
Journal of Computer Science 5 (1): 39-48, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Hazleen Aris, College of Information Technology, University Tenaga National, Km. 7,
 Jalan Kajang-Puchong, 43009, Kajang, Selangor, Malaysia Tel: +603-89212368 Fax: +603-89212161

39

Current State of Component-Oriented Software Development Practice in Malaysia:

Towards Identifying Its Potential and Research Areas

1Hazleen Aris and 2Siti Salwah Salim
1College of Information Technology, University Tenaga National,
Km. 7, Jalan Kajang-Puchong, 43009 Kajang, Selangor, Malaysia

2Faculty of Computer Science and Information Technology, University of Malaya,
Lembah Pantai, 50603 Kuala Lumpur, Malaysia

Abstract: Problem statement: A study was conducted to investigate the current state of software
development practice in Malaysia with regard to Component Oriented Software Development
(COSD). The objectives of the study were to identify its potential application in Malaysia and to
determine research areas that can be explored further to promote its application. Approach:
Information required for the study was obtained through a survey, questionnaires were distributed to
the software developers who are working at various software development companies in Malaysia.
Software developers were generally divided into two categories; component users and non-component
users. Information on current practices in software development, current practices of the component
users, problems faced by the component users in applying COSD and reasons that hinder the non-
component users from applying COSD was sought. Results: Results showed that current practice of
software development in Malaysia is inclined towards software reuse, which is in line with the aim of
COSD. Even though the component users face problems in applying COSD, they still believe that
COSD is a better approach to develop software and majority of them will continue to apply COSD.
The non-component users also believe that COSD is a better approach to develop software and
majority of them will apply COSD in their future software development projects. Conclusion: Study
concluded that the potential of COSD application amongst the software developers in Malaysia is high.
List of COSD research areas formulated from the study can serve as a basis for the researchers to
pursue research in this area that will further increase the potential.

Key words: Component Oriented Software Development (COSD), COSD state, COSD application

INTRODUCTION

 The idea of Component-Oriented Software
Development (COSD) is as old as the software
engineering itself. Its inception dates back to the late
1960’s. Since then, it has become one of the central
research topics in the field of software engineering and
its evolution has taken place in many different forms
and from various aspects. The main motivation behind
these research is the list of advantages expected to be
brought about by the successful implementation of
COSD and the success stories of components reuse
from other engineering fields, particularly in
mechanical and electrical engineering. Despite the
presence of obstacles along the path in adopting COSD,
researchers are still optimist that these obstacles, or

rather, challenges, can be overcome as COSD matures
and ‘disappears’ i.e., no longer become noteworthy[1].
Hence, research on COSD is becoming more and more
intense with each addressing one or more challenges
imposed.
 One of these areas is the study on the current state of
COSD application in the software development
industries. Review made on related literatures discovered
at least two other research that study the state of COSD
application. The first research studied the situation at
Kingston city of Jamaica[2]. This study, which was done
based on the response from eight prominent software
development companies in Kingston, covered the level of
components reuse in software development, the quality
of software systems created with components reuse,

J. Computer Sci., 5 (1): 39-48, 2009

 40

Fig. 1: Survey model for the study

the average number of software systems created per
year and the cost associated with components reuse. In
particular, it concluded that all of the companies
involved in the case study have experienced the benefits
of COSD and that the main success factor of COSD
was attributed to the existence of good components
repositories. The second research performed similar
study covering three European countries; Norway, Italy
and Germany[3]. This study focused on the process
models used to develop software using Off-The-Shelf
(OTS) components and the selection process of the
OTS components. It concluded that the process models
used are typically variations of well-known traditional
process models mixed with OTS specific activities and
the selections of OTS components are based on two
processes; familiarity-based and internet search-based.
 The situation in Malaysia, however, is not quite
known as there are not many research done thus far to
study the current state of COSD application in software
development in this country. This has triggered us to
perform similar study that aims at finding out the
current state of COSD application amongst the software
developers in Malaysia. Questionnaires entitled ‘A
Survey to Investigate the Current State of the
Application of Component-oriented Software
Development (COSD) amongst the Software
Developers in Malaysia, were distributed to the
software developers who are working at various
software development companies across Malaysia. Two
main objectives of the survey are:

• To determine the potential of COSD application in

Malaysia

• To identify the appropriate research areas in COSD
that should be addressed in order to promote and
enhance its application

 Figure 1 shows the survey model used to guide the
study. As can be seen from the model, software
developers in this study are broadly categorized into
component users and non-component users. Component
users are those who use components in their software
development projects and non-component users are
those who do not use components in their software
development projects. To meet the first objective, the
following information is sought:

• Current practice in software development from

both component users and non-component users
• Experience in applying COSD from the component

users
• Perception towards COSD from the non-

component users

 To meet the second objective of the study, the
following information is sought from the component
users:

• Problems faced in applying COSD
• Factors believed to play significant roles towards

the success of COSD

 From the non-component users, information on
their reasons for not applying COSD in software
development is sought. The questionnaire was therefore
designed to contain questions that can capture these
information.

J. Computer Sci., 5 (1): 39-48, 2009

 41

MATERIALS AND METHODS

 In the next three paragraphs, the design of the
questions that make up the questionnaire, population
sampling of the target respondents and data collection
method are explained.

Questionnaire design: The questionnaire comprises a
total of 19 questions that are divided into four main
sections; section A, section B, section C and section D.
Section A contains three questions (Q1-Q3) asking for
the background information of the respondents and
section B contains five questions (Q4-Q8) to find out
the respondents’ current practice in developing
software. The last question in section B (Q8) asked
about whether or not the respondent is using
components in developing software. Based on the
respondents’ answers to this question, they would have
to either proceed to section C or section D. Section C of
the questionnaire was targeting at the component users,
i.e., those who use components in their software
development. This section, which contains eight
questions (Q9-Q16), was looking for information on the
nature of components used, problems in using them and
ways to improve their use. Finally, section D that
contains three questions (Q17-Q19) was meant for the
non-component users, i.e., those who do not use
components in their software development. The
questions asked for information on the perception on
COSD and possibility of using it in future software
development projects.

Population determination: The questionnaires were
distributed to the software developers in the Multimedia
Super Corridor (MSC) status companies, which are
clustered mainly at these four cybercities; Kuala
Lumpur city centre, Technology Park Malaysia, UPM-
MTDC and Cyberjaya[4]. Our main source of
information to estimate the total number of software
development companies in Malaysia is the Multimedia
Super Corridor (MSC) portal[5] where a list of
Information and Communication Technology (ICT)
related companies with the MSC status from a number
of sectors is made publicly available. At present, there
is a total of 1,511 ICT related companies being granted
the MSC status as shown according to their respective
sector, in Table 1.

Data collection: Prior to the actual questionnaire
distribution, a pilot test was performed using paper-
based questionnaire involving a total of eleven software
developers, which were chosen based on convenient
sampling. The pilot test was conducted with the aim of
identifying the possible problems or confusions in
understanding the questions in the questionnaire.

Table 1: ICT related companies with MSC status
Sector No. of companies
Software development 803
Creative multimedia 149
Support services 143
Internet-based business 183
Hardware design 133
Shared services and outsourcing 100

In the actual questionnaires distribution, a total of 400
questionnaires were distributed to 400 software
development companies, which were randomly selected
from the list of MSC status companies under the
software development sector. Some of the
questionnaires did not reach their target recipients
due to:

• Invalid addresses-the address published in the

MSC portal is no longer used and so do the contact
numbers

• Overseas addresses-the development work for the
companies are actually done overseas

• Branch company-the companies are branches of
larger companies and therefore we only sent
questionnaires to the parent companies

 In answering the questionnaires, the respondents
were given the choice to return the paper-based
questionnaires or to submit the online version of the
questionnaires.
 When the information gathering exercise
concluded in October 2007, a total of 104 responses
were received, making up 26% response rate. Of these,
31 respondents returned the paper-based questionnaires
and the balance of 73 respondents answered the web-
based questionnaires. The main reason given by those
who refused to participate was time constraint. Other
than this time constraint, quite a number of the
companies’ representatives contacted during follow up
to non-response said that they do not have any software
developers in the companies i.e., they are just software
resellers.

RESULTS

 From the total of 104 responses received, three
paper-based responses were deemed invalid for analysis
due to incomplete information. Thus, the following
presentation of results is based on 101 valid responses.

Demographics of respondents: Table 2 shows the
information on the respondents’ job nature. System
analyst, system designer and programmer are positions
that are directly related to software development.

J. Computer Sci., 5 (1): 39-48, 2009

 42

Table 2: Respondents’ job nature (Q1)
Job Nature Frequency Percentage (%)
System analyst 25 24.75
System designer 2 1.98
Programmer 36 35.64
Subtotal 63 62.37
Others 38 37.62

Table 3: Respondents experience in the position (Q2)
Duration in the Position Frequency Percentage (%)
More than 5 years 39 38.61
Between 2 and 5 years 29 28.71
Subtotal 68 67.32
Less than 2 years 33 32.67

Table 4: Users of the software produced (Q3)
Software product user Frequency Percentage (%)
Both 43 42.57
External 27 26.73
Subtotal 70 69.30
Internal 30 30.69

Table 5: Programming languages used by developers (Q4)
Languages Frequency Percentage (%)
C 26 25.74
C++ 28 27.72
Java 42 41.58
Visual Basic 41 40.59
Others 56 55.45

Therefore, from Table 2, 62.37% respondents are
holding positions that are directly related to software
development. The balance of 37.62% respondents who
chose ‘Other’ range from software engineers to
technical information technology supports. From
Table 3, it can be seen that 67.32% of the respondents
have more than two years experience in their position.
From Table 4, we can see that nearly three quarter of
the respondents (69.30%) are involved in developing
software for other companies.

Current practice: On the current practice, the
questionnaire aimed at obtaining information on the
programming languages used, software development
methodology used, amount of code reused from the
previous projects, familiarity and understanding of the
term component. Information on the portion of the
software developers who are using components in their
software development projects is also obtained. Table 5
shows the distribution of the programming languages
used by developers. ‘Others’ languages used by the
developers range from COBOL to a complete
development framework. Shown in bold is the
programming language used by most of the software
developers, i.e., Java.

Table 6: Methodology applied in software development (Q5)
Methodology Frequency Percentage (%)
Conventional 53 52.48
Object-oriented 66 65.35
Component-oriented 30 29.70
Others 9 8.91

Table 7: Amount of codes reused from previous projects (Q6)
Reuse amount Frequency Percentage (%)
100% 5 4.95
Around 80% 22 21.78
Around 50% 49 48.51
Less than 20% 20 19.80
None 5 4.95
Reusers 96 95.05
Reusers of > 50% 76 79.17

Table 8: Familiarity versus the use of component
 Familiar with the Not familiar with
 term component the term component
Use component 49 9
Not using component 16 27

Fig. 2: Familiarity of the term component (Q7)

 From Table 6, it can be seen that the methodology
applied, as claimed by most software developers is
object-oriented (65.35%), followed by conventional
methodology (52.48%) in the second place and
component-oriented (29.70%) in the third. Table 7
shows 95.05% of the software developers reuse code
from previous projects with majority of them reuse
around 50% of the code. The percentage of reusers who
reuse more than 50% of code from previous projects is
79.17%.
 When asked whether or not they are familiar with
the term component, 65 (64.36%) of the respondents
are familiar with it and the balance of 36 (35.64%)
respondents are not as shown in Fig. 2.
 In response to the question that asks about
components usage, 58 (57.43%) respondents admit that
they use components in their software development and
the balance of 43 (42.57%) say that they do not use
components as shown in Fig. 3. A cross tabulation
analysis shows that out of 65 respondents who are
familiar with the term component, only 49 are actually
using it in their software development projects as can
be seen from Table 8. This represents 48.51% of the
total respondents.

J. Computer Sci., 5 (1): 39-48, 2009

 43

Fig. 3: Percentage of component users and non-

component users (Q8)

Table 9: Adherence to component requirements (Q11)
 Independent Dependent
 of any vendors on vendors
Available in executable form 28 10
Not available in executable form 14 6

Table 10: Self developed versus third party components (Q9)
 Using self Not using self
 developed developed
 components components
Using third party components 20 17
Not using third party components 20 1

 Next, the analysis done on the data gathered from
the component users is presented, which is able to give
more information on the application of COSD amongst
Malaysian software developers.

Component users: From the total of 58 respondents
who use components in their software development
projects, 28 respondents, representing 48.28% of the
component users claimed that the components used met
both requirements of a component as stated by
Szyperski[6]. This cross tabulation result is shown in
Table 9. The questionnaire then further asked a few
more questions on sources of components and forms of
components used to investigate this claim. Result shows
that only 20 component users use a mixture of self
developed and third party components as shown in
Table 10. This further reduces the number of
component users using components that meet both
requirements of a component to only 34.48%. However,
only 1 (1.72%) component user use component solely
in executable form as can be seen from the shaded area
in the Venn diagram shown in Fig. 4.
 Next, the questionnaire intended to find out the
problems encountered by the component users. These
problems, as shown abbreviated in Fig. 5, are:

• Lack of tools to support the development process

(Tools availability)

Fig. 4: Types of components used (Q10)

Fig. 5: Problems faced in using components (Q12)

• Insufficient components to be used and reused

(Insufficient component)
• No proper procedures for developing, depositing

and retrieving components from the repository
(Proper procedure)

• Focus not given to COSD (No focus)
• Insufficient funding in shifting to COSD

(Financial)
• Trust in using components developed by other

people (Trust issues)
• Prefer to develop the whole application afresh

(Prefer own component)
• Ownership issues of the shared components

(Ownership issues)

Figure 5 also shows the feedback received from the
developers on the problem that they faced in using
components in percentage form. Of the 36.84%
software developers who claimed that lack of tools as
one of their problems in using components, the
questionnaire further asked about the type of tools
needed and the response is shown in Fig. 6. From
Fig. 6, it shows that the most needed tools,

Non -
component

users
(42 . 57 %)

Component
users

(57.43 %)

1

1

1
9

20 15

10
Design

Exe .

Code

J. Computer Sci., 5 (1): 39-48, 2009

 44

Fig. 6: Types of tools needed to support COSD (Q13)

in descending priority order, are tools to develop
(62.50%), implement (59.38%) and compose (50.00%)
components respectively. The component users were
also asked on the factors that they think play important
roles towards successful implementation of COSD.
These factors are:

• Availability of tools to support COSD (Tools

availability)
• Practical hands-on training on the application of

COSD (Training)
• Sufficient knowledge on component technology

(Knowledge on COSD)
• Strong support from the management to shift to

COSD (Management support)
• Strong financial support or funding to start up

COSD (Financial)
• Willingness to learn and adopt new skills and

technology (Willingness to learn)
• Proper procedures on components ownership,

transfer et cetera in place (Proper procedure)
• Willingness to share components with other

developers (Willingness to share)

 The result also varies as shown in Fig. 7.
 The advantages of COSD as stated in many
literatures are higher software product quality, lower
production time and lower production cost. For those
who have been applying COSD in their software
development projects, these benefits may have been
materialized. For others, they remain a theory. Our
interest here is to find out the percentage of
component users who see these advantages from their
experience in using components. Since quality is
somewhat intangible, it is further refined into three
contributing attributes; number of errors found, testing
time and number of complaints from users.

Table 11: Opinion on COSD as a better way to develop software
(Q14)

Opinion Frequency Percentage (%)
Agree 40 94.83
Disagree 3 5.17

Fig. 7: Factors towards successful implementation of

COSD (Q16)

Fig. 8: Seen quality attributes of COSD (Q15 a))

Component users are regarded as to have seen the
increase in quality of the software produced when they
agree to all these attributes, as shown shaded in the
Venn diagram of Fig. 8. Therefore, 39 (67.24%)
component users actually see or experience an increase
in the quality of the software produced when using
components.
 Out of these 39 component users, more than half of
them (74.36%) also agree to the reduced time to market
the software and lower cost in producing them as
shown in the Venn diagram of Fig. 9. As such, it can be
concluded that a total of 29 (50.00%) component users
actually see the oft-mentioned advantages of COSD
based on their experience.
 Interestingly, despite all the problems faced by
these component users, 55 (94.83%) out of 58 of them
still believe that COSD is a better way to develop
software as shown in Table 11. Next, the analysis done
on the feedback received from the non-component users
is presented.

 62.5 59.38
50

37.5
46.88

40.63

0
10
20
30
40
50
60
70

D
evelop

Im
plem

ent

C
om

pose

D
eposit

Search

R
etrieve

Pe
rc

en
ta

ge

0

0

1
6

4

4
Error

Complaint

Test
time

39

J. Computer Sci., 5 (1): 39-48, 2009

 45

Fig. 9: Seen advantages of COSD (Q15)

Table 12: Chances of using component in future software

development projects (Q18)
Chances Frequency Percentage (%)
Will use 39 90.70
Will not use 4 9.30

Non-component users: 43 out of 101 respondents,
which accounts for 42.57% of the total respondents do
not use components in their software development
projects. Various reasons are given for not using
components. These are:

• Lack of knowledge about components (Knowledge

on COSD)
• Not exposed to the component technology

(Exposure to COSD)
• Lack of available supporting tools (Tools

availability)
• Lack of support from the management

(Management support)
• Insufficient funding to shift to COSD (Financial)
• Do not feel the need to change the current practice

(Need for change)
• Not willing to change the current development

practice (Willingness to change)
• Not willing to learn new technology (Willingness

to learn)
• COSD is not the common development practice in

Malaysia (Uncommon practice)

 The top three reasons for not using components are
exposure to COSD, knowledge on COSD and tools
availability as shown in Fig. 10. When asked about
their willingness to use components in future software
development projects, if given the opportunity to do so,
90.70% of them will adopt COSD in the future if given
the chance. Furthermore, 93.02% of the non-component
users agree that COSD is the way to go in developing
software as shown in Table 12 and 13 respectively.

Table 13: Opinion in COSD as the way to go in developing software
(Q19)

Opinion Frequency Percentage
Agree 40 93.02%
Disagree 3 6.98%

Fig. 10: Reasons for not using components (Q17)

DISCUSSION

 Next, analyses are performed to interpret the
results and tie them back to objectives of this survey as
shown in the survey model of Fig. 1.

Determining the potential: The potential of COSD
application can be determined from the responses given
by the software developers in general, from the
component users and from the non-component users as
previously shown in Fig. 1. Therefore, the subsequent
three paragraphs will discuss and conclude about the
potential from the viewpoints of the three groups of
respondents respectively.
 From the current software development practice of
all software developers, it can be concluded that the
inclination is towards software reuse. This is showed by
the types of programming languages used, which are
mainly object-oriented programming languages; the
development methodology applied, which are mainly
object-oriented; and the amount of code being reused
where majority of the software developers reuse code
from previous projects with the mod of reuse amount is
around 50%. Almost 80% of those who reuse code from
previous projects code reuse more than 50% of the
code. COSD is designed to support reuse and this
inclination is in line with its objectives. Therefore, it
can be concluded that from the viewpoint of the
software developers in general, the potential of COSD
application is high. The fact that majority of the

NA

6

1
3

NA

NA
Quality

cost

Market
time

29

J. Computer Sci., 5 (1): 39-48, 2009

 46

software developers are already familiar with the term
component further increases this potential.
 Even though problems are faced by the component
users while using components, 94.83% of the existing
component users still believe that COSD is a better way
to develop software. This belief is most likely
supported by the fact that half of them experienced all
the advantages of COSD while using it. This means that
the possibility of the component users to continue using
this development approach is there. Therefore, from the
viewpoint of the current component users, it can be
concluded that the potential of COSD to be applied in
their software development projects is also high.
 From the side of the non-component users, the
prospect is also very encouraging. 93.02% of the non-
component users agree that COSD is the way to go in
developing software despite not applying them in their
software development projects, with 90.70% of them
will apply the approach if given the chance to do so.
Therefore, we can also conclude that the potential of
COSD to be applied by the non-component users is also
high. With these, we conclude that the potential of
COSD application in Malaysia is high.
 On top of the potential for COSD application,
outcomes from the survey are also able to discover the
research potential in the area of COSD. From the total
of 58 component users, only 28 (27.72%) of them admit
that the components used meet both requirements of
being independent of any vendors and available in
executable form, two requirements of ideal components
as stated by Szyperski[6]. This claim, when further
investigated shows that only 34.48% of the component
users use a mixture of self developed and third party
components, i.e., an indication of being independent of
vendors. Furthermore, majority of the component users
use components in a mixture of design, code and
executable forms. There is only 1 (0.99%) component
user who uses components solely in executable form,
i.e., an indication of meeting the second requirement of
an ideal component. Thus, it can be concluded that the
current COSD practice is still far from maturity and
hence, provides spacious room for research
opportunities in this area. Therefore, the possible
research areas, which were identified from the survey
results, will be discussed next.

Identifying research areas: From the analysis shown
in Fig. 5, 7 and 10, it can be seen that the priority order
of problems, factors and reasons affecting the use of
COSD vary between the component users and non-
component users. To the component users, the top three
problems faced are:

• Focus not given to COSD (No focus)
• No proper procedures for developing, depositing

and retrieving components from the repository
(Proper procedure) Ownership issues of the shared
components (Ownership issues)

 As for the factors affecting the use of COSD, they
priorities on:

• Willingness to learn and adopt new skills and

technology (willingness to learn)
• Sufficient knowledge on component technology

(knowledge on COSD)
• Practical hands-on training on the application of

COSD (training)

 For the non-component users on the other hand, the
first three reasons given by them are:

• Not exposed to the component technology (Ex-

posure to COSD)
• Lack of knowledge about components (knowledge

on COSD)
• Lack of available supporting tools (tools

availability)

 Because of this differing priority, it is therefore not
feasible to address a single problem, factor or reason
that will give the most impact on the application of
COSD to both component users and non-component
users alike. Therefore, it is suggested that each
problem, factor or reason is treated equally by
venturing into appropriate research area. For this
purpose, four possible research areas, labelled S1 to S4,
are proposed to address the problems, factors and
reasons. Overlapping problems, factors and reasons are
merged in the process of formulating the research areas.
Details of the merging is explained in Aris and Salim[7].
These research areas are categorized into primary and
secondary as shown in Fig. 11. Primary research areas
can be initiated to directly solve a specific problem and
factor under it. Secondary research areas depend on the
outcomes of primary research areas and cannot be
directly initiated.
 In the primary research areas category, three
research areas are identified; S1, S2 and S3. S1 is
concerned with the provision of trainings and workshops
related to the application of COSD in software
development. Issues that are directly influenced by this
solution can be divided into two as shown separated by
dashed line in Fig. 11. Issues above the dashed line are
those that directly affect the software developers.

J. Computer Sci., 5 (1): 39-48, 2009

 47

Fig. 11: Proposed research areas to address problems

facing and factors affecting the application

Meanwhile, issues below the dashed line are those that
affect the management of a software company. For the
software developers, two categories of trainings and
workshops can be further identified; soft-skill training
and hard-skill training. Soft-skill trainings focus on
information dissemination to instil awareness on the
benefits of using components while hard-skill trainings
that focus on the use of tools, techniques and model to
facilitate the development of software using COSD
approach.
 S2 is concerned with definition of procedures and
regulations pertaining to the use of components. This
includes the procedures to store components into the
repositories that may include the issues of labeling and
tagging a component, procedures to retrieve
components from the repositories that may include the
issues of acknowledgment, royalty, copyrights and the
extent of which a component can be modified.
Regulations that govern the use of third party
components, including accountability issues, should
also be defined. Proper procedures and regulations in
place help to resolve issues on the lack of proper
procedure, willingness to share, trust and ownership
issues as shown in Fig. 11.
 The third primary research area, S3, is on the
development of tools to support COSD process is the
research area where most of the current research on
COSD is focusing on[8]. This solution concerns with the
production of tools that can be used to facilitate the
software developers in developing software using
COSD approach. The tools can support individual or a
group of processes in COSD. Tools can also include
framework or models that can be applied by the
software developers to assist the development work.

 Research results from primary research areas will
contribute to the maturing of COSD, S4 that will solve
the problems and factors of insufficient components
and uncommon practice. However, it is important to
note here that these research areas are not necessarily
mutually exclusive of one another. For example, proper
procedures and regulations are needed in governing the
exchange of components (S2). However, this can only
be achieved with the exposure of COSD being made
through provision of appropriate and relevant trainings
(S1).

Threats to validity: While every care has been taken to
ensure the reliability of the information gathered, its
representativeness cannot be 100% guaranteed as the
data are obtained from sampled population. However,
the following measures have been taken to mitigate the
possible threats to data validity[9].
 On construct validity, a pilot test was performed
prior to the actual questionnaire distribution to ensure
that the software developers share common
understanding on the terms used in the questionnaire.
As a result, a number of questionnaires were rearranged
and rephrased for clarity.
 On external validity, the data collected indicated
that most of the respondents are experienced enough for
us to rely on the accuracy of the information given,
with majority having more than two years experience in
their job. Most of the respondents also develop software
for both internal and external use, which indicates that
the software development practice applied is not only
confined to their companies but general enough to
represent software development practice in Malaysia.
Needless to mention, most of the respondents’ job
nature is also directly related to software development.
 On internal validity, as can be seen in this article,
only basic descriptive statistics is used in analyzing the
results, which are derived directly from the raw data
gathered. Finally, on reliability, detailed descriptions
on the survey method and questionnaire structure have
been included.

CONCLUSION

 Knowing and understanding the current state of
COSD application in the software development
industries are important in determining research areas
in COSD that will help promoting its use by the
software developers. In this study, the results of a study
done on investigating the current state of COSD
application amongst Malaysian software developers are
presented. The study was accomplished through
questionnaire distribution to the software developers

J. Computer Sci., 5 (1): 39-48, 2009

 48

working in various software development companies in
Malaysia. Analysis of the responses received shows that
the opportunity of COSD application in future software
development amongst Malaysian software developers is
high. On top of the opportunity, this study also
discovers a number of problems associated with its
application, which if not treated, would become
hindrances to the application of COSD, despite its high
prospect. Therefore, combined with the factors
affecting the application of COSD, which is another
finding from this study, these problems are turned into
possible research areas that can be explored in order to
encourage its application amongst Malaysian software
developers.

REFERENCES

1. Prieto-Diaz, R., 1994. The disappearance of

software reuse. Proceeding of the 3rd International
Conference on Software Reuse, Nov. 1-4, IEEE
Computer Society, USA., pp: 255. DOI:
10.1109/ICSR.1994.365792

2. Pyne, R., S. McNamarah, M. Bernard, D. Hines,
G. Lawrence and D. Barton, 2005. An evaluation
on the state of component-based software
engineering in Jamaica. Proceeding of the IEEE
Southeast Conference, Apr. 8-10, IEEE Computer
Society, USA., pp: 570-575. DOI:
10.1109/SECON.2005.1423307

3. Li, J., M. Torchiano, R. Conradi, O.P.N. Slyngstad
and C. Bunse, 2006. A state-of-the-practice survey
of off-the-shelf component-based development
processes. Lecture Notes Comput. Sci., 4039: 16-28.
http://www.springerlink.com/content/18431617715
0k2qn/

4. Seta, F., T. Onishi and T. Kidokoro, 2001. Study
about locational tendency of IT companies in city
centers and suburbs-case study of Malaysia.
Proceeding of the International Symposium on
Urban Planning, (ISUP’01), Taejong, Korea,
pp: 257-266.

 http://www.regionalplanning.net/seta/study/0108m
yit.pdf

5. MDec, 2007. List of MSC Status Companies.
http://www.mscmalaysia.my/topic/Company+Dire
ctory

6. Szyperski, C., 2002. Component Software Beyond
Object-Oriented Programming. 2nd Edn., Pearson
Education Limited, London, ISBN: 0-201-74572-0.

7. Aris, H. and S.S. Salim, 2008. Issues on the
application of component-oriented software
development: Formulation of research areas.
Inform. Technol. J., 7: 1149-1155.
http://www.scialert.net/pdfs/itj/2008/1149-1155.pdf

8. Crnkovic, I. and M. Larsson, 2002. Building
Reliable Component-Based Software Systems. 1st
Edn., Artech House Publishers, ISBN: 1-58053-
327-2, pp: 454.

9. Easterbrook, J., M.A. Storey and D. Damian, 2007.
Selecting Empirical Methods for Software
Engineering. In: Guide to Advanced Empirical
Software Engineering, Shull, F. and D.I.K. Sjoberg
(Eds.). Springer, London, ISBN: 978-1-84800-044-
5, pp: 285-311.

