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Abstract: Software for safety-critical systems has to deigth the hazards identified by safety analysis
in order to make the system safe, risk-free ands&fe. Software safety is a composite of many
factors.Problem statement; Existing software quality models like McCall's aBibehm’s and 1SO
9126 were inadequate in addressing the softwaetysafsues of real time safety-critical embedded
systems. At present there does not exist any stdrfdamework that comprehensively addresses the
Factors, Criteria and Metrics (FCM) approach of thelity models in respect of software safety.
Approach: We proposed a new model for software safety basethe McCall's software quality
model that specifically identifies the criteria mEsponding to software safety in safety critical
applications. The criteria in the proposed softwsaéety model pertains to system hazard analysis,
completeness of requirements, identification oftvealfe-related safety-critical requirements, safety-
constraints based design, run-time issues managemersoftware safety-critical testingesults: This
model was applied to a prototype safety-criticaftvgare-based Railroad Crossing Control System
(RCCS). The results showed that all critical opgerst were safe and risk-free, capable of handling
contingency situationgConclusion: Development of a safety-critical system based onpsaposed
software safety model significantly enhanced tHe speration of the overall system.
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INTRODUCTION concepts and structures fail in practice for thpgmary
reasons:

The notion of software safety was first mentioned
in the Mil-Std-1574A! which required analysis of ¢ Their originators or users have an incomplete
software to identify and eliminate software errors  understanding of what makes a system “safe
relating to safety critical commands and control* fail to consider the larger system into which the

functions of space and missile systems. Since titen, implemented concept is to be embedded, or

role of software has becoming increasingly impdrtane ignore single points of failure that will make the
and is being used in many critical applicationghsas safe concept unsafe when put into practice
avionics, vehicle control systems, medical systems,

manufacturing, power systems and sensor netfdtks Application areas for safety-critical systems

A safety-critical system is one that has the ptidén include the following-Military, e.g., weapon deliye
to cause accidents. Software is hazardous if iceaise  systems and space programs. Industry, e.g.,
a hazard i.e., cause other components to becommanufacturing control where toxic substances are
hazardous or if it is used to control a hazardivémie  involved and robots. Transportation, e.g., fly-biyew
is deemed safe if it is impossible or at least ligh systems on board aircraft, air traffic control,
unlikely that the software could ever produce atpou interlocking systems for trains, automatic traimtrol
that would cause a catastrophic event for the Byste and computer systems in cars. Communication, e.g.,
that the software controls. Examples of catast@phiambulance dispatch systems and the emergency call
events include loss of physical property, physiwim  part of a telephone system. Medicine, e.g., ragfiati
and loss-of-life. Software engineering of a safety-therapy machines, medical monitoring and medical
critical system requires a clear understanding haf t robots. Nuclear poweplant control. As is apparent
software’s role in and interactions with, the systé&. from the above example areas, safety-critical syste
According to Dunff!, dependable, seemingly safe, are often real-time control systems. These systems
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require the utmost care in their specification,igies life™. Decisions which shape the software architecture
implementation, operation and maintenance, as thefor safety-critical, real-time systems are drivaenpiart
could lead to injuries or loss of lives and in-tuasult by three qualities; availability, reliability and
in financial los§®. This is the type of system that will robustnes&***.
be considered in this study. Here are some conegts
terms relating to safety found in the literaturkatiag to MATERIALS AND METHODS
safety critical systems.

Software quality models: There have been two notable
Safety-related terms: models of software quality attributes viz. McCaliind
Failure: An event where a system or subsystemBoehm’s. There are others but these two illustthée
component does not exhibit the expected externajeneral purpose quality models. Both McCall and
behavior. The expected system behavior and th&oehm have described quality using a decompositiona
environmental conditions under which it must beapproach®!. McCall's model of software quality
exhibited should be documented in the requirement§The GE Model, 1977) incorporates eleven criteria

specification. encompassing product operation, product revisiah an
product transition. Boehm's model (1978) is based o
Error: An incorrect internal system state. a wider range of characteristics and incorporates

nineteen criterfa”). The criteria in these models are
Fault: A fault is anything that might cause an error. Anot independent; they interact with each other and
fault may be a physical defect in hardware, a flaw often cause conflict, especially when software
software or incorrect operator input. According toproviders try to incorporate them into the software
Nissank&', a fault may or may not cause an error anddevelopment process. ISO 9126 standard incorporates
an error may or may not cause a failure. Faultsheare  six quality goals, each goal having a large nunifer
their origin within the system boundaries (internalattribute$?®.
faults) or from without, namely, in the environment
(external faults). In particular, an internal faiglsaid to  McCall software quality model: This framework is
be active when it produces an error and dormant (ouseful for its integrated approach to quality. hist
latent) when it does not. A dormant fault becomes aframework, software quality attributes are classifi
active fault when activated by either its processhe  into a hierarchy of three levels as shown in FigAfl
environment. Fault latency is defined as either thehe top level are the so-called “quality factorsdrh a
length of time between the occurrence of a faultdne  customer or useperspective: correctness, reliability,
appearance of the corresponding error, or the eafjt efficiency, integrity, usability, maintainability,
time between the occurrence of a fault and itsestability, flexibility, portability, reusability and
removal'®!. interoperability. At the second level, are the ‘iifya

criteria,” which represent technical concepts. Aet
Hazard: A system state that might, under certainthird level, are the “quality metrics,” which measuhe
environmental conditions, lead to a mishdpHence, a  attributes of software products.
hazard is a potentially dangerous situation.

Factor
Safety constraint: A hazard characterizes a system
state that for safety reasons should not occuhigfis [
negated and some safety margins are included wa get iz
safety constraint, i.e., a description of a propehat
the system should possess in order to be safe.
Safety-critical: Those software operations that, if not _ — -
Criterion Criterion Criterion

performed, performed out-of sequence, or performed
incorrectly could result in improper control furars

(or lack of control functions required for propgstem

operation) that could directly or indirectly cauee Metrics Metrics Metrics
allow a hazardous condition to eXidt A real-time
system is safety critical when its incorrect bebawian
directly or indirectly lead to a state hazardoutdman  Fig. 1: McCall's software quality model
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The last two levels are from engineeringTable 1: Factors and Criteria
perspectives. McCall suggests these applicatiqpsste ~ Factors Criteria
Correctness Completeness, consistency, traceability
. . .. Efficiency Execution efficiency storage efficiency
* Deduce quality factors based on the characteristicgejapility Accuracy, consistency fault toleransanplicity
of the system Responsiveness Execution adequacy throughput aciequa
+ Trade-off and prioritize the quality factors baged  Testability Instrumentation, modularity, self-deptiveness,

the needs of the customers/users test completeness

Deduce related quality criteria and metrics using

Criteria

the framework; and —
» Base specification, design, coding and testing on hazerd analysis >
the deduced factors, criteria and metrics
The original eleven quality factors in McCall's Completemsss
Software Quality Model are: Usability, Integrity, requitements v
Efficiency, Correctness, Reliability, Maintainabjlj
Testability, ~ Flexibility, —Reusability, Portability, 2 —
i Softwars safety critic: .
Interoperability. atety e Asore "l
etrics
The modified McCall's quality framework applied I
to software safety: Raghu Singh has proposed a iy | R
modified framework to address software sdf@tyThe o
four factors relating to software safety in his rebd
which are part of the original McCall model are: _
Correctness, efficiency, reliability, testabiliffo these R“;f;‘:““%
four quality factors, a new factor-responsiveness w
introduced to account for the real time performance ___
For each factor the corresponding criteria (attelsu

from the developer point of view) are derived as
shown in Table 1. It is argued that determinatioda _.
application of specification, design, coding anstig ~ F9- 2: Software safety model

methods in a project should be based on the metrics )
derived from the criteria in order to "ensure” safte " 'oPosed model for software safety.The proposed
safety model for software safety based on the factoreiat

All these quality models-McCall's, Boehm's and @nd metric approach is shown in Fig. 2.
ISO 9126 and the modified model by Raghu Singh do, "€ quality factor software safety may be
not directly address the specific issues of sofewar deCOmMposed into six quality criteria as listed belo
safety but emphasize the general quality attributes

They have the following limitations. First, manytbe  °
factors suggested by these models are not directly
related to the specific issue of hazards contribltg  °
the malfunction modes of software. Second, they
assume that the concepts of reliability and saéety
equivalent whereas a system can be reliable alhdbesti
not safe. Making a system more reliable is noticieffit

if it has unsafe functions. This translates to hgva

system that reliably functions

System hazard analysis

Completeness of requirements
Identification of safety critical requirements
Design based on safety constraints
Run-time issues management

Safety critical testing

Each criteria may be further decomposed into a set

to cause unsafeof lower level quality metrics, which are directly

conditions. Finallythese models seem to focus on non-measurable. Each proposed criteria of softwareysafe

safety critical systems where the emphasis is mare briefly explained as follows:

efficiency and other quality attributes and lesstba

safety issues of hazards and mishaps that can geidan System hazard analysiswhile developing a framework

human life and property. To overcome thesefor software safety is the focus of this study st i

limitations, a new model is proposed that captihes important to note that no software works in isolatiThe

major issues specifically related to software safet entire system must be designed to be safe. Themsyst
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contains the software, hardware, the users and the
environment. All must be given consideration when
developing software. All parts of the system must b .
safe. Functional and operational safety startshat t
system level. Safety cannot be assured if effores a

Identifying critical system modules and program
sections, i.e., those with most safety relevance
Verifying that software required to handle the
failure modes identified by systems/subsystems
hazard analysis does so effectively

focused only on software. The software can belyotal «
free of 'bugs' and employ numerous safety featuyrets,
the equipment can be unsafe because of how theaseft
and all the other parts interact in the system.artizat
the system level include: hardware hazards, softwar

Allowing more rigorous methods and controls to be
selected and applied to areas of software which are
most critical to the safety of the system

Identifying and evaluating safety hazards assatiate
with the software, with the aim of either elimimeti

hazards,  procedural  hazards, r;u%?r}nan factors,  them or assisting in the reduction of associatgdri
environmental hazards and interface hazatds « Identifying failure modes that can lead to an uesaf
Preliminary system safety analyses (e.g.,

IS ) A state and making recommendation for changes
Preliminary Hazard Analysis (PHA)), conducted dgrin , Determining the sequence of inputs which could

the system r_equirer_nents phase _Whe_n the role of 154 to the software causing an unsafe state and
software is being defined, begin to identify thedras making recommendations for changes

associated with a particular design concept and/or

operation. These preliminary analyses and subséquen  Approaches suggested include Failure Modes and
system and software safety analyses identify wheiEffects Analysis (FMEA), Fault Tree Analysis (FTA)
software is a potential cause of a hazard or weilubed  and Hazard and Operability (HAZOP) technique.

to support the control of a hazard. This softwdralls

be classified as safety-critical and shall be sttbjto  Completeness of requirementsCompleteness can be
software safety analysis. The system safety anmlgsee  defined as the property that requirements are ceiffi

the first place to identify software safety requients  to distinguish the desired behavior of the progfeom
necessary to support the development of the sadtwarthat of any other undesired program that might be
requirements specification. These requirementd bleal designeti'’. It should not be surprising then that most
provided to the developer for inclusion into the errors found in operational software can be trated
software requirements document. Some examples dgquirements flaws, particularly — incompleteness.
software safety requirements include limits (e.g.,Completeness is a quality often associated with
redlines, boundary values), sequence of eventingim requirements but rarely defined. In addition, neall
constraints, interrelationship of limits, votingglo, the serious accidents in which software has been
hazardous hardware failure recognition, failureinvolved in the past 20 years can be traced to

tolerance, caution and warning interfaces, hazardod'®guirements flaws, not coding errors. The software
commands. etc may reflect incomplete or wrong assumptions abloeit t

The system safety analyses continue througheut thoperation of the system components being contraiied

project life cycle. The software safety analysiegass the software or about the operation of the computer
needs to continue to review the results of theesyst ftself. The problems may also stem from unhandled
controlled-system states and environmental condtio

analyses to assure that change_s and findings at t%us simply trying to get the software "correct" in
system level are incorporated into the software agerms of accurately implementing the requiremerits w
necessary. In addition, the software safety analyse ot make it safer in most cases. Basically the lprab
provide input to the system safety analyses. Th&tem from the software doing what the software
software safety analyses are a special portionhef t engineer thought it should do when that is not vihat
overall system safety analyses and are not condlicte original design engineer wanted. Integrated product
isolation. teams and other project management schemes to help
The basis of sound design for a safety-relatedvith this communication are being used, but the
system is the identification, through systematicproblem has not been solN&d
analysis, of the hazards which the system might Donald Firesmith? proposes seven different ways
encounter in operation. A number of techniques arén which the phrase ‘requirements completenesslidcou
well established for electrical and electronic syt  be interpreted. These include the completeness of:
but there has been much debate as to how reldves t
techniques are when applied to software. The dbgt °
for the software hazard analysis, as stated by the
standards/guidelines include: .
314
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plant. Requirements for an aircraft's fire detectand
suppression system would also be safety system
requirements. Finally, safety constraints are &echire
or design constraints mandating the use of specific
safety mechanism or safeguards. Many industries

An individual requirement is complete if it contai  including petrochemicals, nuclear power and autedhat
all necessary information to avoid ambiguity anede P€ople movers have industry safety standards rieguir
no amplification to enable proper implementatiord an SPecific safeguards.
verification. To avoid ambiguity, a requirement mus
express the entire need and state all conditioms aridentification of software-related safety-critical
constraints under which it appli&§ Different kinds of ~requirements: A safety critical software requirement
requirements are specified differently. Therefone t May be understood as a software requirement ignhtif
following different kinds of requirements may be @S essential to the safe system operation oF°use

incomplete because different component parts ahthe Specifically, a safety critical software requirerhen
are missing: performs one or more of the following functions:

e Requirements repositories

» The set of requirements documents

» Individual requirements specification documents
* Arequirements baseline

e Controls or directly influences the functioning of
safety critical hardware

e Controls or directly influences hazardous systems

e Monitors the state of the system for purposes of
ensuring its safety

e Senses hazards and/or displays

concerning the protection of the system

Handles or responds to fault detection priorities

Disables or enables interrupt processing software

Generates output that displays the status of safety

critical hardware

Computes safety critical data

* Functional Requirements
» Data Requirements
* Interface Requirements
* Quality Requirements
e Constraints ) )
information,
Types of safety-related requirements: When
engineering safety-related requirements, stakeholde®
must realize that these requirements come in fout
distinct types, which need to be analyzed and §pdci °
differently®!. They are (i) Safety requirements (ii)
safety-significant requirements (iii) Safety systeme
requirements (iv) Safety constraints. They are &rpd
as follows: The above listed functions are based on the
First of all, there are pure safety requirementsfunctions presented in STANAG 44¢f4 Safety
which are a kind of quality requirement that views critical computer system functions are essentidilbse

safety as a quality factor within a quality modabk
such, safety requirements are typically of the fafa
quality criterion (a system-specific statement aktbe

software features that are used to monitor, contol
provide data for the safety-critical functions. @rthe
safety-critical computer system functions have been

existence of a sub factor of safety) combined veith identified, the safety engineer should perform yses
minimum or maximum required threshold along someto assess the risks associated with each identified
quality measure. They directly specify how safe thesafety-critical requirement. In software-intensive
system must be. Second are safety-significansystems, mishaps often occur because of a combinati
requirements, which are normal functional, data,of factors, including component failure and faults,
interface and non-safety quality requirements tr@ human error, environmental conditions, procedural
relevant to the achievement of the safety requirdsie deficiencies, design inadequacies and software and
In other words, safety-significant requirements et computing system errors. In such systems software
to hazards and accidents when not implementedften cannot be divorced from the system where it

correctly. When most people think of safety-critica resides. Software and computing system safety sesly
systems, they are thinking of systems, the requireghould consider safety aspects of the followinmge

functionality of which makes them subject to sesiou

accidents. Third are safety system requirement&ghwh
are the requirements for safety systems or safety
components of safety-related systems. A canonical
example of which would be requirements for the
emergency core cooling system of a nuclear power

315

Computer system hardware, which includes
physical devices that assist in the transfer o& dat
and perform logic operations. Examples include
Central Processing Units (CPU), busses, display
screens, memory cards and peripherals



J. Computer i, 5 (4): 311-322, 2009

e Computer system firmware, which is resident System accidents result from interactions among
software that controls the CPU’s basic functioning components that lead to a violation of these cairgs.
« Computer system software, including operatingln other words, from a lack of appropriate enforeem
system software and applications programs of constraints on the interactions. Because soéwar
often acts as a controller in complex systems, it
In addition, because software safety is a systemémbodies or enforces the constraints by controlireg
issue, software and computing systems must b&omponents and their interactions. Software, tioan,

considered with respect to other aspects of theesys contribute to an accident by not enforcing the

such as the following:

appropriate constraints on behavior or by commandin

behavior that violates the constraints.

» Physical entities whose function and operation are

The requirement for software to be safe is natitha

being monitored or controlled, often called the never “fails" but that it does not cause or comtébto a

application
e Sensors (thermocouples, pressure transducers)
» Effectors that take an

violation of any of the system constraints on safe
behavior This observation
instruction from the approach to handling software in safety-criticadteyns,

leads to the suggested

computing system and impart an action on the.e., first identify the constraints on safe systeshavior

system (valves, actuators)
e Data communication to other computers
e Humans who will interact with the system

and then design the software to enforce those reomist

The software-specific analysis should provide

specific mitigation approaches for each potentzdand

identified. The recommended order of precedence for
Safety is enhanced through the use of layers oéliminating or reducing risk in the use of softwared
protection that include both software- and hardwarecomputing systems is the same as that for hardwaare,

specific safety measures. The output from the sofw
specific hazard analysis process includes desiggl-le
safety requirements based on safety measures
developed to mitigate hazards. These design-level
requirements could include specific hardwaree
mitigation measures (such as redundant functignalite
using hardware) or coding requirements that must be
implemented. Design-level requirements are statésnen
that can be translated into code without interpieta

or specific mitigations that must be implemented.
Design based on safety-constraintsThe first step in

the safety-constraint centered design approaclhds t ¢
specification of safety constraiffé In hardware
systems, redundancy and diversity are the most
common ways to reduce hazards. Hardware detection
and control includes mechanisms such as fail-safe
designs, self-tests, exception handling, warnings t
operators or users and reconfigurations. For sofwa
intensive safety-critical systems, software degigust  «
enforce safety constraints. Reviewers should be &bl
trace from requirements to code and vice versa. In
addition to the specific safety constraints devetbfor

the system being designed,
incorporate basic safety design principles. Saftite,

follows:

Design for minimum risk

Incorporate safety devices

Provide warning devices

Develop and implement procedures and training

Mitigation measures can include, but are not

limited to, approaches such as the follovifig

Software fault detection (for example, built-in
tests, incremental auditing)

Software fault isolation (for example, isolating
safety-critical functions from non-safety-critical
functions)

Software fault tolerance (for example, recovery
blocks that use multiple software versions of
progressively more reliable construction should
faults occur)

Hardware and software fault recovery (for
example, incremental reboots, exception handling)

After the designers have applied measures to

the design shouldnitigate mishap risk to a basic system, they must
determine if the modified system design meets an

any quality, must be built into the system design.acceptable level of mishap risk. They can use three

Software represents ds the system desi§fi. The

analytical techniques to make this determinatiam. |

most effective way to ensure that a system willrafee  Failure Modes And Effects Analysis (FMEA), the

safely is to build safety in from the start, whicteans
that system operation must not lead to a violatibthe
constraints on safe operation.
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systen?*3% This analysis seeks first to verify that there Excepion
is no mishap-producing single point of failure imet

system because such a potential point of failurelavo

nullify the benefits of applying mitigation meassire
elsewhere in the system.

Fault Tree Analysis (FTA) reverses this process by
starting with an identified mishap and working citeria
downward to identify all the components that cansea
a mishap and all the safety devices that can nbitiga
it®233 This downward decomposition process builds a
graphical structure called a fault tree. In contras
FMEA and FTA, which are both qualitative methods,

Risk Analysis (RA) is a quantitative measure thatds

numerical probabilities of mish&)™. To perform RA, Fig. 3: A decomposition of run time issues criteria
the analyst must determine the component failure

probabilities for the hardware, software and opmerat An operating-system kernel and application
Components in the fault tr@%Sl] In accordance with programming interface often perform the most
standards such as Mil-Std-88%t and IEC 61508  important role in a safety-critical system. Excepti

designers usually estimate failure probabilitiesaqrer-  handling, deadlocks, process and stack management,
hour basis. scheduling and flow control and memory protectitin a

If the system consists of redundant componentshave repercussions on the safety function and ean b
deSignerS calculate its Unreliabi“ty'the prObaiDlIhat key elements of meeting Safety_integrity requiremen
it will not operate over the span of one hour. Néx¢y  Figure 3 shows the decomposition of the run time
determine mltlgatlon failure prObabi”ties for theault issues criteria into five sub-criteria or lowerdgv
tree’s hardware, software and operator safety ésvié  criteria which provide a basis for measurements.
a mitigation device includes redundant components,  Traditional testing techniques such as unit testin
designers determine its unavailability-the proligbil sre ad hoc and informal. It is only a partial pradf
that it will not mitigate if required. The desigseassign  correctness in that it does not guarantee thasyhem
these component- and mitigation- failure probabdit || operate as expected under untested inputterins
to elements in the fault tree, then propagate therf its ability to guarantee software correctnesstime
upward to yield a figure for mishap risk. If thissults  yerification is stronger than testing. Testing aamly
in an unacceptable figure, they must implementgyarantee the correctness of a limited set of st
additional mitigation measures. As a side benéfié,  implementation time. As a result, undiscovered téaul
fault tree shows where to add these measures in thﬁay result in failures at runtime and even allowthg
system. If, on the other hand, the risk calculagi@ds  system to propagate corrupted output because ithesfa
an acceptable result, the design is ready for iaddt  \vas not detected. By always monitoring the software
validation step” such as in-depth risk assessmentcorrectness, such failures can be caught when they
testing and field trials to assure that the Systﬂmlen happen’ for any input which causes them to occur.
implemented, will be safe. Although it may seem  Runtime verification is a lightweight verification
obvious, a developer's concerns about a safetigalrit technique that complements traditional techniques s
system’s continuing safety do not end with desigd a as model checking and testiity It checks whether the
implementation. Indeed, a vigorous system safetyyrrent execution of a system under scrutiny satisir
program must be in place throughout the system'sjolates a given correctness property. One of tiagnm
operational life to ensure that mishap risk is t@ned  djstinguishing features of runtime verificationtist it
at or below the level achieved in the original ge&°*. s performed-as the name suggests-at runtime. This

opens up the possibility not only to detect incotre

Run time issues managemenfThere is always the risk behavior of a software system but to react whenever
that an a priori verified program behaves slightlyincorrect behavior is encountered.
differently-and faultily-at runtime. This may sinypbe Checking whether an execution meets a correctness
the result of compiler bugs, or it may be due toproperty is typically performed using a monitor.its
mismatches between the expected and actual behavisimplest form, a monitor decides whether the curren
of the execution environment, say with respect toexecution satisfies a given correctness property by
timing issues or memory behavior. outputting either yes/true or noffalse. More detil
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assessments, like the probability with which a give acceptance tests. Acceptance testing shall veoifyect

correctness property is satisfied, can also bengile
runtime verification, monitors are typically genie
automatically from some high-level specifications A
runtime verification has its roots in model checkin
often some variant of linear temporal logic is eoyeld.
Besides checking safety properties directly using t
monitors generated from them, runtime verificato@m

operation of the SCCSCs in conjunction with system
hardware and operat6f& It shall verify correct
operation during stress conditions and in the presef
system faults. It is important to tailor the safetitical
testing effort toemphasize the parts of the software that
need additional analysis and testing. The greafiéstt
must be placed on the hazards posing the highsst ri

also be used with partially verified systems. SuchWe consider it adequate to divide the software into

partial correctness proofs often depend on assonmgti

risk groups for test purposes. Group one includesitus

made about the behavior of the environment. Thase c that are catastrophic or critical. Group two inesd

be easily checked using runtime verification teghes.
Runtime verification itself deals (only) with deteg
whether
satisfied). Thus, if a violation is observed, ipigally

does not influence or change the program's exatutio of software analysis and

say by trying to repair the observed violation.

Safety critical testing: Testing of safety-critical

hazards that are marginal or negligible as per the
definitions in MIL-STD-882C. Software in the first

correctness properties are violated (ogroup deserves special safety analysis and testitog

the hazards pose a higher level of risk. The noteva
testing performed for
operational software is adequate for group two.

While traditional dynamic testing plays a
fundamental role in producing high-quality softwatre

systems follows two important strategies which areis only as good as the test cases. To be effectigesat

systematic rigorous testing and static analysisil&Vh
there is no substitute for rigorous testing at mamgls:
Unit, regression, functionality and integrationtieg,
testing effectiveness depends on the quality oftéisée
cases used. The best test suites are those tteagbad

deal of effort must go into writing or generatingogl

test cases and doing so can be very expensive.
Recently, a new breed of static analysis tools has
emerged that can find flaws without writing anyttes
cases. These tools, which are also referred tdatis s

code coverage. Statement coverage and conditiomesting tools, can find bugs that are difficult or

coverage are the most commonly used metrics. Fullmpossible

condition coverage is considered essential fortgafe
critical code, such as flight control software. Agling

to find using standard testing
methodologied”. They can locate serious flaws such as
buffer overruns, null pointer dereferences, reseurc

full coverage can be exceedingly time-consuming andeaks and race conditions. Because they operate by
expensive. There are different kinds of coverageé ananalyzing the source code itself in detail, they atso

the risk the code carries dictates which kind oferage
is required. In the DO-178B Standard for aviatititg
riskiest code requires 100%

highlight inconsistencies or contradictions in twde
such as unreachable code, useless assignments and

Modified redundant conditions.
Condition/Decision Coverage (MCDC). The next two

The following illustrates some of the most

most risky classes require 100% decision coverage a important classes that static tools can detect. firee

statement coverage, respectively. The least risidec

class is the most serious-bugs that either cause th

such as the in-flight entertainment system, has n@rogram to terminate abnormally or result in highly

coverage requirements at all. Also, as all programm
know, just because a statement is executed in
successful test case does not mean it will alwagsige
correctly. It may fail under an unusual combinatimi
circumstances that the test cases did not explore.

unpredictable behavior. These include buffer overru
and under run, null pointer dereference, division b
zero and use of uninitialized variables. Memory
allocation errors are those that result from theuseé of

malloc or new functionsThese can be tricky to debug

Safety critical software functions provide the because the erroneous behavior may only show yp lon

source of requirements to be tested. Testing diwll
performed to verify correct incorporation of softea

after the event that caused the error. Such eimohsde
double free, use after free and memory leak.

safety requirements. Testing must show that hazardSoncurrency bugs may be caused by misuse of the

have been eliminated or controlled to an acceptabléreads

level of risk. Additional hazardous states ideetifi
during testing shall undergo complete analysisrpigo

software delivery or use. Software safety testirig o
Componentsredundancies. These are not bugs per se, but &me of

Safety-Critical Computer Software

library. Double locks or wunlocks, race
conditions and futile attempts to lock are among th
checks that are available.

A second class of check is for inconsistencies or

(SCCSC) shall be included in the integration andindicators that a programmer misunderstood somgthin

318



J. Computer i, 5 (4): 311-322, 2009

This class includes redundant conditions, uselesSensors:These are used to detect the location of the
assignments and checking whether a pointer isaftdl  train on the tracks. Altogether RCCS employs nine
it has already been dereferenced. Holtzidhiin his  sensors. Two pair of sensors detect the train ipasit
list of ten rules for writing safety-critical code, before and after the gates. A set of three senstate
explicitly specifies that advanced static-analywisls to track change where the track splits into two
should be used proactively all through the safety-directions. A pair of sensors give the train positivith
critical development process. reference to the platform, which is the startingnpof

the train movement. Information from each of the
Application of safety model to Railroad Crossing sensors is passed to controller.
Control System (RCCS):Crossing gates on a full-size
railroads are controlled by a complex control syste Controller: The controller synchronizes the train
that causes the gates to be lowered to prevens®toe activities with the gate. When the controller reesia
the crossing shortly before a train arrives ando#  message from sensorl, it sends a command to Itweer t
raised to allow access to resume after the tras hagates. When it receives a message from sensor2, it
departed. This requires the detection of approgchinsends a command to raise the gates. An IBM
trains or the manual actuation of the crossingsyte  compatible PC is used as a controller for RCCS. RCC
an operator. RCCS is a prototype safety-critichlaad  software that controls the overall operation of the
crossing control system of limited complexity. Fig#  system is stored in the memory of the controller RC
shows the laboratory prototype of RCCS consistihg ouser interface is provided to operate the selestioh
several components listed below. the controller PC. A 48-line digital 1/0 (DIO) aduh

card is plugged into an available slot in the coligr
Components of RCCS: RCCS consists of the pC for monitoring and controlling sensors and gate
following main components: Train, Railway track, actuators. The DIO card receives the inputs froohea
Sensors, Gates, Controller with a digital I/O card,of the nine sensors of RCCS. The eight output $$gna
Signals and a muscle-wire operated track-chang& .lev sent from DIO card control the following: the power
A brief description of each component is given belo  supply to the train track, power supply to the waie

assemblies, power supply to muscle-wire based

Train: The train is powered by a power supply relay.mechanism to change the track lever and four signal

When the power is initially switched on, the train |ights.
begins movement along the track when the metallic
wheels of the train receive power. The train CORE  5ates: RCCS has two sets of gates on either side of the
halt at the position where the power to the traisks

. . ; track layout. The gate receives signals from the
switched off. When a train approaches the gatesoigs controller component. When it receives lower, itve®
region, the train is detected by the sensor paotio P : '

near the gate crossing area. The sensor sends tflgWn- When thegate receives raise, it moves up. The
information to the controller component. When dntra 9ates are operated by means of a muscle wire based
completely passes the crossing section, it is tedey mechanism. Muscle wire (Nitinol) is a nickel titam

the sensor which is positioned after the gate argss alloy which contracts when current flows througtfor
area. This information is sent to the controller. achieving motorless motion for gate movement and

track change.

Signals: Railroad signals are provided to indicate to
train operators whether the track is clear or ommlipor

if certain precautionary measures should be takeitew
using the track, such as maintaining a reduceddspee
RCCS contains three train signals, erected beside t
track One signal is at the platform to signal a halhat t
platform. The other two signals are placed jusblef
the point of convergence of the inner track anceout
track, which lead to the platform. A signal headsists

of one or more signal faces that can include sl
Fig. 4: Prototype of RCCS and green lights.
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RESULTS AND DISCUSSION For example, the failure of the controller may laad
both gates being permanently open, causing accsdent
Normal operation of RCCS: When RCCS is first can be considered a catastrophic or severe hazard.
switched on, the controller does a preliminary éhett  Failure of the sensor that detects that the trais h
the normal working status of all the subsystemspassed the gate crossing section, with the effette
involved-the driver circuitry, the sensors, the egat gates being permanently closed will not cause an
assemblies and the train signals. If all the coreptsy  accident but will violate the utility property dig¢ gates,
are found to be in normal working condition, it eMtes  until the problem is rectified. Failure of the senthat
the code related to normal operation. Figure 5 showdetects the approaching train can cause an accident
the partial block diagram of RCCS correspondinthto  the controller will not close the gates keepingnthe
rail-road intersection. If the train passes Sensorbpen, which can lead to accidents as the road asers
positioned prior to gate, a signal is sent to thetller  unaware of the approaching train. This is a caipsic
indicating the approaching train. The controlleerth or severe hazard.
sends a signal to the gates assembly, causingatiee g Second, completeness of requirements criteria was
arms on either side of the road to close. Whertrdia  applied to check any missing or ambiguous
finally has passed Sensor2, which is positioned jusspecifications. This was done by peer review and
beyond the gate crossing section, a correspondinmanual checking rather than applying any formal
signal is sent to the controller, which in turnggérs methods. Third, all the safety-critical and nonetaf
both the gate arms to open simultaneously. If RCCSritical requirements were identified. All requirents
detects any abnormal situation or state duringatsnal  that directly or indirectly lead to incorrect optoa of
mode of operation, perhaps due to an unexpectethe gates are considered safety-critical. Fourthesign
lightning strike or rainstorm that disrupts thecaitry  that enforced the safety constraints was chosen for
of the gate assembilies, it executes the codengladti RCCS. The objective of the design was to elimirate
emergency situation causing the signal erected thear mitigate the hazards identified in the preliminary
gates, to flash a red light continuously. This i a system-level hazard analysis. Another objective teas
indicator to the public that the gate assemblyasin  avoid the possibility of single point failure. Thigas
working condition and that they need to take neangss achieved by using a additional redundant contrahat
precaution in crossing the intersection. takes over control of the system should the main
All the six criteria of the model were applied to controller fail unexpectedly. Implementation wasndo
RCCS. Firstthe system-level hazard analysis was doneén Cyclone programming language which is a diatdct
to identify possible hazardous failure conditiongh®e  C language which includes several safety featuodés n
system level. The potential hazards identified are: found in C. Fifth, run-time performance was morgtbr
Failure of Controller, Failure of Sensors, Failwe for problems relating to exceptions, deadlocks, wm
Driver Circuitry, Failure of Gate 1 and Gate 2,Ike  related issues like buffer overruns. Lastly, safettcal
of Train Signal, Failure of muscle-wire operate@dk testing of RCCS was done by separating the code int
Change Lever in changing from outer to inner tracktwo risk groups. Group one includes hazards that ar
Next, the identified hazards were classified aco@yd catastrophic or critical. Group two includes hazatttht
to their severity. A hazard belongs to one of fourare marginal or negligible. More testing effort was
levels-catastrophic, critical, marginal and mgigle. spent on those code sections dealing with hazards
related to group one. The preliminary results in
applying the safety model in developing the safety-
_ critical RCCS clearly demonstrate that the system i
%‘ safe, risk-free and fail-safe when compared to a
Sensorl : ; : Sensor? development methodology that does not take hazards
i L _ I i and associated risks into consideration.
[

Directiiﬂ oftraiﬁ CONCLUSION
[
|

Controller
This study discussed the criteria relevant to
Road software safety. A new model for software safety is
proposed. A set of quality criteria that form ttesis of
Fig. 5: RCCS partial block diagram showing railroadsoftware safety is presented. The proposed model is
crossing intersection applied to a laboratory prototype of a softwareecllas
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Railroad Crossing Control System (RCCS) that9.
includes safety-critical operations and observed
satisfactory results. Using the experimental rssolt

the proposed model with railroad crossing control10.

system, work can be extended to address issues of
development cost and development time in
implementing this model to achieve software safety
metrics. Rigorous work is needed to meet the cotaple

requirements of software safety aspects that leads 11.

standardization of model with safety metrics.
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