
Journal of Computer Science 5 (10): 745-750, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Asef Al-Khateeb, School of Computer Sciences, University Sains Malaysia, 11800 Penang, Malaysia
745

Job Type Approach for Deciding Job Scheduling in

Grid Computing Systems

Asef AL-Khateeb, Rosni Abdullah and Nur'Aini Abdul Rashid
School of Computer Sciences, University Sains Malaysia,

11800 USM, Pulau Pinang, Malaysia

Abstract: Problem statement: Meta-scheduling has become very important due to the increased
number of submitted jobs for execution. Approach: We considered the job type in the scheduling
decision that was not considered previously. Each job can be categorized into two types namely, data-
intensive and computational-intensive in a specific ratio. Job ratio reflected the exact level of the job
type in two specific numbers in the form of ratio and was computed to match the appropriate sites for
the jobs in order to decrease the job turnaround time. Moreover, the number of jobs in the queue was
considered in the batch decision to ensure server-load balancing. Results: The new factor that we
considered namely, the job ratio can reduce the job turnaround time by submitting jobs in batches
rather than submitting the jobs one by one. Conclusion: Our proposed system can be implemented in
any middleware to provide job scheduling service.

Key words: Meta-scheduling, job scheduling, job ratio, computational jobs, data-intensive jobs

INTRODUCTION

 Currently, many applications can be divided into
jobs that turned to grid computing[15] to meet their
computational and data storage needs. The emergence
of scientific applications and projects[16,17] leads to
increased the number of applications. Using distributed
grid resources can benefit these applications such as
speeding up the applications process and utilizing the
idle resources. However, this is possible only if the
resources are scheduled well. Grid scheduling is
defined as the process of making scheduling decisions
involving allocating jobs to resources over multiple
administrative domains. This can include searching
multiple administrative domains to use a single
machine or scheduling a single job to use multiple
resources at a single site or multiple sites. Scheduling
applications in a Grid environment is significantly more
complicated than scheduling applications for a
traditional supercomputer because of the heterogeneous
nature of the Grid systems.
 There are two different types of scheduler systems
namely, the local scheduler and the global scheduler
(Meta-Scheduler). The local scheduler schedules the
jobs within its own managed site. Typically, these local
schedulers cannot schedule jobs to some other available
sites, rather it has localized control. The most popular
local schedulers are: Load Sharing Facility (LSF)[8], the
Open Portable Batch System (PBS)[10], Sun Grid

Engine (SGE)[11] and Condor[9]. On the other hand
Meta-Scheduler manages jobs among available sites in
the grid environment. Although there are already
available methods for Meat-scheduler, there is still a
need to improve the scheduling techniques because the
number of jobs running on grid has increased that cause
the system to degrade. Therefore, our focus is to optimize
the efficiency of the Meta-Scheduler by providing more
enhanced techniques. The task of the scheduler is to
dynamically identify and characterize the available
resources and to allocate the most appropriate resources
for the given jobs. The resources are typically
heterogeneous, locally administered and accessible under
different local access policies and thus the problem to be
addressed in this study is how to select the best site for
submitting the underlying jobs and how many jobs the
system should submit each time.
 In the previous study, the Meta-Scheduler decides
the best site based on the number of jobs that is waiting
in the queue. While other proposed methods select the
criteria based on the data access cost; but these two
main criteria are insufficient for the best decision,
because they neglect the job types, which include:
computational jobs and data-intensive jobs. The
computational jobs are the jobs that require processing
time more than data access time. However, data-
intensive jobs are the jobs that require data access time
more than processing time. Consequently, our scheduler
selects the sites that have more processing capabilities

J. Computer Sci., 5 (10): 745-750, 2009

746

for the computational jobs and the sites that house the
required data or very closed to the sites that house the
required data in order to reduce the data access cost for
data-intensive jobs. Knowing that the cost considered
here is the time required for getting the required data.
 In this study, the problem is viewed in two-fold:
The first-fold is how to select the best site. The
selection process based on the selection criteria.
Identifying the criteria set is not an easy task, because
most of the criteria are dynamic and changes over time.
The second-fold is how many jobs the system can
submit at a time. Grouping jobs together in one batch is
a challenge problem because the number of jobs with
each batch varies from one batch to another batch.
Indeed, determining the numbers of jobs in each batch
are subject to many factors such as: Job type, job
requirements and resource availability.
 The main objective of this study is to produce an
enhanced Meta-scheduling system that provides:
queuing service, matching service and batching service
in order to establish server-load balancing and to reduce
the job turnaround time, which is the time elapse from
when the job is submitted to the grid site until the job
finishes its execution.

Related work: Most previous Meta-scheduling work
has considered data access cost and waiting time for
jobs in the queue issues. We discuss study that has
recognized the importance of these issues for job
scheduling in the grid.
 Jiang at el.[1] consider the job behavior in the job
waiting queue as an important factor for scheduling
algorithm. The data access cost also is aggregated with
the job waiting queue in order to reduce the job
turnaround time. Results obtained from the simulator
show better system performance than other works that
consider only the data access cost in the scheduling
decisions. Knowing that the data access cost may
include: Data transfer time, data locations, storage
access latency and response time.
 Ranganathan and Foster[2] propose a framework
that include Meta-scheduling, local scheduler and
dataset scheduler. Results show that each scheduler
may influence other scheduler, Chicago Grid simulator
has been designed and implemented for achieving this
work only and thus the Chicago Grid simulator is a
customize simulation tool. Regarding to the external
scheduler that also called meta-scheduler, the data
access cost and the jobs waiting in queue are the only
criteria that considered in the decisions.
 Elmroth and Tordsson[3] the main goal of this study
is to shortest time for job completion including the time
for file staging, jobs waiting time in the queue and job

execution time. This goal is achieved by matching the
jobs to the appropriate resources using prediction
method because the resources are heterogeneous and
administrated by different administrator domains.
Matching jobs with resources is done by a decentralized
brokering system. Each user in the grid has its own
broker and the broker inquire other brokers of other
recourses in order to find the best resource. The
decentralized system is scalable, but the decisions are
made without global vision and thus the scheduling
results will be degraded.
 Shi at el.[4] provide an adaptive meta-scheduling
for data-intensive application. The data access cost,
jobs in a waiting queue and the computational grid are
all considered in the proposed system. The best site to
be selected for the underlying job should provide the
highest computation (i.e., high speed of CPU). A good
balancing between the computational power and data
access cost that exist in grid site is achieved.
 Ernemann at el.[5] proposed a meta-scheduler that
considers the geographic site location by categorize the
sites into time zones. The scheduler selects the site that
provides the nearest distance to the required data for the
job execution to reduce the job completion time. Hence,
the data access cost is the main factor that focused in
the scheduler.
 Zhang at el.[6] propose a resource selection
algorithm for the jobs. Each job can be submitted into
multisite in order to reduce job execution time. But, in
this method the job turnaround time may increases
since the data transfer time increase among the selected
multisite. On another hand this method may be worthy
in grid environments that the number of available sites
bigger than the submitted jobs, but this kind of grid
environment is very rare occurred in reality.
 Anjum at el.[7] Data Intensive and Network Aware
(DIANA) is a meta-scheduler engine that schedule jobs,
jobs priorities, jobs queue bulk submission and other
access cost and computational capability in order to
enable efficient global scheduling.
 Some of previous approaches have been used
greedy algorithm where jobs are submitted to a best site
location (grid resource) without assessing the global
cost of this action. However, this action can lead to a
skewing in the distribution of resources and can result
in large queue, reduced system performance and
throughput and degradation for the remainder of the
jobs. Obtaining local objectives may lead to achieve
global objectives at the system, but it may takes more
time in the optimization process and can only achieve
global objective to some extends while in our system,
global knowledge of jobs and grid resource are
aggregated and used in the scheduler engine.

J. Computer Sci., 5 (10): 745-750, 2009

747

 All the previous studies assume that all the jobs are
same. Very few studies consider that the jobs can be
either data-intensive jobs or computational jobs in same
ratio. Our main contribution is to analyze the job type
into two values. Values reflect the exact job type and
how much ratio for each type in order to enable more
efficient matching of the jobs to the appropriate
resources. More details about how to measure the job
ratio using predication method. On another side, the
grid site capability is provided by ISP and thus the
computational jobs submit into the sites that have more
computational power and the data-intensive jobs submit
into the sites that have less data access cost.

MATERIALS AND METHODS

 Our solution encapsulates in a system that we
termed as: Job-Based Meta-Scheduler System (JBMS),
which consists of three main components namely, Job
Analyzer and Monitor (JAM), Job Decider (JD) and Job
Batcher (JB) as shown in Fig. 1.

Job Analyzer and Monitor (JAM): The JAM
component is responsible for analyzing the received job
in terms of job type. The job types considered in this
context are: Computational Jobs (CJ) and Data-Intensive
Jobs (DIJ). The computational jobs are the jobs that
require more execution time than data access time which
represents the time required for input and output (I/O)
operations, while the data-intensive jobs are the jobs that
require more data access time than execution time.
According to the job type the system can match the jobs
with the appropriate resource. Therefore, our system
matches the computational jobs with the sites that have
more computational power which are represented by the
number of the processes and their cycle speed. However,
the system matches the data-intensive jobs with the sites
that are very close to the required data files location in
order to reduce data access time.
 The key concept of our proposed solution is not
only determined the job type, but also the job type
percentage ratio or simply Job-Ratio (JR), which
determines the exact job percentage requirement of
either computation or data-intensive jobs. Each job has
its own ratio that is divided into two values, the first
value indicates the job computation execution
requirement and the second value indicates the data
intensive I/O requirement. For example, a job has ratio
3:1, this means that the job needs 75% computational
execution and 25% data intensive I/O. This ratio will be
used latter by the JD component to decide the exact
appropriate site for submitting the jobs. In this context,
the ratio is playing a major role in the selection decision
which weights for each job type.

Fig. 1: Job-Based Meta-Scheduler System (JBMS)

architecture

 The JAM computes the JR from the historical data
file which keeps information about the previously
recorded jobs. Typically, the jobs as software programs
require similar computational power and data access
each time they execute, but there are some differences
based on the program instructions flow. The job may
use three files in one execution and may use four files
in another execution. Therefore, JAM record the
amount of time required for execution and the amount
of time required for data access for all the jobs in the
grid in the history file. The following time, when a job
is submitted to the system, JAM computes the average
of the execution time and the average of the data access
time to come up with the JR.
 If the job does not exist in the history file as if the
job is being executed for the first time. In this case,
JAM assigns an estimated JR for the underlying job
depending on the average of other similar jobs. Once
the JR is computed for the jobs, the JAM passes these
jobs to the JD that manages the selection process and
passes these jobs to the JB that manages the priorities
and batches and submits the jobs to the appropriate site
location for execution. JAM monitors the jobs under
execution by measuring the job execution time and the
data access time for each job in order to save the new
data into the history file for further decisions. Due to
the amount of times the job is executed the JR will be
more accurate and reflect the exact job type.
 The JAM measures the Job Execution Time (JET)
by using the following equation:

JET JTT JIOT= − (1)

J. Computer Sci., 5 (10): 745-750, 2009

748

Where:
JTT = Job Turnaround time, which is the period of

time when the job is submitted into the site
until the job finishes the execution

JIOT = Job Input and Output Time, which is the total
time required for I/O operations where the job
is being executed

 Likewise, the JAM also monitors the jobs under
execution by using some other existing tools and
measures the JIOT by the following equation:

JIOT JTT JET= − (2)

 Accordingly, the job-ratio that has the form CJR:
DIJR is computed as follows:

JET
CJR 100

JTT
= × (3)

JIOTDIJR 100JTT= × (4)

 CJR and DIJR are multiplied by 100% for clarity
and to deal with CJR and DIJR as percentage ratios.
Therefore, the JR (CJR: DIJR) are the values that
reflect the exact job required time for execution and the
required time for data access. Such that:

• CJR represents the execution time required by a

job
• DIJR represents the I/O operations time required

by a job

Job Decider (JD): The JD is responsible for finding
the appropriate site for the underlying job. JD ranks the
available sites for each job according to the following
steps:

Step 1: There are several types of jobs which require
more of the computational process and need more
processing power to submit for the site which has more
capability processing power. Thus the Process Power
Ratio (PPR) is computed as follows:

(Site)

n

(Site)

i 1

Processpower
PPR

Processpower
=

=
∑

 (5)

Step 2: Data-intensive jobs are the jobs that require
data access more than processing power. The Data
Power Ratio (DPR) is computed as follows:

(site)

n

(site)

i 1

Data accesscost
DPR 1

Data accesscost
=

= −
∑

 (6)

 Data Access Cost is the aggregated cost for all
required files for the underlying job and for each data
access file the cost is the transfer time which is
computed as follows:

(MB)

(MB / SEC)

File size
Transfer time

Bandwidth
= (7)

Step 3: The number of the jobs in the queue should be
considered in the selection process before submitting
any group of jobs and to know the required time which
remains in the queue, in order to ensure server load-
balancing among the grid sites. Thus the Queue Ratio
(QR) is computed as follows:

n

i 1

No. of jobs in queue
QR 1

No. of jobs in queue
=

= −
∑

 (8)

Step 4: For each site, the site ranked as follows:

Site rank = (PPR*CJR) + (DPR*DIJR) + QR (9)

Step 5: Sort the site rank in descending order for each
job in the job handler queue.

Job Batcher (JB): The JB collects the jobs in batches
and sends the jobs to the selected ranked site. JB is
responsible for determining the number of jobs for each
batch based on the JAM and the Grid Information
Service (GIS)[13,18] such as Network Weather Service
(NWS)[14]. The JB gets the ranked sites from the JD and
decides the job batching by performing the following
steps:

Step 1: For each site, the available number of jobs in
the site will be the number of the jobs in the batch and
computed as follows:

Available No. of jobs=Queue lenght-current No. of jobs (10)

Step 2: For each job in the job queue handler, the first
job is assigned to the site that has the first rank. If the
queue of the underlying site is full, then the job will be
assigned to the second ranked site and so forth until all
the jobs are assigned to the related sites.

J. Computer Sci., 5 (10): 745-750, 2009

749

Step 3: JB submits the jobs related to each batch to the
correspondence site.

Step 4: JAM monitors all the jobs under execution and
measures the JET and JDAT. Accordingly, the new job
ratio will be computed and updated in the history
file.TET and JDAT is computed for each job in the
grid. Each time any job executed, the job ratio will be
update. Since the grid sites are varying in their
capability power, reference point should be used to
uniform the PP for all the sites in order to expose the
JET and JTT, as computed by the following equation:

(site)

(site)

PP
RJTT * JTT

RPP
= (11)

Where:
RJTT = Ratio Job Turnaround Time
PP = Process Power for the Job Site
RPP = Reference Process Power which is constant

value

Step 5: Very huge data may reordered in the historical
file gradually over time. Therefore, a new method is
used in order to keep only the average ratio by
computing the new average each time a specific job is
executed, as the following equation:

OldAv * JETN RJTT
NewAv

JETN 1

+=
+

 (12)

NewAV =New Average
OldAv = Old Average
JETN = Job Execution Time Number

RESULTS AND DISCUSSION

 Table 1 reflects the results of applying the
underlying solution. Each job of the submitted jobs has
a ranked value for all the available sites. Related to
these ranks the jobs batcher can submit the jobs to the
selected ranked site as batches after calculating the
available number of jobs in the site's queue. Table 2
shows the available number of jobs and job batches for
each site.
 This study describes the scheduling decision of
jobs in grid computing systems. We have considered a
new factor namely, the job ratio that can reduce the job
turnaround time as a main objective of this study and
the most desired issue for grid users. On another hand
submitting jobs in batches is more efficient than
submitting the jobs one by one as a result.

Table 1: Jobs and related ranked sites example
Job ID Ranked site
Job 1 1 5 4 2 3
Job 2 3 4 5 1 2
Job 3 2 1 5 4 3
Job 4 5 3 1 2 4
Job 5 4 1 3 2 5
Job 6 2 4 1 5 3
Job 7 3 1 5 4 2
Job 8 1 4 3 2 5
Job 9 5 4 3 1 2
Job 10 2 1 4 3 5

Table 2: Jobs batched example
Site ID Available No. of jobs Batches job
1 2 J1, J8
2 1 J3
3 3 J2, J7, J10
4 2 J5, J6
5 2 J4, J9

CONCLUSION

 In this study, we have introduced a job resource
matching policy. The job execution time and the data
access time for each job is monitored and computed to
provide the Job-Ratio. An elaborate prediction function
is produced for computing the Job-Ratio based on the
history file and other grid services tools. Also we
introduced job batches policy that based on jobs’
priorities and sites capabilities in order to reduce the
time and balancing the workload among grid sites. Our
system can be implemented in real grid middleware
such as Globus[12].

ACKNOWLEDGEMENT

 This study has been funded by University Sains
Malaysia. Under the short-term Research Grant for
“KNOWLEDGPROCESSING PLATFORM”
[1001/PKOMP/817002].

REFERENCES

1. Jiang, J., H. Ji, G. Xu and X. Wei, 2008.

Scheduling algorithm with potential behaviors. J.
Comput., 3: 1-9.

 http://www.academypublisher.com/jcp/vol03/no12/
jcp03125159.html

2. Ranganathan, K. and I. Foster, 2003. Simulation
studies of computation and data scheduling
algorithms for data grids. J. Grid Comput., 1: 53-62.
http://www.metapress.com/link.asp?id=HJ25770J1
825817U

J. Computer Sci., 5 (10): 745-750, 2009

750

3. Elmroth, E. and J. Tordsson, 2008. Grid resource
brokering algorithms enabling advance
reservations and resource selection based on
performance predictions. Future Generat. Comput.
Syst., 24: 585-593. DOI:
10.1016/j.future.2007.06.001

4. Shi, X., H. Jin, W. Qiang and D. Zou, 2004. An
adaptive meta-scheduler for data-intensive
applications. Lecture Notes Comput. Sci.,
3033: 830-837. DOI: 978-3-540-21993-4

5. Ernemann, C., V. Hamscher and R. Yahyapour,
2004. Benefits of global grid computing for job
scheduling. Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing,
Nov. 8-8, IEEE Computer Society, Washington
DC., USA., pp: 374-379.
http://portal.acm.org/citation.cfm?id=1033267

6. Zhang, W., B. Fang, H. He, H. Zhang and M. Hu,
2004. Multisite Resource Selection and Scheduling
Algorithm on Computational Grid. Proceedings of
the 18th International Parallel and Distributed
Processing Symposium, Apr. 26-30, IEEE Xplore
Press, USA., pp: 105.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumbe
r=1303052

7. Anjum, A., R. McClatchey, A. Ali and I. Willers,
2006. Bulk scheduling with the DIANA scheduler.
Nuclear Sci. IEEE. Trans., 53: 3818-3829.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumbe
r=4033697

8. Zhou, S., X. Zheng, J. Wang and P. Delisle, 1993.
A load sharing facility for large, heterogeneous
distributed computer systems. Software-Pract.
Exp., 23: 1305-1336. DOI:
10.1002/spe.4380231203

9. Thain, D., T. Tannenbaum and M. Livny, 2003.
Condor and the Grid. In: Grid Computing: Making
The Global Infrastructure a Reality, Fran Berman,
A.J.G.H. (Ed.). John Wiley, Geoffrey Fox, ISBN:
0470853190, pp: 1012.

10. Robert, H., 1995. Job scheduling under the portable
batch system, in job scheduling strategies for
parallel processing. Lecture Notes Comput. Sci.,
949: 279-294.

 http://portal.acm.org/citation.cfm?id=689372

11. Sundaram, B. et al., 2006. Sun grid engine package
for OSCAR-a Google summer of code 2005
project. Proceeding of the 20th International
Symposium on High-Performance Computing in an
Advanced Collaborative Environment, May 14-17,
IEEE Xplore Press, USA., pp: 41-41. DOI:
10.1109/HPCS.2006.42

12. Ferreira, L. and V. Berstis at el., 2002. Introduction
to Grid Computing with Globus. 1st Edn.,
Copyright IBM., ISBN: 0-7384-9988-9, pp: 290.

13. Aktas, M.S., 2007. Information federation in grid
information services. Department of Computer
Science. Indiana University.
http://grids.ucs.indiana.edu/ptliupages/publications/
MehmetAktasThesis.pdf

14. Yousaf, M.M., M. Welzl and M.M. Junaid, 2007.
Fog in the network weather service: A case for
novel approaches. Proceedings of the 1st
International Conference on Networks for Grid
applications, Oct. 17-19, Lyon, France, pp: 1-6.
http://portal.acm.org/citation.cfm?id=1386610.138
6641

15. Foster, I., C. Kesselman and S. Tuecke, 2001. The
Anatomy of the Grid: Enabling scalable virtual
organizations. Lecture Notes Comput. Sci.,
2150: 1-4. DOI: 10.1007/3-540-44681-8_1

16. Cho, K., 2007. A test of the interoperability of grid
middleware for the korean high energy physics
data grid system. Int. J. Comput. Sci. Network
Sec., 7: 1-6.

 http://paper.ijcsns.org/07_book/200703/20070308.
pdf

17. Holtman, K., 2001. CMS data grid system
overview and requirements. Technical Report.
http://citeseerx.ist.psu.edu/viewdoc/summary?DOI
=10.1.1.20.9986

18. Czajkowski, K., S. Fitzgerald, I. Foster and
C. Kesselman, 2001. Grid information services for
distributed resource sharing. Proceedings of the
10th IEEE International Symposium on High-
Performance Distributed Computing, Aug. 7-9,
IEEE Xplore Press, San Francisco, California,
USA., pp: 181-194.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumbe
r=945188

