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Abstract: Sorting is one of the most important operations in database systems and its efficiency can 
influences drastically the overall system performance. To accelerate the performance of database 
systems, parallelism is applied to the execution of the data administration operations. We propose a 
new deterministic Parallel Sorting Algorithm (DPSA) that improves the performance of Quick sort in 
sorting an array of size n. where we use p Processor Elements (PE) that work in parallel to sort a 
matrix r*c where r is the number of rows r = 3 and c is the number of columns c = n/3. The simulation 
results show that the performance of the proposed algorithm DPSA out performs Quick sort when it 
works sequentially. 
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INTRODUCTION 

 
 Sorting is one of the most common operations in 
parallel processing applications. For example, it is 
central to many parallel data base operations and 
important area such as image processing, statistical 
methodology, search engine etc…. It is well known that 
sorting can be done with O (n log n) comparisons for 
Quick sort. This order can be reduced if we use the 
parallelism, where we can sort n elements in one round 
using 2n processors to make all the comparison at once. 
A number of different types of parallel sorting scheme 
have been developed. Parallel deterministic sorting 
algorithms are based on Compare-and- Exchange (CE) 
operations. The lower bound on the number of CE 
operations to sort n element is Ω (nlogn). Several 
optimal sequential algorithms are known, such as 
Quicksort[4] and  Heapsort[4]. A vast number of parallel 
sorting algorithms have been described in the 
literatures, some of them are cost-optimal PRAM 
parallel sorting algorithms[16]. The most fundamental 
one is called Cole’s Merge Sort[5,14], it sorts n numbers 
using n processors in time O (logn). Others are 
synthetically optimal mesh sorting algorithms, in which 
for N = n2 numbers can be sorted on N-2D mesh (n, n) 
in time kn where k is a constant between 2 and 3, n is 
the dimension of the mesh. The number of sorting steps 
is bounded by the diameter of M (n,n), which is 2n-2. 
The most important sorting algorithms for sorting n 
numbers on N-nodes hypercube networks is Batcher’s 
Merge Sort[6] which needs O(log2 n) steps. 
 There exists deterministic parallel algorithms for 
sorting n numbers on n-node hypercube network in O 

(log n (log log n)) CE steps but the hidden constant is 
very large. 
 Parallel Bubblesort[7], is an oblivious sorting on-
mesh, it takes precisely n steps to sort n numbers on 1-
D mesh which is optimal due to the diameter of the 
mesh. The idea is obvious, alternate CE operations 
between odd-even and even-odd transposition sort. The 
cost of the algorithm is O (n2). 
  Even-odd transposition sorting algorithms for n>p 
numbers on p processors, it performs P sequential 
operations with n/p numbers and each operation takes θ 
(n/p) CE operation and the total parallel time is θ (n/p 
log n/p) + θ (n/p).  
 The scalability of even-odd transposition sort is 
therefore very poor, since to keep a constant efficiency, 
input data size must grow exponentially with the 
number of processors. Shearsort[8,9], it is based on the 
even-odd-transposition, it works for any 2-D mesh. 
Shearsort on M (n,n) consists of 2logn+1 phases and 
logn column phase to sort nm numbers. Each row 
(phase) takes θ (m) times and each column takes θ (n) 
time.  
 The goal of our work is to demonstrate that using 
Quicksort in parallel in sorting an array of size n, can 
reduce the sorting time significantly respect to the case 
where Quicksort sorts the same array. For that, we 
propose a deterministic parallel algorithm that sort (3, 
n/3) mesh in n/3 deterministic steps with running time 
is equal to O (n/3log n/3). 
 
Deterministic Parallel Sorting Algorithm (DPSA):  
Algorithm description: Given an array A of size n, our 
algorithm must be able to sort A in a polynomial time O  
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Fig. 1: The description of DPSA 
 
(n/3logn/3).The array A id divided into a matrix R×C 
where R is the number of rows (R = 3) and C is the 
number of columns that must be an odd number 
calculated as follow C = n/3. If 1≤n mod 3≤3 then C = 
n/3 +1 else C 0 = n/3. 
  P0, P1, P2 are three element processors will be 
assigned to R0, R1, R2 (rows) respectively to sort them 
in parallel. Then P0, P1, P2, Pc are element processors 
will be assigned to C columns to sort them in parallel. 
After each sorting operation to the columns, two sorted 
elements are generated and will be placed in parallel in 
the final array A1 (Fig. 1).  
  The algorithm works in two phases: 
 
First phase:  
 
• To each element in A assign a Processor Elements 

(PE), have the role to perform the following 
operations: read, write (shift). 

• Dividing the array A into three rows R0, R1, R2 with 
fixed length C, C = n/3 here we have the following 
cases: 

• If n mod 3 = 1 and C is an odd number, add two 
elements with highest digits to the last column (for 
example, if the biggest element of A is composed 
on three digits we add an element with 4 digits). 
These elements will be sorted and deleted initially. 

• If n mod 3 = 2 and C is an odd number, add only 
one element with highest digit and will be treated 
as in the previous case. 

• If C is not an odd number, add three elements (one 
column) with highest digit as in the first case 
(worst case). 

• Use Quick sort to sort R0, R1 and  R2 in parallel. 
 
Second phase: 
 
• Assign P0, P1, P2 and  Pc, to sort C columns in 

parallel 
• When the sorting operation is finished, the 

elements in the first and last location in the matrix 
will be the maximum and minimum elements 
respectively in the array, these elements will be 
added to their location in the final array A1 (that 
correspond the first and the last element in the 
array A1 ). 

• Shift the elements in the first row one location to 
the left and the elements in the last row on location 
to the right. 

 
 These two steps (2, 3) will be repeated until all the 
elements in the first and the last row (Ro, R2) are sorted, 
that means the number of iterations will be n/3 
iterations. As a natural result after we finished sorting 
and shifting operations for R0, R2 we obtained a sorted 
elements for the middle row R1, which will be merged 
in parallel in one step to its correspondent location in 
A1. 
 
Example: Figure 1, represent an array A of size n = 14, 
in the first phase (number1) A is divided to R0, R1, R2 
where n mod 3 = 2. That means an element Ap with the 
highest digit will be added to the final column of the 
array. C = 5 is an odd number. In the middle part of 
Fig. 1, it is clear that after the sorting rows operation 
and the sorting columns operation Ap is joined to the 
location R00 and will be sorted and deleted. In the 
second shifting and sorting operations (the last step in 
Fig. 1) it is clear that two sorted elements in the 
location R00, R3n/3 are added to the final array A1 in 
parallel. Figure 2a, represents a numerical example with 
an array A of size n = 15. It is clear that after each 
sorting operation two elements are added to the final 
array A1. Figure 2b shows that after the second shifting 
operation the middle element denoted by a circle will 
be stay in its location and never change it. Figure 2a 
and b, demonstrate that the sorting operations is equal 
to n/3 = 5 and is noted from Fig. 2b that after 5 
iterations the middle row will be already sorted and will 
be added in parallel to its location in the final array A1.  
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Fig. 2a: Numerical description of DPSA work: First 

phase 
 

810

11

50

77

3 2

6

30100 X X

XX

88 8

10

1150

77

3 2

6

30100 X X

XX

88

Sorting columns
3

8

10

1150

77

3

6

30 X X

XX

88

X

X

Sorting columns
4

8

1011

50

630

X

XX

88 X

X

X

3

77

Shift

8

1011

50

630

X

XX

X

X

X

77

X

X

Sorting columns
5

8101150

6

30

X

XX

X

X

77 X

X

X

01300 100 2388400 77 6

50 30 11 10 8

A1

 
 
Fig. 2b: Numerical description of DPSA: Second phase 
 
Complexity analysis: The first phase is done only one 
time its complexity is calculated as follow: 
 
• Assigning n processor elements requires a time θ 

(1) 
• Sorting rows has complexity n/3logn/3. 
• So the complexity of the first phase is 
 
   T1 = n/3 logn/3 (1) 

 The complexity of the second phase is calculated 
as follow: 
 
• Sorting columns first time has complexity 3Clog3 

where C is the number of columns 
• Then the consecutive sorting operations has the 

following complexity (n-2j)log(n-2j) where j is the 
number of iterations is equal to n/3 and in each 
iteration the number of sorted elements will be 
reduced by 2 respect to the previous iteration. So, 
the time complexity of the second phase is: 

 
   T2 = 3Clog3+n/3logn/3 (2) 
 
 The complexity time is calculated as follow: 
 
   T = T1+T2 = n/3log n/3+3Clog3+ 
   n/3logn/3≤O (n/3logn/3) (3) 
 
 That means, dividing the array to 3 rows has 
reduced the complexity of Quick sort in the average 
case from O(n log n) to O(n/3 log n/3), where the 
number of comparisons is reduced to n/3. This 
reduction is significant when the number of input 
becomes large.  
 
Lemma: For a given array A of size n our algorithm 
sort A in a polynomial time and the number of steps 
needed is exactly n/3 steps. In which each element is 
sorted only once. And the resultant middle row with n/3 
element is already sorted. 
 
Proof: We will prove that the number of steps needed 
to sort n elements given our algorithm will be exactly 
n/3. For that we propose that the number of steps 
initially will be more than n/3. For example n/3+i, 
where i is an integer. 
 In our algorithm in each step after the sorting 
operation, two elements were sorted in parallel. That 
means, when the algorithm stop the number of sorted 
elements will be: 2(n/3+I) added to it the number of 
elements of the middle row that is already sorted n/3 
that means the total number of element sorted will be: 
 
    2(n/3+ i) + n/3 = n +2i 
 
 However the number of element in the array is only 
n that is a contradictory. So, the number of steps cannot 
be n/3+i. 
 From our algorithm the sorted element must joins 
one of the following two locations: the first or the last 
element in the matrix (n/3, 3) and then will be inserted 
in its location in the final array A1, that means each 
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element cannot be sorted twice, consecutively if the 
array is n elements the number of sorted elements 
cannot be n+2i and the number of steps in our 
algorithm is exactly n/3. 

 
RESULTS AND DISCUSSION 

 
 To evaluate the effectiveness of the parallelism in 
sorting an input data of size n, we have done a 
simulation using Microsoft Excel 2007, in which is 
calculated the running time of DPSA with the variation 
of input data size. Table 1 represents our results, where 
it is evident that the time needed for sorting is increased 
with the input size. However, the running time of 
DPSA is better than Quick sort for the same input size. 
Figure 1 shows that for an input size from 50-1000 
items both DPSA and Quick sort have the same 
performance. However, when the input size grows, 
DPSA out performs the performance of Quick sort. 
That means, DPSA has reduced the running time of 
Quick sort about 2.06 times and that because we have 
reduced the number of comparisons to n/3.  
 The key issue in the parallel processing of a single 
application is the speedup achieved or the efficiency of 
parallel processing. That is defined as the factor by 
which the execution time for the application changes. 
That is: 
 Speedup (accelerator) = execution time for one 
processor / execution time for P processors. 
 Based on that, the efficiency is calculated as 
follow: 

AcceleratorEfficiency = 100
No. of processors

×  

 
 The ideal values for the efficiency must be 1/p that 
means dependent on the number of processors (p) in a 
complete parallel system (Table 2). 
 Table 2 shows that for small input size the 
efficiency of DPSA is far from the ideal however, when 
the input size increases the efficiency of DPSA is near 
ideal. In[10], is proposed a generic parallel sorting 
algorithm (PRMQ) that convert an array of size n to a 
matrix r*c where n = r*c in a manner that r is an odd 
number r≥ 3 and c≥3. Figure 3 shows that the 
performance of DPS is outperforming both Quick sort 
and PRMQ for the same input size and the same 
number of processors. However, a comparison between 
the efficiency of both PRMQ and DPSA with the ideal 
efficiency (1/p) in a complete parallel system is 
explained in Table 3. Figure 4 shows that DPSA has 
efficiency near ideal in comparison to PRMQ. While  

Table. 1: The running time of Quick sort and DPSA given the input 
size 

Size (n) Quick sort DPSA Sort No. of col. 
9 285.2932501 138.3721876 3 
20 864.3856190 385.2939563 7 
50 2821.9280950 1182.0562400 17 
100 6643.8561900 2700.4458130 35 
200 15287.7123800 6058.5582930 67 
500 44828.9214200 17348.1092300 167 
1000 99657.8428500 38026.5517800 333 
1200 122745.8243000 46688.1997600 401 
1400 146316.9556000 55504.8976900 467 
1600 170301.6990000 64465.4663500 535 
1800 194648.0614000 73546.5746500 603 
2000 219315.6857000 82722.7702300 667 
 
Table 2: The efficiency of DPSA 
  Running time Running time   
  For one  for DPSA  Ideal 
Size P = n/3 processor (ms) (ms) Efficiency % 
9 3 285.29 138.37 22.9% 33.0 
20 7 864.38 385.29 11.2% 14.0 
50 17 2821.92 1182.05 4.8% 5.0 
100 34 6654.85 2700.44 2.5% 2.0 
200 67 15287.71 6058.55 0.5% 1.4 
2000 667 219315.60 82722.77 0.1% 0.1 
 
Table 3: Comparison between the efficiency of DPSA and PRMQ 

given the ideal efficiency 
Size p Efficiency PRMQ Efficiency DPSA Ideal 1/p 
50 17 8.83% 4.8% 5% 
100 34 4.67% 2.5% 2% 
200 67 2.48% 0.5% 1.4% 

 

 
 
Fig. 3: A comparison between Quicksort and DPSA 
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Table. 4: The comparison between the running times of Quick sort, 
DPSA, and PRMQ algorithms for a large data size 

 Running Running Running 
 Time Quick  Time  Time  
Size(n) sort(µs)  DPSA(µs)  PMRQ(µs) 
1*106 1.99E+05 7.12E+04 7.01E+04 
2*106 4.19E+05 1.49E+05 1.58E+05 
5*106 1.11E+06 3.95E+05 4.56E+05 
8*106 1.83E+06 6.42E+05 7.82E+05 
9*106 2.08E+06 7.36E+05 8.94E+05 
1*106 2.33E+06 8.13E+05 1.01E+06 

 

 
 
Fig. 5: Comparison between the efficiency of PRMQ 

and DPSA with the ideal values in completely 
parallel system 

 
PRMQ is less efficiency than DPSA. Table 4, show that 
for a large size of input data DPSA running is time is 
better than both Quick sort and PRMQ. 
 

CONCLUSION 
 
 In this study we have proposed a new parallel 
mechanism to sort an array of size n in a manner to 
reduce the number of comparisons. Using the 
parallelism has reduced the running time of Quick sort 
from O (nlogn) in the average case to O (n/3logn/3). In 
our work we have divided the array to a fixed number 
of rows. So, we have obtained a matrix (3, n/3) where 
the columns are sorted in parallel using P Processor 
elements. Our simulation results show that using Quick 
sort in parallel in the manner described in our algorithm 
(DPSA) has conducted to more efficient sorting in term 
of running time and number of comparisons.  
 Parallel sorting can form a basic building block to 
implement higher level combinatorial algorithms. In[3], 
is proposed a parallel sorting algorithm which moves a 
minimal amount of data over the network. Where it is 
used P processors to sort an array of size n. The 
algorithm works in four phases are: local sort, splitting, 
elements routing and merging phases. In the local 
sorting phase is applied any sorting algorithm for non 

parallel sorting to do the primary sorting in parallel in 
total cost Ts = Ts ( n/p ) where Ts is the time needed by 
the algorithm used to sort n elements with O(n/p log 
n/p) comparisons. 
 The splitting phase is divided into three sub phases 
are: single selection, simultaneous selection and 
producing indices. In the second phase, the splitting 
phase is used the binary search rather than partition, 
where the elements are ranking using O (log n) rounds. 
In the single selection sub phase is selected only one 
element with global rank r. It is defined an active range 
with contiguous sequence elements have the rank r and 
each round the active range is divided in two and 
determined the target elements. In the simultaneous 
selection sub phase is selected multiple target with 
different global rank, in this sub phase the amount of 
data being sent is O(p2 log n) over O(log n) round. In 
the third phase the elements routing phase, the elements 
are moved from the location they start out to where they 
belong. The best case if the elements are already sorted 
the worst case if the elements are reversed sorted order 
where it needs θ (n) steps. In the final phase, the 
merging phase is merged the p sorted sub vectors in a 
single sorted sequence, for this phase is used the binary 
tree where each elements moves at most  log p times 
and the total time needed will be n/p  log p. The 
total computing time is 1/p Ts (n) + O (P2 log n +p log 2 

n) + ( n/p if p not power of 2). The simulation results 
show that the communication cost for sorting algorithm 
is near linear if p<<n. In[11], is studied the problem of 
parallel sorting on a two dimensional mesh 
multicomputer architecture, where it is used a new 
parameter to evaluate the performance of the algorithm 
that is the scalability. The scalability consists on 
comparing the performance of parallel algorithms when 
the data input size and the number of processor can 
vary. That means, is the ability of the algorithm to be 
efficient by using increasing number of processors. 
QSP1

[11]. Selects an element as the pivot, then the 
number of elements bigger and smaller than the pivot is 
counted. The smaller elements are moved to the 
processors that come first in the row-major ordering. 
And larger elements are moved to the processors that 
come later in the row-major ordering. This step is 
repeated recursively until a partition fits only within 
one processor. At that time, a sequential merge sort is 
used for sorting the local elements. The computation 
time is θ (2 k (p)1/2 log p (p)1/.2 log p) = θ (n (p)1/2 log p) 
where k is constant, p is the number of processors. 
QSP2

[11],is a variant of QSP1 where the partitioning is 
done alternately in the vertical and horizontal 
dimensions in a manner that the maximum distance 
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within each partition is reduced by a factor of two after 
each set of one horizontal and one vertical partitioning. 
The overall complexity for all steps is θ (n (p) 1/2) as 
apposed to θ (n (p) 1/2 log p) for QSP1. The total number 
of comparisons in QSP1, QSP2 no more than O (n log 
n).  
 Lang Sort[12], is a parallel sorting algorithm for 
SIMD Mesh parallel computers, where each processor 
has 1 element. It is based on exchange and compares 
exchange operation, where in the exchange operations 
two elements were exchanged between two processors. 
And in the compare-exchange operations two elements 
are exchanged if and only if the elements are not in 
correct sorted order. In[14], Batcher proposed Bitonic 
sorting networks algorithm that achieves non optimal 
parallel running time O (log2 n) for sorting a network 
with n nodes. A sequence is called Bitonic sequence if 
there is a value of j such that after rotation by j 
elements, the sequence consists of monotonic 
increasing part followed by a monotonic decreasing 
part. For j ∈ {0, ……. n-1} the operation on the 
sequence { a0,……..an-1} result on {aj,…..an-1,a0 
,…………aj-1} the rotation by j mod n. 
 Bitonic sorting algorithm transforms the bitonic 
sequence into its corresponding monotonic increasing 
(or monotonic decreasing) sequence. Then it merges the 
two sorted sequence. The merging operation (Bitonic 
merge) of the two sorted sequences can be performed as 
follows: if two sequences are sorted in opposite sorting 
directions the concatenation of two sequences yields a 
bitonic sequence. Thus the result of the transformation 
into a monotonic increasing sequence corresponds to 
the results of merging the two input sequence according 
to the respective sorting direction. If the two sequences 
are sorted in the same sorting direction one of them 
would have to be reversed. The transformation of the 
sequences or the bitonic merge is done recursively. In 
adaptive bitonic sorting algorithm[13] an index j* is 
defined as follow {-n/2 …n/2-1} where for a sequence 
a of n elements after rotation of a by j* elements, all 
elements of the first half (p) are not greater than any 
element of the second part (q). Adaptive bitonic merge 
algorithm is based on Min/Max determination 
algorithm that determines the minimum as well as the 
maximum components of the bitonic sequences p and q 
in O (log n) time. Adaptive bitonic sorting algorithm is 
based on Batcher’s algorithm where the merge step is 
performed by reordering a bitonic sequence. It is an 
optimal parallel sorting algorithm, it runs in time O ( 
log2 n) parallel time with O (n/log n ) processors. GPU-
ABISort basic algorithm proposed in[15], is based on 

adaptive bitonic sorting algorithm[13], where it is used 
the stream architecture instead using Min/Max 
determination algorithm in parallel. Where the input 
data is divided into streams then the Kernel performs 
computation on entire streams or on the substream to 
produce one or more streams as output. To apply the 
technique of adaptive bitonic sorting, the random access 
write have to be replaced by stream write without 
contiguous stream blocks as large as possible. GPU-
ABISort has reduced the number of stream operations 
by a factor of O (log n) in corresponding to the adaptive 
technique implemented in adaptive bitonic sorting 
algorithm[13]. The sorting approach on stream 
processors it achieves the optimal complexity O 
((nlogn)/p). 
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