88

X

Sorting columns
2

100

1

X

1300

Shift

810

11

50

77

3 2

6

30100 X X

XX

88

A

A1

Fig. 2a: Numerical description of DPSA work: First

phase

810

11

50

77

3 2

6

30100 X X

XX

88 8

10

1150

77

3 2

6

30100 X X

XX

88

Sorting columns
3

8

10

1150

77

3

6

30 X X

XX

88

X

X

Sorting columns
4

8

1011

50

630

X

XX

88 X

X

X

3

77

Shift

8

1011

50

630

X

XX

X

X

X

77

X

X

Sorting columns
5

8101150

6

30

X

XX

X

X

77 X

X

X

01300 100 2388400 77 6

50 30 11 10 8

A1

Fig. 2b: Numerical description of DPSA: Second phase

Complexity analysis: The first phase is done only one
time its complexity is calculated as follow:

• Assigning n processor elements requires a time θ

(1)
• Sorting rows has complexity n/3logn/3.
• So the complexity of the first phase is

 T1 = n/3 logn/3 (1)

 The complexity of the second phase is calculated
as follow:

• Sorting columns first time has complexity 3Clog3

where C is the number of columns
• Then the consecutive sorting operations has the

following complexity (n-2j)log(n-2j) where j is the
number of iterations is equal to n/3 and in each
iteration the number of sorted elements will be
reduced by 2 respect to the previous iteration. So,
the time complexity of the second phase is:

 T2 = 3Clog3+n/3logn/3 (2)

 The complexity time is calculated as follow:

 T = T1+T2 = n/3log n/3+3Clog3+
 n/3logn/3≤O (n/3logn/3) (3)

 That means, dividing the array to 3 rows has
reduced the complexity of Quick sort in the average
case from O(n log n) to O(n/3 log n/3), where the
number of comparisons is reduced to n/3. This
reduction is significant when the number of input
becomes large.

Lemma: For a given array A of size n our algorithm
sort A in a polynomial time and the number of steps
needed is exactly n/3 steps. In which each element is
sorted only once. And the resultant middle row with n/3
element is already sorted.

Proof: We will prove that the number of steps needed
to sort n elements given our algorithm will be exactly
n/3. For that we propose that the number of steps
initially will be more than n/3. For example n/3+i,
where i is an integer.
 In our algorithm in each step after the sorting
operation, two elements were sorted in parallel. That
means, when the algorithm stop the number of sorted
elements will be: 2(n/3+I) added to it the number of
elements of the middle row that is already sorted n/3
that means the total number of element sorted will be:

 2(n/3+ i) + n/3 = n +2i

 However the number of element in the array is only
n that is a contradictory. So, the number of steps cannot
be n/3+i.
 From our algorithm the sorted element must joins
one of the following two locations: the first or the last
element in the matrix (n/3, 3) and then will be inserted
in its location in the final array A1, that means each

J. Computer Sci., 4 (6): 447-453, 2008

 450

element cannot be sorted twice, consecutively if the
array is n elements the number of sorted elements
cannot be n+2i and the number of steps in our
algorithm is exactly n/3.

RESULTS AND DISCUSSION

 To evaluate the effectiveness of the parallelism in
sorting an input data of size n, we have done a
simulation using Microsoft Excel 2007, in which is
calculated the running time of DPSA with the variation
of input data size. Table 1 represents our results, where
it is evident that the time needed for sorting is increased
with the input size. However, the running time of
DPSA is better than Quick sort for the same input size.
Figure 1 shows that for an input size from 50-1000
items both DPSA and Quick sort have the same
performance. However, when the input size grows,
DPSA out performs the performance of Quick sort.
That means, DPSA has reduced the running time of
Quick sort about 2.06 times and that because we have
reduced the number of comparisons to n/3.
 The key issue in the parallel processing of a single
application is the speedup achieved or the efficiency of
parallel processing. That is defined as the factor by
which the execution time for the application changes.
That is:
 Speedup (accelerator) = execution time for one
processor / execution time for P processors.
 Based on that, the efficiency is calculated as
follow:

AcceleratorEfficiency = 100
No. of processors

×

 The ideal values for the efficiency must be 1/p that
means dependent on the number of processors (p) in a
complete parallel system (Table 2).
 Table 2 shows that for small input size the
efficiency of DPSA is far from the ideal however, when
the input size increases the efficiency of DPSA is near
ideal. In[10], is proposed a generic parallel sorting
algorithm (PRMQ) that convert an array of size n to a
matrix r*c where n = r*c in a manner that r is an odd
number r≥ 3 and c≥3. Figure 3 shows that the
performance of DPS is outperforming both Quick sort
and PRMQ for the same input size and the same
number of processors. However, a comparison between
the efficiency of both PRMQ and DPSA with the ideal
efficiency (1/p) in a complete parallel system is
explained in Table 3. Figure 4 shows that DPSA has
efficiency near ideal in comparison to PRMQ. While

Table. 1: The running time of Quick sort and DPSA given the input
size

Size (n) Quick sort DPSA Sort No. of col.
9 285.2932501 138.3721876 3
20 864.3856190 385.2939563 7
50 2821.9280950 1182.0562400 17
100 6643.8561900 2700.4458130 35
200 15287.7123800 6058.5582930 67
500 44828.9214200 17348.1092300 167
1000 99657.8428500 38026.5517800 333
1200 122745.8243000 46688.1997600 401
1400 146316.9556000 55504.8976900 467
1600 170301.6990000 64465.4663500 535
1800 194648.0614000 73546.5746500 603
2000 219315.6857000 82722.7702300 667

Table 2: The efficiency of DPSA
 Running time Running time
 For one for DPSA Ideal
Size P = n/3 processor (ms) (ms) Efficiency %
9 3 285.29 138.37 22.9% 33.0
20 7 864.38 385.29 11.2% 14.0
50 17 2821.92 1182.05 4.8% 5.0
100 34 6654.85 2700.44 2.5% 2.0
200 67 15287.71 6058.55 0.5% 1.4
2000 667 219315.60 82722.77 0.1% 0.1

Table 3: Comparison between the efficiency of DPSA and PRMQ

given the ideal efficiency
Size p Efficiency PRMQ Efficiency DPSA Ideal 1/p
50 17 8.83% 4.8% 5%
100 34 4.67% 2.5% 2%
200 67 2.48% 0.5% 1.4%

Fig. 3: A comparison between Quicksort and DPSA

running time

Comparison Running Time Between Quicksort,
PMRQ and DPSA

0.E+00
5.E+05
1.E+06
2.E+06
2.E+06
3.E+06

1 2 3 4 5 6 7 8 9 10
Size(millions)

Ti
m

e
(µ

s)

Quicksort

PMRQ

DPSA

Fig. 4: Comparison between DPSA, PRMQ, Quicksort

running time

J. Computer Sci., 4 (6): 447-453, 2008

 451

Table. 4: The comparison between the running times of Quick sort,
DPSA, and PRMQ algorithms for a large data size

 Running Running Running
 Time Quick Time Time
Size(n) sort(µs) DPSA(µs) PMRQ(µs)
1*106 1.99E+05 7.12E+04 7.01E+04
2*106 4.19E+05 1.49E+05 1.58E+05
5*106 1.11E+06 3.95E+05 4.56E+05
8*106 1.83E+06 6.42E+05 7.82E+05
9*106 2.08E+06 7.36E+05 8.94E+05
1*106 2.33E+06 8.13E+05 1.01E+06

Fig. 5: Comparison between the efficiency of PRMQ

and DPSA with the ideal values in completely
parallel system

PRMQ is less efficiency than DPSA. Table 4, show that
for a large size of input data DPSA running is time is
better than both Quick sort and PRMQ.

CONCLUSION

 In this study we have proposed a new parallel
mechanism to sort an array of size n in a manner to
reduce the number of comparisons. Using the
parallelism has reduced the running time of Quick sort
from O (nlogn) in the average case to O (n/3logn/3). In
our work we have divided the array to a fixed number
of rows. So, we have obtained a matrix (3, n/3) where
the columns are sorted in parallel using P Processor
elements. Our simulation results show that using Quick
sort in parallel in the manner described in our algorithm
(DPSA) has conducted to more efficient sorting in term
of running time and number of comparisons.
 Parallel sorting can form a basic building block to
implement higher level combinatorial algorithms. In[3],
is proposed a parallel sorting algorithm which moves a
minimal amount of data over the network. Where it is
used P processors to sort an array of size n. The
algorithm works in four phases are: local sort, splitting,
elements routing and merging phases. In the local
sorting phase is applied any sorting algorithm for non

parallel sorting to do the primary sorting in parallel in
total cost Ts = Ts (n/p) where Ts is the time needed by
the algorithm used to sort n elements with O(n/p log
n/p) comparisons.
 The splitting phase is divided into three sub phases
are: single selection, simultaneous selection and
producing indices. In the second phase, the splitting
phase is used the binary search rather than partition,
where the elements are ranking using O (log n) rounds.
In the single selection sub phase is selected only one
element with global rank r. It is defined an active range
with contiguous sequence elements have the rank r and
each round the active range is divided in two and
determined the target elements. In the simultaneous
selection sub phase is selected multiple target with
different global rank, in this sub phase the amount of
data being sent is O(p2 log n) over O(log n) round. In
the third phase the elements routing phase, the elements
are moved from the location they start out to where they
belong. The best case if the elements are already sorted
the worst case if the elements are reversed sorted order
where it needs θ (n) steps. In the final phase, the
merging phase is merged the p sorted sub vectors in a
single sorted sequence, for this phase is used the binary
tree where each elements moves at most  log p times
and the total time needed will be n/p  log p. The
total computing time is 1/p Ts (n) + O (P2 log n +p log 2

n) + (n/p if p not power of 2). The simulation results
show that the communication cost for sorting algorithm
is near linear if p<<n. In[11], is studied the problem of
parallel sorting on a two dimensional mesh
multicomputer architecture, where it is used a new
parameter to evaluate the performance of the algorithm
that is the scalability. The scalability consists on
comparing the performance of parallel algorithms when
the data input size and the number of processor can
vary. That means, is the ability of the algorithm to be
efficient by using increasing number of processors.
QSP1

[11]. Selects an element as the pivot, then the
number of elements bigger and smaller than the pivot is
counted. The smaller elements are moved to the
processors that come first in the row-major ordering.
And larger elements are moved to the processors that
come later in the row-major ordering. This step is
repeated recursively until a partition fits only within
one processor. At that time, a sequential merge sort is
used for sorting the local elements. The computation
time is θ (2 k (p)1/2 log p (p)1/.2 log p) = θ (n (p)1/2 log p)
where k is constant, p is the number of processors.
QSP2

[11],is a variant of QSP1 where the partitioning is
done alternately in the vertical and horizontal
dimensions in a manner that the maximum distance

J. Computer Sci., 4 (6): 447-453, 2008

 452

within each partition is reduced by a factor of two after
each set of one horizontal and one vertical partitioning.
The overall complexity for all steps is θ (n (p) 1/2) as
apposed to θ (n (p) 1/2 log p) for QSP1. The total number
of comparisons in QSP1, QSP2 no more than O (n log
n).
 Lang Sort[12], is a parallel sorting algorithm for
SIMD Mesh parallel computers, where each processor
has 1 element. It is based on exchange and compares
exchange operation, where in the exchange operations
two elements were exchanged between two processors.
And in the compare-exchange operations two elements
are exchanged if and only if the elements are not in
correct sorted order. In[14], Batcher proposed Bitonic
sorting networks algorithm that achieves non optimal
parallel running time O (log2 n) for sorting a network
with n nodes. A sequence is called Bitonic sequence if
there is a value of j such that after rotation by j
elements, the sequence consists of monotonic
increasing part followed by a monotonic decreasing
part. For j ∈ {0, ……. n-1} the operation on the
sequence { a0,……..an-1} result on {aj,…..an-1,a0
,…………aj-1} the rotation by j mod n.
 Bitonic sorting algorithm transforms the bitonic
sequence into its corresponding monotonic increasing
(or monotonic decreasing) sequence. Then it merges the
two sorted sequence. The merging operation (Bitonic
merge) of the two sorted sequences can be performed as
follows: if two sequences are sorted in opposite sorting
directions the concatenation of two sequences yields a
bitonic sequence. Thus the result of the transformation
into a monotonic increasing sequence corresponds to
the results of merging the two input sequence according
to the respective sorting direction. If the two sequences
are sorted in the same sorting direction one of them
would have to be reversed. The transformation of the
sequences or the bitonic merge is done recursively. In
adaptive bitonic sorting algorithm[13] an index j* is
defined as follow {-n/2 …n/2-1} where for a sequence
a of n elements after rotation of a by j* elements, all
elements of the first half (p) are not greater than any
element of the second part (q). Adaptive bitonic merge
algorithm is based on Min/Max determination
algorithm that determines the minimum as well as the
maximum components of the bitonic sequences p and q
in O (log n) time. Adaptive bitonic sorting algorithm is
based on Batcher’s algorithm where the merge step is
performed by reordering a bitonic sequence. It is an
optimal parallel sorting algorithm, it runs in time O (
log2 n) parallel time with O (n/log n) processors. GPU-
ABISort basic algorithm proposed in[15], is based on

adaptive bitonic sorting algorithm[13], where it is used
the stream architecture instead using Min/Max
determination algorithm in parallel. Where the input
data is divided into streams then the Kernel performs
computation on entire streams or on the substream to
produce one or more streams as output. To apply the
technique of adaptive bitonic sorting, the random access
write have to be replaced by stream write without
contiguous stream blocks as large as possible. GPU-
ABISort has reduced the number of stream operations
by a factor of O (log n) in corresponding to the adaptive
technique implemented in adaptive bitonic sorting
algorithm[13]. The sorting approach on stream
processors it achieves the optimal complexity O
((nlogn)/p).

REFERENCES

1. Duseau, A.C., D.E. Culler, E.E Schauser and

R.P. Martin, 1996. Fast parallel sorting under logp:
experience with CM-5. IEEE Trans. Parallel
Distributed Syst., 7: 791-805.

2. Culler, D.E. A. Dusseau, S.C. Goldestein, A.
Krishnamurthy, S. Lunetta, T. Von Eicken and K.
Yelick, 1993. Parallel programming in split-C. In:
Proceedings of High Performance Networking and
Computing. ACM/IEEE Conference on
Supercomputing. Portland- Oregon United States.
pp: 262-273. 15-19 Nov. 1993. ISBN: 0-8186-
4340-4.DOI: 10.1109/SUPERC.1993.1263470

3. Cheng, D.R., V.B. Shah, J.R. Gibert and
A. Edelman. 2007. A Novel Parallel Sorting
algorithm for Contemporary Architectures. Int. J.
Parallel Prog., PP:1-12.

4. Cormen, T.H., C.E. Leiserson, R.L. Rivest and
C. Stein. 2002. Introduction to algorithms.
Mc.Graw-Hill Higher Educatio. 2.Edition .

5. Cole, R., 1988. Parallel merge sort. SIAM J.
Comput., 17: 770-788.

6. Morven, M., C. Meinel and D. Krob. 1998. STACS
98. Lecture Notes in computer Science 15th Annual
Symposium on Theoretical Aspects of Computer
science. Paris-France. February 25-27/1998.
Springer. Springer; 1 edition (April 8, 1998).
ISBN-10: 3540642307

7. Grama, A., A. Gupta, G. Karypis and V. Kumar,
2003. Introduction to Parallel Computing. Second
Edition. January 26, 2003. Addison-Wesley ISBN-
10: 0201648652

8. Knuth, D.E., 1973. The art of computer
Programming. -Sorting and Searching. Addison-
Wesley. 2nd edition (June 1973). ISBN-10:
020103803X

J. Computer Sci., 4 (6): 447-453, 2008

 453

9. Scherson, I.D. and S. Sen, 1989. Parallel Sorting in
Two dimensional VLSI Models of Computing.
IEEE Trans. Comput., 38: 238-249.

10. Qawasmeh, S., A. Odat, H. and Al Rjoub, 2008.
Parallel Matrix Representation- Quick Sort
Algorithm (PRMQ). Accepted for Publication in
The J. Comput. Sci.,

11. Singh, V. V. Kumar, G. Agha and C. Tomlinson,
1991. Scalability of parallel sorting on mesh
multicomputer. In Proceedings of Parallel
Processing Symposium. Anaheim, CA, USA.
30 April-2 May pp: 92-101.

 DOI: 10.1109/IPPS.1991.153762
12. Lang, H.W., M. Schimmler, H. Schmeck and

H. Schroder, 1985. Systolic sorting on a mesh
connected networks. IEEE Trans. Comput.,
34: 652-658.

13. Bilardi, G. and A. Nicolau, 1989. Adaptive bitonic
sorting: An optimal parallel algorithm for shared
memory machines. SIAM J. Comput., 18: 216-228.

14. Batcher, K.E., 1968. Sorting networks and their
applications. In: Proceedings of the 1968 spring
Joint Computer conference (SJCC) 30 aprile-2May
1968. Atlantic City, NJ, USA, volume:32: PP:307-314.

15. Greb, A,and G. Zachmann, 2006. GPU-ABISort:
Optimal parallel sorting on stream architectures. In:
The 20th International Parallel and Distributed
Processing Symposium IPDPS. 25-29 April
2006.PP:1-10. DOI: 10.1109/IPDPS.2006.1639284

16. Natvig, L., 1990. Logarithmic time cost optimal
parallel sorting in not yet fast inpractice. In:
Proceedings of Supercomputing’90. Nov. 12-16.
New York, USA. pp: 486-494.

