
Journal of Computer Science 5 (4): 290-296, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: P. Sakthivel, Department of Electronics and Communication Engineering, Anna University Chennai,
Chennai 600025, India

290

Optimization of Test Scheduling and Test Access for ITC-02 SOC

Benchmark Circuits

1P. Sakthivel, 2R. Delhi Babu and 3P. Narayanasamy
1Department of Electronics and Communication Engineering,

Anna University Chennai, Chennai 600025, India
2Department of Computer Science and Engineering,

Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110, India
3Department of Computer Science and Engineering, Anna University Chennai,

Chennai 600025, India

Abstract: Problem statement: This study presented the optimized test scheduling and test access for
ITC-02 SOC benchmark circuits using genetic algorithm. In the scheduling procedure of SOC,
scheduling problem was formulated as a sequence of two problems and solved. Approach: Test access
mechanism width was partitioned into two and three partitions and the applications of test vectors and
test vector assignments for different partitions were scheduled using different operators of genetic
algorithm. Results: The test application time was calculated in terms of CPU time cycles for two and
three partitions of twelve ITC-02 SOC benchmark circuits and the results were compared with the
integer linear programming approach. Conclusion: The results showed that the genetic algorithm
based approach gives better results.

Key words: System-on-chip, test scheduling, test access mechanism, integer linear programming,

genetic algorithm, test wrapper

INTRODUCTION

 In many of the earlier research studies[2,3,5,9] of the
test scheduling for the SOC benchmark circuits[15],
scheduling was done using functional bus as the medium
for test vector transportation and buffers are inserted
between each core to store the test vectors and applying
it to each core as per the given constraints and obtained
schedule. The buffer size is the hardware overhead and
considered as a constraint in the test scheduling. The
CLP method[12] was used to schedule the test application.
 In this research study, the hardware overhead is not
considered as a constraint. Since cores in an SOC are not
directly accessible via chip inputs and outputs, special
access mechanisms are required to test them at the
system level. For each core in the SOC, a Test Access
Mechanism (TAM) is built around each core and test
vectors are applied through these TAMs. There is
conceptual test access architecture for embedded cores[11]
with the source, sink and test access mechanism. The
TAM is used to deliver test vector from the source to the
cores and also to deliver responses from cores to the sink.
Test scheduling for various widths of TAM and various
number of partitions are carried out.

 The general problem of SOC test integration[7,10]
includes the design and optimization of wrapper and
TAM architectures and test scheduling. Test wrappers
form the interface between cores and TAM. TAM
transport test data between SOC pins and test wrappers.
Test scheduling determines the order in which tests are
applied. The focus is on wrapper and TAM co-design to
minimize testing time under TAM width constraints[16,17].
 In a core based design approach[9], a set of cores is
integrated into a system using UDL and
interconnections. In this way, complex systems can be
efficiently developed. However, the complexity in the
system leads to high-test data volumes. So, the design
and optimization of test solution are very much
important for any test. Hence the following two
independent problems are considered:

• Design of an infrastructure for the transportation

of test data in the system
• Design of a test schedule to minimize test time

 The testable units in an SOC design are the cores,
the UDL and the interconnections[8]. The cores are

J. Computer Sci., 5 (4): 290-296, 2009

291

usually delivered with predefined test methods and test
sets, while the test sets for UDL and interconnections
are to be generated prior to test scheduling and TAM
Design. The workflow when developing an SOC test
solution can mainly be divided into two consecutive
parts[10,11] namely (i) An early design space exploration
and (ii) An extensive optimization of the final solution.
During the process, conflicts and limitations must be
carefully considered. For instance, tests may be in
conflict with each other due to the sharing of test
resources and power consumption. Otherwise the
system may be damaged during test. Further, test
resources such as external testers support a limited
number of scan-chains and limited memory.
 Research has been going on in developing
techniques for test scheduling, TAM design and
testability analysis[5,6]. In this study, a new technique is
proposed using Genetic Algorithm for optimizing the
test vector for Globally Asynchronous Locally
Synchronous (GALS) SOC with the objective to
minimize the test application time. The aim of the
proposed approach is to reduce the gap between the
design space exploration and the extensive optimization
that is to produce a high quality solution in respect of
test time and TAM at a relatively low computational
cost. Earlier research[14] has studied wrapper design or
TAM optimization as independent problems. They have
not addressed the issue of sizing the TAM to minimize
SOC testing time. Alternative approaches that combine
TAM design with test scheduling do not address the
problem of wrapper design and its relationship to TAM
optimization[18,19].
 The GA based approach to solve the problems of
test scheduling optimization for wrapper design and
TAM is presented here. This approach provides
improved results, comparable to the existing ILP
approach.
 The study related to our approach and various
issues related to SOC testing and test scheduling
techniques, Test vector optimization and test scheduling
framework based on genetic algorithm, the
experimental results for the 12 SOC benchmark circuits
of ITC-02 are presented.

MATERIALS AND METHODS

Soc test scheduling: The basic problem in test
scheduling[4] is to assign a start time for all tests. In
order to minimize the test application time, tests are
scheduled as concurrent as possible. However, various
types of constraints must be considered. A test to be
scheduled consists of a set of test vectors produced or
stored at a test source. The test response from the test is

evaluated at a test sink. When applying a test, a test
conflict may occur, which must be considered during
the scheduling process. For instance, often a testable
unit is tested by several test sets. If several tests are
used for a testable unit, only one test can be applied to
the testable unit at a time.
 The tests are scheduled in sessions where tests at
cores placed physically close to each other are grouped
in the same test session. In a fully BISTed system[2],
each core has its dedicated test source and test sink and
there might not be any conflicts among tests. However,
in general, conflicts among tests may occur during
testing.
 The test-application time can be minimized by
scheduling the execution of the test sets as concurrently
as possible. The basic idea in test scheduling is to
determine when each test set should be executed. The
main objective is to minimize the test application time.

Proposed test access mechanism: The test access
mechanism takes care of chip test pattern transport[13,14].
It can be used to transport test stimuli from the test
pattern source to the core under test and to transport test
responses from the core under test to the test pattern
sink. The TAM is, by definition, implemented on the
chip.
 The wrapper and TAM are structured into the
following two problems in the order of increasing
complexity[1].

PA: To determine the test bus assignment to each cores.
The TAM is partitioned into different test buses and the
problem here is to identify the bus assignment to each
core in the SOC.

PPA: To determine a Partition of the total TAM width
among given number of TAM and to determine the test
bus assignment to each core (PA). The size of the TAM
is given and the TAM should be divided into many
partitions according to the requirement. The number of
partition required should be obtained first and it will be
given as an input to the problem (PA). Then the problem
(PA) will determine the test bus assignment to each core
in the SOC.

Genetic Algorithm Based Problem Formulation for
PA: The problem (PA) is formulated in such a way that
the Genetic Algorithm is used to optimize the solution.
In the formulation of PA, number of cores (N) in SOC
and number of test buses (B) of TAM of widths w1, w2,
w3, …, wB are considered. The main objective is to
determine the assignment of cores to test buses of TAM
such that the assignment is used for test application for

J. Computer Sci., 5 (4): 290-296, 2009

292

SOC and the total testing time is minimized.
Distributing the cores of SOC equally among test buses
of TAM and taking the permutations of cores of SOC
assigned to test buses of TAM can obtain initial
populations for Genetic Algorithm. Then the GA
(Selection, Crossover and Mutation) is applied on the
initial population to generate new chromosomes
(children). The solution to the above problem obtained
as a set of chromosome (child) consists of integers in
the range 1 to B. Each value in the chromosome set
represents the core assignment to the test bus. The ‘i’th
element of the chromosome set represents the bus
number of TAM to which core ‘i’ of SOC is assigned.

Genetic algorithm based problem formulation for
PPA: The problem (PPA) is formulated as a sequence of
two problems both of which is solved using Genetic
Algorithm. In the formulation of PPA, number of cores
(N) of SOC and number of test Buses (B) of TAM of
widths w1, w2, w3, …, wB are considered. The
objectives are (i) To determine the distribution of the
total TAM width among the given number of TAM and
(ii) To determine the assignment of cores of SOC to the
test buses of TAM. A chromosome in our approach
consists of two parts. (i) The assignment of cores of
SOC to test buses of TAM which is a set of integer
numbers with ‘i’th element representing the test bus
number for which the core ‘i’ of SOC is assigned. (2)
The chromosome is the bus width distribution of each
test bus of TAM, which is also set of integer numbers
where the total of all the integers is equal to the size of
TAM. The ‘j’th entry of the set represents width of the
test bus ‘j’, such that sum of these widths is equal to
TAM width.

Function for total time: Total time is the time required
to test all the cores in the system, which is given below.
If the core ‘i’ of SOC is assigned to test bus ‘j’ of the
TAM, then the testing time for core ‘i’ of SOC is given
by:

Ti(Wj) = (1 + max{Lwi, Lwo})* V ni+min{Lwi, Lwo}

Where:
Ti = Test application time of core “i” in SOC
Wj = Width of test bus ‘j’
Lwi = Length of the longest wrapper scan-in chain
Lwo = Length of the longest wrapper scan-out chain
Vni = Number of test vector for core ‘i’

 Total test cycles needed to test all the cores in the
SOC is:

T = {∑Ti(Wj) * bij}, 1< = i < = N and 1< = j< = B

where, bij a binary variable defined as follows:

bi j = 1 if core ‘i’ is assigned to bus ‘j’
 0 otherwise

 The above problem is NP-Hard problem[1].
Therefore, efficient heuristics and other techniques are
needed for large problem instances. In this study,
genetic algorithm based approach to effectively solve
these problems namely PA and PPA are presented.

Test vector optimization based on genetic algorithm:
Genetic Algorithms can effectively be used to solve the
search and optimization problems. The genetic
algorithm that is used for generating test sequences for
SOC is described. First, the basic idea of the method is
given. Then the representation of test conditions, the
objective function and some insights into the parameter
settings of the genetic algorithm are presented. GAs
consist of population of solutions called chromosomes.
Here the chromosomes are an encoding of the solution
to a given problem. The algorithm proceeds in steps
called generations. During each generation, a new
population of individuals is created from the old
population by applying genetic operators. Given old
generation, new generation is built, according to the
genetic operations such as selection, 1-point crossover,
2-point crossover, uniform crossover, weight based
crossover, 1-point mutation, 2-point mutation and
mutation with neighbor.

Selection: This operator selects the individuals from
the old generation. The fitness of an individual
determines its chances to reproduce. The individual
with a better performance possesses higher chances of
getting selected. For each parent, two elements are
chosen randomly. Only these elements are evaluated by
the objective function. The element with higher ranking
is selected. Thus, for the selection of two parents only
four elements are evaluated instead of the whole
population. Various selection schemes such as roulette
wheel selection, stochastic universal selection and
binary tournament selection with and without
replacement are used depend upon the requirement. The
objective of the GA is to converge to an optimal
individual and selection pressure is the driving force
which determines the rate of converges. A high
selection pressure will cause the population to converge
quickly, possibly at the expense of a suboptimal result.
The GA selects individual with probability proportional
to their fitness.

J. Computer Sci., 5 (4): 290-296, 2009

293

Crossover: Once two chromosomes are selected, the
crossover operator is used to generate two offspring.
The details about 1-point crossover, 2-point crossover,
uniform crossover and weight-based crossover
operators are illustrated in the Chapter 3. Crossover
combines the schemata or building blocks from two
different solutions in various combinations. Smaller
good building blocks are converted into progressively
larger good building blocks over time until a
completely good solution is found.

Point mutation: The 1-point Mutation produces
incremental random changes in the offspring generated
through crossover. Mutation may be done by flipping a
bit. One new element C from a parent P is constructed
by copying the whole element and changing a bit at a
randomly chosen position.

Point mutation: The 2-point mutation is performing 1-
point Mutation two times on the same chromosome one
after the other. The values of two bits are changed by
the 2-point mutation.

Mutation with neighbor: 1-pont Mutation is
performed at two adjacent positions on the same
element instead of randomly selected positions as in 2-
point mutation. The values of two adjacent bits are
changed by the mutation with neighbor operation. In
the Genetic Algorithm mutation serves the crucial role
of replacing the gene values lost from the population
during the selection process so that they can be tried in
a new context or of providing the gene values that were
not present in the initial population.

Pseudo code for the proposed genetic algorithm
based method: The pseudo code of the proposed GA
based algorithm is shown in the Fig. 1.

Fig. 1: The GA based test vector optimization algorithm

RESULTS

 The experiments were conducted for the ITC-02
SOC benchmark circuits. The results were obtained for
each of the benchmark circuits by partitioning TAM
width into two and three partition. W is the width of
Test Access Mechanism. w1, w2 and w3 are the size of
the partition 1, partition 2 and partition 3. The vector
assignment in the Table 1 is the information about the
bus assignment (“1” in the “ith” position indicates the
“bus 1” or “partition 1” of size “w1” is assigned to the
“ith” core for the transportation of test vector) for test
vector transportation of each core in the SOC. ILP
cycles are the result of the existing algorithm, which
utilized the integer linear programming techniques to
solve the SOC test scheduling problem. GA cycles are
the result of the proposed experiment, which utilizes
Genetic algorithm to solve the problem, In the Table 1,
the results of ILP and GA for SOC u226 is presented for
the partition size of 16, 24, 32, 40, 48, 56 and 64 bits.
The TAM is partitioned into 2 parts. The optimized
scheduling of test vectors are obtained for the proposed
GA-based method and the required amount of test time
that is the number of CPU cycles are obtained and
tabulated. These values are also plotted for each partition
against the number of CPU cycles in the Fig. 2. From the
results and comparison graph, it is observed that the
amount of CPU cycle required for the GA-based method
is relatively less than the ILP-based method. Further, if
the size of the TAM gets increased, the amount of time
required for test application also gets reduced.

Table 1: Results of ILP versus proposed GA approach for SOC u226

with two partitions
W W1+w2 Vector assignment ILP cycles GA cycles
16 8+8 1,1,2,1,2,2,1,1,2 38400 36340
24 11+13 2,2,1,1,2,2,1,2,1 38324 35942
32 12+20 1,1,1,1,2,2,2,2,2 37430 35690
40 18+22 2,2,2,1,1,1,1,1,2 37112 34987
48 24+24 2,1,1,2,1,1,1,1,2 36985 34439
56 30+26 1,1,1,2,2,2,1,1,1 35876 33856
64 48+16 2,1,1,2,1,1,2,1,1 34678 32560
Average 36972 34830

Fig. 2: Comparison of ILP with GA for SOC with two

partitions

J. Computer Sci., 5 (4): 290-296, 2009

294

Table 2: Results of ILP versus proposed GA Approach for SOC
u226 with three partitions

W w1+w2+w3 Vector assignment ILP cycles GA cycles
16 5+5+6 1,2,3,1,1,1,1,3,2 34439 31234
24 8+8+8 1,1,1,2,2,2,3,3,3 32567 29345
32 10+12+10 2,3,1,1,2,3,3,2,1 30456 27430
40 15+15+10 3,3,2,2,1,3,2,1,1 29876 26345
48 15+25+8 2,3,2,1,1,3,3,1,1 28976 25987
56 20+12+24 2,3,1,1,3,2,1,3,3 28123 25234
64 32+16+16 1,3,2,2,1,3,3,2,1 27154 24126
Average 30227 27100

Fig. 3: Comparison of ILP with GA for SOC with three

partitions

 In the Table 2, the results of ILP and GA for SOC
u226 is presented for the partition size of 16, 24, 32, 40,
48, 56 and 64 bits. The TAM is partitioned into 3 parts.
The optimized scheduling of test vectors are obtained
for the proposed GA-based method and the required
amount of test time that is the number of CPU cycles
are obtained and tabulated.
 These values are also plotted for each partition
against the number of CPU cycles in the Fig. 3. From
the results and comparison graph, it is observed that the
amount of CPU cycle required for the GA-based
method is relatively less than the ILP-based method.
Further, if the size of the TAM gets increased, the
amount of time required for test application gets
reduced. Another important result obtained from the
Table 1 and 2 is, if the number of partition gets
increased, the amount of test application time gets
reduced.
 In both the cases of GA based approach for SOC
u226 with two partitions and GA based approach for
SOC u226 with three partitions; the amount of test
application time gets reduced.

DISCUSSION

 Genetic Algorithms work by evolving a population
of individuals over a number of generations. A fitness
value is assigned to each individual in the population,
where the fitness computation depends on the application.

Table 3: Average CPU Cycles for benchmark circuit with 2 partitions
 Average CPU cycles

Circuit ILP GA
f2126 22786 18708
d695 25419 21699
q12710 27179 25084
h953 34394 32269
a586710 36613 33507
u226 36972 34830
d281 43770 39716
g1023 53274 49188
p34392 56482 52037
p22810 58643 54330
t512505 62452 56666
p93791 66433 61301

In the GA based test scheduling and TAM optimization,
the initial population is randomly generated over a
number of generations. The fitness function
“improvement in the total test application time” is
checked for each generation. The fitness function is not
satisfied, the individuals are selected from the
population for reproduction, crossed to generate new
individuals and the new individuals are mutated to the
population repeatedly until the fitness function is
satisfied. During each generation of the Genetic
Algorithm, the new individual may completely replace
the old individuals in the population or new individual
may be combined with the old individuals in the
population. Since selection is biased toward more
highly fit individuals, the average fitness of the
population next. The fitness of the best individual is
also chosen as a solution after several generations. The
genetic algorithm uses two basic processes
“inheritance” or the “passing features from one
generation to the next” and “competition” or “survival
of the fittest” which results in weeding out the bad
features from individuals in the population. Due to
these reasons, the GA based method produces improved
results for the problems (PA) and (PPA).
 The number of CPU cycles is obtained for the ITC-
02 SOC Benchmark circuits given in[15] with the TAM
width as 16, 24, 32, 40, 48, 56 and 56 bits and by
dividing the TAM into 2 and 3 partitions. The average
values of CPU cycles are obtained for GA based method
and tabulated in the Table 3 and 4 for 12 ITC-SOC
benchmark circuits for the TAM partition of 2 and 3
respectively along with the CPU cycles of ILP method.
The comparison graph for the GA based method and ILP
based method are shown in the Fig. 4 and 5 respectively.
For all the circuits, the GA based method outperforms
the ILP based method. The number of CPU cycle is
relatively reduced for 3-partitions than 2-partitions of
TAM. This is due to the faster and parallel transportation
of test vector when the partition of TAM gets increased.

J. Computer Sci., 5 (4): 290-296, 2009

295

Table 4: Average CPU cycles for benchmark circuit with 3 partitions
 Average CPU cycles
 --
Circuit ILP GA
f2126 19581 15450
q12710 24508 21933
d695 25070 20069
u226 30227 27100
h953 30382 27426
a586710 34135 30273
d281 37134 33384
g1023 49457 45373
p34392 56050 50277
p22810 56600 51883
t512505 57616 52114
p93791 61357 53893

Fig. 4: Average CPU cycles for benchmark circuit with

2 partitions

Fig. 5: Average CPU cycles for benchmark circuit with

3 partitions

When the numbers of partitions of TAM are increased,
the possibility for parallel transportation of test vectors
also increased and it naturally reduces the total test
application time.

CONCLUSION

 The investigation of the results show that the GA
based approach produces the required partition of TAM
width and vector assignment for the cores in SOC, such

that the testing time is less than the ILP based approach.
The experimental results are given for twelve ITC-02
SOC Benchmark circuits with two partitions and three
partitions. The result gives good approximation
compared to ILP within a few generations with
acceptable processor times.
 Further, the comparison of results of 12 ITC-02
SOC benchmarks circuits in Table 4 shows that the test
application time for circuit increases with the
complexity of the circuit in both the ILP and GA-based
methods. The GA based-method takes less amount of
test application time. This establishes the suitability of
this problem to be solved by genetic algorithm. This
technique can be applied to all the SOC benchmarks
with more number of TAM widths and partitions. The
results of proposed GA-based approach are found to be
better than the results of the ILP methods available in
the literature.

REFERENCES

1. Aho, A.V., J.E. Hopcroft and J.D. Ullman, 2004.

The Design and Analysis of Computer Algorithms:
Pearson Education. New Delhi, ISBN: 10:
0201000296.

2. Chandra, A. and K. Chakrabarty, 2003. A unified
approach to reduce SOC test data volume, scan
power and testing time. IEEE. Trans. Comput.
Aided Des. Integrat. Circ. Syst., 22: 352-361. DOI:
10.1109/TCAD.2002.807895

3. Chandramouli, R. and S. Pateras, 1996. Testing
systems on a chip. Proceedings of the IEEE
Spectrum, Nov. 1996, IEEE Press Piscataway,
New Jersey, USA., pp: 42-47.

 http://portal.acm.org/citation.cfm?id=277234
4. Crouch, A.L., 1999. Design-for-Test for Digital

IC’s and Embedded Core Systems. Prentice Hall
PTR, New Jersey, ISBN: 0-13-084827-1.

5. Fabrizio, F., F. Franco, S. Donatella, M. Enrico and
P. Massimo, 1997. Testing core-based systems: A
symbolic methodology. Proceedings of the IEEE
Design and Test of Computers, Oct.-Dec. 1997,
IEEE Computer Society, USA., pp: 69-77.
http://doi.ieeecomputersociety.org/0.110910.1109/
54.632883

6. Gerez, S.H., 2004. Algorithms for VLSI Design
Automation. John Wiley and Sons, New Delhi,
ISBN: 81-265-0837-X, pp: 348.

7. Goldberg, D.E., 2003. Genetic Algorithms in
Search, Optimization and Machine Learning.
Pearson Education, New Delhi, ISBN: 10:
0201157675.

J. Computer Sci., 5 (4): 290-296, 2009

296

8. Gupta, R.K. and Y. Zorian, 1997. Introducing core-
based system design. Proceeding of the IEEE
Design and Test of Computers, Oct.-Dec. 1997,
IEEE Computer Society, USA., pp: 15-25.
http://doi.ieeecomputersociety.org/10.110910.1109
/54.632877

9. Iyengar, V., K. Chakrabarty and E.J. Marinissen,
2003. Efficient test access mechanism optimization
for system-on-chip. IEEE. Trans. Comput. Aided
Des. Integrat. Circ. Syst., 22: 635-642.
http://ieeexplore.ieee.org/iel5/43/26910/01196206.
pdf?arnumber=1196206

10. Julien, P., E. Larsson, Z. Peng, M.L. Flottes and
R. Bruno, 2003. An efficient approach to SOC
wrapper design, TAM configuration and test
scheduling. Proceedings of the IEEE European
Test Workshop, May 25-28, Maastricht, The
Netherlands, pp: 117-122.
http://portal.acm.org/citation.cfm?id=943229

11. Koranne, S., 2004. A note on system-on-chip test
scheduling formulation. J. Elect. Test Theor.
Applied, 20: 309-313.
http://portal.acm.org/citation.cfm?id=993054

12. Larsson, A., E. Larsson, E. Petru and Z. Peng,
2005. SOC Test scheduling with test set sharing
and broadcasting. Proceedings of the IEEE Asian
Test Symposium, Dec. 18-21, IEEE Xplore Press,
Kolkata, pp: 162-167.
http://ieeexplore.ieee.org/iel5/10525/33306/015754
24.pdf?isnumber=33306

13. Larsson, E. and Z. Peng, 2002. An integrated
framework for the design and optimization of SOC
test solutions. J. Elect. Test Theor. Applied,
18: 385-400.

 http://portal.acm.org/citation.cfm?id=608939

14. Larsson, E., K. Arvidsson, H. Fujiwara and Z. Peng,
2004. Efficient test solutions for core-based
designs. IEEE. Trans. Comput. Aided Des.
Integrat. Circ. Syst., 23: 758-774. DOI:
10.1109/TCAD.2004.826560

15. Marinissen, E.J., V. Iyengar and K. Chakrabarthy,
2002. A set of benchmarks for modular testing of
SOCs. Proceedings of the IEEE International Test
Conference, (ITC’02), IEEE Xplore Press,
Baltimore, pp: 519-528.
http://ieeexplore.ieee.org/iel5/8073/22329/0104180
2.pdf

16. Mazumder, P. and E.M. Rudnick, 2003. Genetic
Algorithms for VLSI Design, Layout and Test
Automation. Pearson Education, New Delhi, ISBN:
10: 0-13-011566-5.

17. Merrill, H. and J.A. Rowson, 1996. Blocking in a
system on a chip. IEEE. Spectrum, 33: 35-41. DOI:
10.1109/6.542273

18. Ravi, S., L. Ganesh and N.K. Jha, 2001. Testing of
core-based systems-on-a-chip. IEEE. Trans.
Comput. Aided Des. Integrat. Circ. Syst.,
20: 426-439.

 http://ieeexplore.ieee.org/iel5/43/19726/00913760.pdf
19. Sehgal, A., V. Iyengar and K. Chakrabarty, 2004.

SOC test planning using virtual test access
architectures. IEEE. Trans. Very Large Scale
Integrat. Syst., 12: 1263-1275. DOI:
10.1109/TVLSI.2004.834228

