
Journal of Computer Science 4 (9): 741-743, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Maher A. Nabulsi, Department of Computer Science, Al-Zaytoonah University of Jordan, Amman
11733, Jordan

741

The Relationship between Exclusive-Or and the Unique Existential Quantifier

Maher A. Nabulsi and Ayman M. Abdalla

Department of Computer Science, Al-Zaytoonah University of Jordan,
Amman 11733, Jordan

Abstract: Problem Statement: The efficiency of computer architecture design is affected by the
components used. Establishing a relationship between exclusive-or (XOR) and the unique existential
quantifier provides alternative system implementations. Approach: Applications of XOR and the
unique existential quantifier were explained. Then, prepositional logic was used to establish the
relationship between them. Results: Different quantified assertions with two variables that use the
unique existential quantifier were represented without quantifiers by using XOR. Conclusions: The
unique existential quantifier and XOR were helpful in some computer architecture systems such as
multiplexers, decoders and bus systems. The unique existential quantifier and XOR may be used
interchangeably in some situations, but not always.

Key words: Exclusive-or, multiplexer, decoder, unique existential quantifier, universal quantifier

INTRODUCTION

 This study establishes a relationship between
exclusive-or (XOR) and the unique existential
quantifier (∃!). The representations of the unique
existential quantifier in computer architecture may be
done using any of several combinations of XOR gates,
multiplexers, decoders, AND gates and OR gates. This
is closely related to propositional logic, where computer
architecture circuits may be represented with logical
formulas.

MATERIALS AND METHODS

 Several applications in computer architecture
implicitly apply ∃!xP(x), mainly in situations that use a
bus system and need to take information from one
source while all other sources are inhibited. For
example, consider the predicate P(x) defined over the
finite set {1, 2, 3, 4}. Then, ∃!xP(x) is logically
equivalent to:

[P(1) ∧ ~P(2) ∧ ~P(3) ∧ ~P(4)] ∨
[~P(1) ∧ P(2) ∧ ~P(3) ∧ ~P(4)] ∨
[~P(1) ∧ ~P(2) ∧ P(3) ∧ ~P(4)] ∨
[~P(1) ∧ ~P(2) ∧ ~P(3) ∧ P(4)].

 This means that only one of the four possible
elements of P(x) can be true, while the others must all
be false. This idea can be seen in various applications.

 A 4×1 multiplexer (MUX), also known as a data
selector, is illustrated in Fig. 1. The value of the output;
U, is equal to one of the inputs; I0 through I4, selected
based on the controls; S0 and S1. These values are
shown in Table 1.
 A decoder with three-state buffers, seen in Fig. 2,
selects one of the data inputs; I0 through I7,
corresponding to the control inputs, D0 through D7.
These control inputs are determined by a decoder
controlled by three variables, as shown in Table 2. Only
one data input is transferred to the single output at any
given time.
 Decoders and multiplexers are important building
blocks of computer systems[4,5]. For example, a bus
system may be constructed using a system of decoders
with three-state buffers or using multiplexers. The
single output of each multiplexer (or decoder system)
represents one line in the bus. This bus has various
applications, such as the system seen in Fig. 3. In this
example, the system uses four multiplexers to choose a
4-bit word from one of four memories (A, B, C and D).
The selection lines, S0 and S1, control the multiplexers
so that one memory word is selected, as shown in Table
3.
 XOR has applications in logic programming[1,2] and
in experimental psychology[3]. In addition, XOR may
be used to implement a one-selecting variant of a
transition system[2], which may also be represented
using the unique existential quantifier.

J. Computer Sci., 4 (9): 741-743, 2008

742

Table 1: Output of multiplexer selected from the inputs
S1 S0 U
0 0 I0
0 1 I1
1 0 I2
1 1 I3

Table 2: Output of buffer system selected from the inputs
S2 S1 S0 Active output of decoder U
0 0 0 D0 I0

0 0 1 D1 I1
0 1 0 D2 I2
0 1 1 D3 I3
1 0 0 D4 I4
1 0 1 D5 I5
1 1 0 D6 I6
1 1 1 D7 I7

Table 3: Memory word selected for bus lines based on the controls
S1 S0 Selected memory word
0 0 From Memory A

0 1 From Memory B
1 0 From Memory C
1 1 From Memory D

Table 4: Truth table for the unique existential quantifier and XOR
 with two elements

P(1) P(2) ∃!xP(x) P(1) ⊕ P(2)
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

Table 5: Truth table for the unique existential quantifier and XOR
 with three elements

P(1) P(2) P(3) ∃!xP(x) P(1) ⊕ P(2) ⊕ P(3)
0 0 0 0 0

0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1

Fig. 1: A 4×1 Multiplexer

U

3 × 8
decoder

I0

I1

I2

I3

I4

I5

I6

I7

D

D
D
D

D
D

D
DS2

S1

S0

Fig. 2: A decoder with three-state buffers, where the
 outputs of the decoder (from the top down) are
 D0 through D7

Fig. 3: A memory selection system using multiplexers

 The relationship between XOR and the unique
existential quantifier can be seen by examining truth
tables. First, consider a predicate P defined over a finite
universe of one variable (x) with two elements {1, 2}.
As seen in Table 4, ∃!xP(x) is equivalent to P(1) ⊕
P(2). However, with a finite universe of three elements
{1, 2, 3}, ∃!xP(x) is not equivalent to P(1) ⊕ P(2) ⊕
P(3). As seen in Table 5, they do not have the same
value when all three elements are true. Furthermore,
∃!xP(x) is not equivalent to XOR with a number of
elements of four or more. This is because XOR is an
odd function that has a value of 1 when there is an odd
number of elements (possibly three or more) with the
value 1. The unique existential quantifier, on the other
hand, has a value of 1 only when there is exactly one
element with the value 1.
 With a function of two variables; x and y, and a
universe of two elements; {1, 2}, quantified assertions
can be represented using XOR. For example, consider
the following two assertions.

∀x∃!yP(x,y) ⇔ ([P(1,1) ∧ ~P(1,2)] ∨ [P(1,2)

∧ ~P(1,1)]) ∧ ([P(2,1) ∧ ~P(2,2)]
∨ [P(2,2) ∧ ~P(2,1)]),

∃!y∀xP(x,y) ⇔ ([P(1,1) ∧ P(2,1)] ∧ ∼[P(1,2)
∧ P(2,2)]) ∨ ([P(1,2) ∧ P(2,2)]
∧ ∼[P(1,1) ∧ P(2,1)]).

J. Computer Sci., 4 (9): 741-743, 2008

743

 Since A ⊕ B is equivalent to (~A∧B)∨(A∧~B), the
above assertions can be written as:

∀x∃!yP(x,y) ⇔[P(1,1)⊕P(1,2)] ∧ [P(2,1)⊕P(2,2)],
∃!y∀xP(x,y) ⇔[P(1,1)∧P(2,1)] ⊕ [P(1,2)∧P(2,2)].

RESULTS

The values of ∃!xP(x) and XOR are equivalent for

two elements, but not for three or more elements.
The quantified assertions ∀x∃!yP(x,y) and

∃!y∀xP(x,y) on the universe of two elements can be
written through XOR and AND functions because the
universal quantifier (∀) is equivalent to AND, and the
unique existential quantifier is equivalent to XOR.

DISCUSSION

XOR and the unique existential quantifier are
interchangeable for two elements. This helps redesign
some architecture systems to increase their efficiency.
In addition, some logical equations that use quantified
assertions can be simplified using AND and XOR.

The idea of the unique existential quantifier is
clearly seen in a decoder where only one output is
active at any given time, while all other outputs are
inactive. The decoder is a part of the multiplexer, and
therefore, the idea of the unique existential quantifier
can be used in different applications that use decoders
and multiplexers. This includes multiple processor and
multiple memories connected to bus systems.

CONCLUSIONS

 The relationship between ∃!xP(x) and XOR was
discussed, and some applications of ∃!xP(x) in
computer architecture were presented.
 There are several hardware applications for
∃!xP(x) in computer architecture, such as in a
multiplexer, in a decoder with three state buffers and in
a data bus with multiple memories.

REFERENCES

1. Cho, S.J., U.S. Choi, Y.H. Hwang and H.D. Kim,

2008. Design of new XOR-based hash functions
for chache memories. Computers and Math. Appl.,
55: 2005-2011. DOI:
10.1016/j.camwa.2007.07.008

2. Fecher, H. and H. Schmidt, 2008. Comparing
disjunctive modal transition systems with an one-
selecting variant. J. Logic and Algebraic
Programming, 77: 20-39. DOI:
10.1016/j.jlap.2008.05.003

3. Grand, C. and R.C. Honey, 2008. Solving XOR. J.
Exp. Psy. Anim. Behavior Process., 34: 486-493.
http://www.ncbi.nlm.nih.gov/pubmed/18954232

4. Khan, M., 2007. Reversible realization of
quaternary decoder, multiplexer, and demultiplexer
circuits. Eng. Lett., 15: 203-207.
http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=27952764&site=ehost-live

5. Rakes, C.D., 1998. CMOS ICs decoders and
multiplexers. Popular Electr., 15: 66-49.
http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=232579&site=ehost-live

