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Abstract: Problem Statement: The efficiency of computer architecture design is affected by the 
components used. Establishing a relationship between exclusive-or (XOR) and the unique existential 
quantifier provides alternative system implementations. Approach: Applications of XOR and the 
unique existential quantifier were explained. Then, prepositional logic was used to establish the 
relationship between them. Results: Different quantified assertions with two variables that use the 
unique existential quantifier were represented without quantifiers by using XOR. Conclusions: The 
unique existential quantifier and XOR were helpful in some computer architecture systems such as 
multiplexers, decoders and bus systems. The unique existential quantifier and XOR may be used 
interchangeably in some situations, but not always. 
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INTRODUCTION 

 
 This study establishes a relationship between 
exclusive-or (XOR) and the unique existential 
quantifier (∃!). The representations of the unique 
existential quantifier in computer architecture may be 
done using any of several combinations of XOR gates, 
multiplexers, decoders, AND gates and OR gates. This 
is closely related to propositional logic, where computer 
architecture circuits may be represented with logical 
formulas. 
 

MATERIALS AND METHODS 
 
 Several applications in computer architecture 
implicitly apply ∃!xP(x), mainly in situations that use a 
bus system and need to take information from one 
source while all other sources are inhibited. For 
example, consider the predicate P(x) defined over the 
finite set {1, 2, 3, 4}. Then, ∃!xP(x) is logically 
equivalent to: 
 

[P(1) ∧ ~P(2) ∧ ~P(3) ∧ ~P(4)] ∨ 
[~P(1) ∧ P(2) ∧ ~P(3) ∧ ~P(4)] ∨ 
[~P(1) ∧ ~P(2) ∧ P(3) ∧ ~P(4)] ∨ 
[~P(1) ∧ ~P(2) ∧ ~P(3) ∧ P(4)]. 

  
 This means that only one of the four possible 
elements of P(x) can be true, while the others must all 
be false. This idea can be seen in various applications. 

 A 4×1 multiplexer (MUX), also known as a data 
selector, is illustrated in Fig. 1. The value of the output; 
U, is equal to one of the inputs; I0 through I4, selected 
based on the controls; S0 and S1. These values are 
shown in Table 1. 
 A decoder with three-state buffers, seen in Fig. 2, 
selects one of the data inputs; I0 through I7, 
corresponding to the control inputs, D0 through D7. 
These control inputs are determined by a decoder 
controlled by three variables, as shown in Table 2. Only 
one data input is transferred to the single output at any 
given time. 
 Decoders and multiplexers are important building 
blocks of computer systems[4,5]. For example, a bus 
system may be constructed using a system of decoders 
with three-state buffers or using multiplexers. The 
single output of each multiplexer (or decoder system) 
represents one line in the bus. This bus has various 
applications, such as the system seen in Fig. 3. In this 
example, the system uses four multiplexers to choose a 
4-bit word from one of four memories (A, B, C and D). 
The selection lines, S0 and S1, control the multiplexers 
so that one memory word is selected, as shown in Table 
3. 
 XOR has applications in logic programming[1,2] and 
in experimental psychology[3]. In addition, XOR may 
be used to implement a one-selecting variant of a 
transition system[2], which may also be represented 
using the unique existential quantifier. 
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Table 1: Output of multiplexer selected from the inputs 
S1 S0 U 
0 0 I0 
0 1 I1 
1 0 I2 
1 1 I3 
  
Table 2: Output of buffer system selected from the inputs 
S2 S1 S0 Active output of decoder U 
0 0 0 D0 I0 

0 0 1 D1 I1 
0 1 0 D2 I2 
0 1 1 D3 I3 
1 0 0 D4  I4 
1 0 1 D5  I5 
1 1 0 D6  I6 
1 1 1 D7  I7 
 
Table 3: Memory word selected for bus lines based on the controls 
S1 S0 Selected memory word 
0 0 From Memory A 

0 1 From Memory B 
1 0 From Memory C 
1 1 From Memory D 
  
Table 4: Truth table for the unique existential quantifier and XOR
 with two elements 

P(1) P(2) ∃!xP(x) P(1) ⊕ P(2) 
0 0 0 0 
0 1 1 1 
1 0 1 1 
1 1 0 0 
 
Table 5: Truth table for the unique existential quantifier and XOR
 with three elements 

P(1) P(2) P(3) ∃!xP(x) P(1) ⊕ P(2) ⊕ P(3) 
0 0 0 0 0 

0 0 1 1 1 
0 1 0 1 1 
0 1 1 0 0 
1 0 0 1 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 0 1 
 

 
 

Fig. 1: A 4×1 Multiplexer 
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Fig. 2: A decoder with three-state buffers, where the 
  outputs of the decoder (from the top down) are
  D0 through D7 
 

 
 

Fig. 3: A memory selection system using multiplexers 
 
 The relationship between XOR and the unique 
existential quantifier can be seen by examining truth 
tables. First, consider a predicate P defined over a finite 
universe of one variable (x) with two elements {1, 2}. 
As seen in Table 4, ∃!xP(x) is equivalent to P(1) ⊕ 
P(2). However, with a finite universe of three elements 
{1, 2, 3}, ∃!xP(x) is not equivalent to P(1) ⊕ P(2) ⊕ 
P(3). As seen in Table 5, they do not have the same 
value when all three elements are true. Furthermore, 
∃!xP(x) is not equivalent to XOR with a number of 
elements of four or more. This is because XOR is an 
odd function that has a value of 1 when there is an odd 
number of elements (possibly three or more) with the 
value 1. The unique existential quantifier, on the other 
hand, has a value of 1 only when there is exactly one 
element with the value 1. 
 With a function of two variables; x and y, and a 
universe of two elements; {1, 2}, quantified assertions 
can be represented using XOR. For example, consider 
the following two assertions. 
 
∀x∃!yP(x,y) ⇔ ([P(1,1) ∧ ~P(1,2)] ∨  [P(1,2) 

∧ ~P(1,1)]) ∧ ([P(2,1) ∧ ~P(2,2)] 
∨  [P(2,2) ∧ ~P(2,1)]), 

∃!y∀xP(x,y)  ⇔ ([P(1,1) ∧ P(2,1)] ∧ ∼[P(1,2) 
∧ P(2,2)]) ∨ ([P(1,2) ∧ P(2,2)] 
∧  ∼[P(1,1) ∧ P(2,1)]). 
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 Since A ⊕ B is equivalent to (~A∧B)∨(A∧~B), the 
above assertions can be written as: 
 

∀x∃!yP(x,y) ⇔[P(1,1)⊕P(1,2)] ∧ [P(2,1)⊕P(2,2)], 
∃!y∀xP(x,y) ⇔[P(1,1)∧P(2,1)] ⊕ [P(1,2)∧P(2,2)]. 

 
RESULTS 

 
The values of ∃!xP(x) and XOR are equivalent  for 

two elements, but not for three or more elements.  
The quantified assertions ∀x∃!yP(x,y) and 

∃!y∀xP(x,y) on the universe of two elements can be 
written through XOR and AND functions because the 
universal quantifier (∀) is equivalent to AND, and the 
unique existential quantifier is equivalent to XOR. 
 

DISCUSSION 
 

XOR and the unique existential quantifier are 
interchangeable for two elements. This helps redesign 
some architecture systems to increase their efficiency. 
In addition, some logical equations that use quantified 
assertions can be simplified using AND and XOR. 

The idea of the unique existential quantifier is 
clearly seen in a decoder where only one output is 
active at any given time, while all other outputs are 
inactive. The decoder is a part of the multiplexer, and 
therefore, the idea of the unique existential quantifier 
can be used in different applications that use decoders 
and multiplexers. This includes multiple processor and 
multiple memories connected to bus systems. 
 

CONCLUSIONS 
 
 The relationship between ∃!xP(x) and XOR was 
discussed, and some applications of ∃!xP(x) in 
computer architecture were presented. 
 There are several hardware applications for 
∃!xP(x) in computer architecture, such as in a 
multiplexer, in a decoder with three state buffers and in 
a data bus with multiple memories. 
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