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Abstract: Problem statement: Meta-scheduling has become very important due to the increased 
number of submitted jobs for execution. Approach: We considered the job type in the scheduling 
decision that was not considered previously. Each job can be categorized into two types namely, data-
intensive and computational-intensive in a specific ratio. Job ratio reflected the exact level of the job 
type in two specific numbers in the form of ratio and was computed to match the appropriate sites for 
the jobs in order to decrease the job turnaround time. Moreover, the number of jobs in the queue was 
considered in the batch decision to ensure server-load balancing. Results: The new factor that we 
considered namely, the job ratio can reduce the job turnaround time by submitting jobs in batches 
rather than submitting the jobs one by one. Conclusion: Our proposed system can be implemented in 
any middleware to provide job scheduling service. 
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INTRODUCTION 

 
 Currently, many applications can be divided into 
jobs that turned to grid computing[15] to meet their 
computational and data storage needs. The emergence 
of scientific applications and projects[16,17] leads to 
increased the number of applications. Using distributed 
grid resources can benefit these applications such as 
speeding up the applications process and utilizing the 
idle resources. However, this is possible only if the 
resources are scheduled well. Grid scheduling is 
defined as the process of making scheduling decisions 
involving allocating jobs to resources over multiple 
administrative domains. This can include searching 
multiple administrative domains to use a single 
machine or scheduling a single job to use multiple 
resources at a single site or multiple sites. Scheduling 
applications in a Grid environment is significantly more 
complicated than scheduling applications for a 
traditional supercomputer because of the heterogeneous 
nature of the Grid systems.  
 There are two different types of scheduler systems 
namely, the local scheduler and the global scheduler 
(Meta-Scheduler). The local scheduler schedules the 
jobs within its own managed site. Typically, these local 
schedulers cannot schedule jobs to some other available 
sites, rather it has localized control. The most popular 
local schedulers are: Load Sharing Facility (LSF)[8], the 
Open Portable Batch System (PBS)[10], Sun Grid 

Engine (SGE)[11] and Condor[9]. On the other hand 
Meta-Scheduler manages jobs among available sites in 
the grid environment. Although there are already 
available methods for Meat-scheduler, there is still a 
need to improve the scheduling techniques because the 
number of jobs running on grid has increased that cause 
the system to degrade. Therefore, our focus is to optimize 
the efficiency of the Meta-Scheduler by providing more 
enhanced techniques. The task of the scheduler is to 
dynamically identify and characterize the available 
resources and to allocate the most appropriate resources 
for the given jobs. The resources are typically 
heterogeneous, locally administered and accessible under 
different local access policies and thus the problem to be 
addressed in this study is how to select the best site for 
submitting the underlying jobs and how many jobs the 
system should submit each time. 
 In the previous study, the Meta-Scheduler decides 
the best site based on the number of jobs that is waiting 
in the queue. While other proposed methods select the 
criteria based on the data access cost; but these two 
main criteria are insufficient for the best decision, 
because they neglect the job types, which include: 
computational jobs and data-intensive jobs. The 
computational jobs are the jobs that require processing 
time more than data access time. However, data-
intensive jobs are the jobs that require data access time 
more than processing time. Consequently, our scheduler 
selects the sites that have more processing capabilities 
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for the computational jobs and the sites that house the 
required data or very closed to the sites that house the 
required data in order to reduce the data access cost for 
data-intensive jobs. Knowing that the cost considered 
here is the time required for getting the required data. 
 In this study, the problem is viewed in two-fold: 
The first-fold is how to select the best site. The 
selection process based on the selection criteria. 
Identifying the criteria set is not an easy task, because 
most of the criteria are dynamic and changes over time. 
The second-fold is how many jobs the system can 
submit at a time. Grouping jobs together in one batch is 
a challenge problem because the number of jobs with 
each batch varies from one batch to another batch. 
Indeed, determining the numbers of jobs in each batch 
are subject to many factors such as: Job type, job 
requirements and resource availability. 
 The main objective of this study is to produce an 
enhanced Meta-scheduling system that provides: 
queuing service, matching service and batching service 
in order to establish server-load balancing and to reduce 
the job turnaround time, which is the time elapse from 
when the job is submitted to the grid site until the job 
finishes its execution.  
 
Related work: Most previous Meta-scheduling work 
has considered data access cost and waiting time for 
jobs in the queue issues. We discuss study that has 
recognized the importance of these issues for job 
scheduling in the grid. 
 Jiang at el.[1] consider the job behavior in the job 
waiting queue as an important factor for scheduling 
algorithm. The data access cost also is aggregated with 
the job waiting queue in order to reduce the job 
turnaround time. Results obtained from the simulator 
show better system performance than other works that 
consider only the data access cost in the scheduling 
decisions. Knowing that the data access cost may 
include: Data transfer time, data locations, storage 
access latency and response time. 
 Ranganathan and Foster[2] propose a framework 
that include Meta-scheduling, local scheduler and 
dataset scheduler. Results show that each scheduler 
may influence other scheduler, Chicago Grid simulator 
has been designed and implemented for achieving this 
work only and thus the Chicago Grid simulator is a 
customize simulation tool. Regarding to the external 
scheduler that also called meta-scheduler, the data 
access cost and the jobs waiting in queue are the only 
criteria that considered in the decisions. 
 Elmroth and Tordsson[3] the main goal of this study 
is to shortest time for job completion including the time 
for file staging, jobs waiting time in the queue and job 

execution time. This goal is achieved by matching the 
jobs to the appropriate resources using prediction 
method because the resources are heterogeneous and 
administrated by different administrator domains. 
Matching jobs with resources is done by a decentralized 
brokering system. Each user in the grid has its own 
broker and the broker inquire other brokers of other 
recourses in order to find the best resource. The 
decentralized system is scalable, but the decisions are 
made without global vision and thus the scheduling 
results will be degraded. 
 Shi at el.[4] provide an adaptive meta-scheduling 
for data-intensive application. The data access cost, 
jobs in a waiting queue and the computational grid are 
all considered in the proposed system. The best site to 
be selected for the underlying job should provide the 
highest computation (i.e., high speed of CPU). A good 
balancing between the computational power and data 
access cost that exist in grid site is achieved. 
 Ernemann at el.[5] proposed a meta-scheduler that 
considers the geographic site location by categorize the 
sites into time zones. The scheduler selects the site that 
provides the nearest distance to the required data for the 
job execution to reduce the job completion time. Hence, 
the data access cost is the main factor that focused in 
the scheduler.  
 Zhang at el.[6] propose a resource selection 
algorithm for the jobs. Each job can be submitted into 
multisite in order to reduce job execution time. But, in 
this method the job turnaround time may increases 
since the data transfer time increase among the selected 
multisite. On another hand this method may be worthy 
in grid environments that the number of available sites 
bigger than the submitted jobs, but this kind of grid 
environment is very rare occurred in reality. 
 Anjum at el.[7] Data Intensive and Network Aware 
(DIANA) is a meta-scheduler engine that schedule jobs, 
jobs priorities, jobs queue bulk submission and other 
access cost and computational capability in order to 
enable efficient global scheduling. 
 Some of previous approaches have been used 
greedy algorithm where jobs are submitted to a best site 
location (grid resource) without assessing the global 
cost of this action. However, this action can lead to a 
skewing in the distribution of resources and can result 
in large queue, reduced system performance and 
throughput and degradation for the remainder of the 
jobs. Obtaining local objectives may lead to achieve 
global objectives at the system, but it may takes more 
time in the optimization process and can only achieve 
global objective to some extends while in our system, 
global knowledge of jobs and grid resource are 
aggregated and used in the scheduler engine. 
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 All the previous studies assume that all the jobs are 
same. Very few studies consider that the jobs can be 
either data-intensive jobs or computational jobs in same 
ratio. Our main contribution is to analyze the job type 
into two values. Values reflect the exact job type and 
how much ratio for each type in order to enable more 
efficient matching of the jobs to the appropriate 
resources. More details about how to measure the job 
ratio using predication method. On another side, the 
grid site capability is provided by ISP and thus the 
computational jobs submit into the sites that have more 
computational power and the data-intensive jobs submit 
into the sites that have less data access cost. 
 

MATERIALS AND METHODS 
 
 Our solution encapsulates in a system that we 
termed as: Job-Based Meta-Scheduler System (JBMS), 
which consists of three main components namely, Job 
Analyzer and Monitor (JAM), Job Decider (JD) and Job 
Batcher (JB) as shown in Fig. 1. 
 
Job Analyzer and Monitor (JAM): The JAM 
component is responsible for analyzing the received job 
in terms of job type. The job types considered in this 
context are: Computational Jobs (CJ) and Data-Intensive 
Jobs (DIJ). The computational jobs are the jobs that 
require more execution time than data access time which 
represents the time required for input and output (I/O) 
operations, while the data-intensive jobs are the jobs that 
require more data access time than execution time. 
According to the job type the system can match the jobs 
with the appropriate resource. Therefore, our system 
matches the computational jobs with the sites that have 
more computational power which are represented by the 
number of the processes and their cycle speed. However, 
the system matches the data-intensive jobs with the sites 
that are very close to the required data files location in 
order to reduce data access time. 
 The key concept of our proposed solution is not 
only determined the job type, but also the job type 
percentage ratio or simply Job-Ratio (JR), which 
determines the exact job percentage requirement of 
either computation or data-intensive jobs. Each job has 
its own ratio that is divided into two values, the first 
value indicates the job computation execution 
requirement and the second value indicates the data 
intensive I/O requirement. For example, a job has ratio 
3:1, this means that the job needs 75% computational 
execution and 25% data intensive I/O. This ratio will be 
used latter by the JD component to decide the exact 
appropriate site for submitting the jobs. In this context, 
the ratio is playing a major role in the selection decision 
which weights for each job type.  

 
 
Fig. 1: Job-Based Meta-Scheduler System (JBMS) 

architecture 
 
 The JAM computes the JR from the historical data 
file which keeps information about the previously 
recorded jobs. Typically, the jobs as software programs 
require similar computational power and data access 
each time they execute, but there are some differences 
based on the program instructions flow. The job may 
use three files in one execution and may use four files 
in another execution. Therefore, JAM record the 
amount of time required for execution and the amount 
of time required for data access for all the jobs in the 
grid in the history file. The following time, when a job 
is submitted to the system, JAM computes the average 
of the execution time and the average of the data access 
time to come up with the JR. 
 If the job does not exist in the history file as if the 
job is being executed for the first time. In this case, 
JAM assigns an estimated JR for the underlying job 
depending on the average of other similar jobs. Once 
the JR is computed for the jobs, the JAM passes these 
jobs to the JD that manages the selection process and 
passes these jobs to the JB that manages the priorities 
and batches and submits the jobs to the appropriate site 
location for execution. JAM monitors the jobs under 
execution by measuring the job execution time and the 
data access time for each job in order to save the new 
data into the history file for further decisions. Due to 
the amount of times the job is executed the JR will be 
more accurate and reflect the exact job type. 
 The JAM measures the Job Execution Time (JET) 
by using the following equation: 
 
JET JTT JIOT= −  (1) 
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Where: 
JTT = Job Turnaround time, which is the period of 

time when the job is submitted into the site 
until the job finishes the execution 

JIOT = Job Input and Output Time, which is the total 
time required for I/O operations where the job 
is being executed 

 
 Likewise, the JAM also monitors the jobs under 
execution by using some other existing tools and 
measures the JIOT by the following equation:  
 
JIOT JTT JET= −  (2) 
 
 Accordingly, the job-ratio that has the form CJR: 
DIJR is computed as follows: 
 

JET
CJR 100

JTT
= ×  (3) 

 
JIOTDIJR 100JTT= ×  (4) 

 
 CJR and DIJR are multiplied by 100% for clarity 
and to deal with CJR and DIJR as percentage ratios. 
Therefore, the JR (CJR: DIJR) are the values that 
reflect the exact job required time for execution and the 
required time for data access. Such that: 
 
• CJR represents the execution time required by a 

job 
• DIJR represents the I/O operations time required 

by a job 
 
Job Decider (JD): The JD is responsible for finding 
the appropriate site for the underlying job. JD ranks the 
available sites for each job according to the following 
steps: 
 
Step 1: There are several types of jobs which require 
more of the computational process and need more 
processing power to submit for the site which has more 
capability processing power. Thus the Process Power 
Ratio (PPR) is computed as follows:  
 

(Site)

n

(Site)

i 1

Processpower
PPR

Processpower
=

=
∑

 (5) 

 
Step 2: Data-intensive jobs are the jobs that require 
data access more than processing power. The Data 
Power Ratio (DPR) is computed as follows: 

(site)

n

(site)

i 1

Data accesscost
DPR 1

Data accesscost
=

= −
∑

  (6) 

 
 Data Access Cost is the aggregated cost for all 
required files for the underlying job and for each data 
access file the cost is the transfer time which is 
computed as follows:  
 

(MB)

(MB / SEC)

File size
Transfer time

Bandwidth
=   (7) 

 
Step 3: The number of the jobs in the queue should be 
considered in the selection process before submitting 
any group of jobs and to know the required time which 
remains in the queue, in order to ensure server load-
balancing among the grid sites. Thus the Queue Ratio 
(QR) is computed as follows:  
 

n

i 1

No. of  jobs in queue
QR 1

No. of  jobs in queue
=

= −
∑

  (8) 

 
Step 4: For each site, the site ranked as follows: 
 
Site rank = (PPR*CJR) + (DPR*DIJR) + QR (9) 
 
Step 5: Sort the site rank in descending order for each 
job in the job handler queue. 
 
Job Batcher (JB): The JB collects the jobs in batches 
and sends the jobs to the selected ranked site. JB is 
responsible for determining the number of jobs for each 
batch based on the JAM and the Grid Information 
Service (GIS)[13,18] such as Network Weather Service 
(NWS)[14]. The JB gets the ranked sites from the JD and 
decides the job batching by performing the following 
steps: 
 
Step 1: For each site, the available number of jobs in 
the site will be the number of the jobs in the batch and 
computed as follows:  
 
Available No. of jobs=Queue lenght-current No. of jobs (10) 

 
Step 2: For each job in the job queue handler, the first 
job is assigned to the site that has the first rank. If the 
queue of the underlying site is full, then the job will be 
assigned to the second ranked site and so forth until all 
the jobs are assigned to the related sites. 
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Step 3: JB submits the jobs related to each batch to the 
correspondence site. 
 
Step 4: JAM monitors all the jobs under execution and 
measures the JET and JDAT. Accordingly, the new job 
ratio will be computed and updated in the history 
file.TET and JDAT is computed for each job in the 
grid. Each time any job executed, the job ratio will be 
update. Since the grid sites are varying in their 
capability power, reference point should be used to 
uniform the PP for all the sites in order to expose the 
JET and JTT, as computed by the following equation:  
 

(site)

(site)

PP
RJTT * JTT

RPP
=   (11) 

 
Where: 
RJTT = Ratio Job Turnaround Time 
PP = Process Power for the Job Site 
RPP = Reference Process Power which is constant 

value 
 
Step 5: Very huge data may reordered in the historical 
file gradually over time. Therefore, a new method is 
used in order to keep only the average ratio by 
computing the new average each time a specific job is 
executed, as the following equation: 
 

OldAv * JETN RJTT
NewAv

JETN 1

+=
+

  (12) 

 
NewAV =New Average 
OldAv = Old Average 
JETN = Job Execution Time Number 
 

RESULTS AND DISCUSSION 
 
 Table 1 reflects the results of applying the 
underlying solution. Each job of the submitted jobs has 
a ranked value for all the available sites. Related to 
these ranks the jobs batcher can submit the jobs to the 
selected ranked site as batches after calculating the 
available number of jobs in the site's queue. Table 2 
shows the available number of jobs and job batches for 
each site. 
 This study describes the scheduling decision of 
jobs in grid computing systems. We have considered a 
new factor namely, the job ratio that can reduce the job 
turnaround time as a main objective of this study and 
the most desired issue for grid users. On another hand 
submitting jobs in batches is more efficient than 
submitting the jobs one by one as a result.  

Table 1: Jobs and related ranked sites example 
Job ID  Ranked site  
Job 1 1 5 4 2 3 
Job 2 3 4 5 1 2 
Job 3 2 1 5 4 3 
Job 4 5 3 1 2 4 
Job 5 4 1 3 2 5 
Job 6 2 4 1 5 3 
Job 7 3 1 5 4 2 
Job 8 1 4 3 2 5 
Job 9 5 4 3 1 2 
Job 10 2 1 4 3 5 

 
Table 2: Jobs batched example 
Site ID Available No. of jobs Batches job 
1 2 J1, J8 
2 1 J3 
3 3 J2, J7, J10 
4 2 J5, J6 
5 2 J4, J9 

 
CONCLUSION 

 
 In this study, we have introduced a job resource 
matching policy. The job execution time and the data 
access time for each job is monitored and computed to 
provide the Job-Ratio. An elaborate prediction function 
is produced for computing the Job-Ratio based on the 
history file and other grid services tools. Also we 
introduced job batches policy that based on jobs’ 
priorities and sites capabilities in order to reduce the 
time and balancing the workload among grid sites. Our 
system can be implemented in real grid middleware 
such as Globus[12].  
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