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Abstract: Problem statement: In many data grid applications, data can be decomposed into multiple 
independent sub-datasets and distributed for parallel execution and analysis. Approach: This property 
had been successfully employed by using Divisible Load Theory (DLT), which had been proved as a 
powerful tool for modeling divisible load problems in data-intensive grid. Results: There were some 
scheduling models had been studied but no optimal solution has been reached due to the heterogeneity 
of the grids. This study proposed a new optimal load allocation based on DLT model recursive 
numerical closed form solutions are derived to find the optimal workload assigned to the processing 
nodes. Conclusion/Recommendations: Experimental results showed that the proposed model 
obtained better solution than other models (almost optimal) in terms of Makespan. 
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INTRODUCTION 

 
 In the last decade, data grids have increasingly 
become popular for a wide range of scientific and 
commercial applications[1,2]. Load balancing and 
scheduling play a critical role in achieving high 
utilization of resources in such environments[3]. 
Scheduling an application is significantly complicated 
and challenging because of the heterogeneous nature of 
a grid system. Grid scheduling is defined as the process 
of making scheduling decisions involving allocating 
jobs to resources over multiple administrative 
domains[7]. Most of the scheduling strategies try to 
reduce the Makespan or the maximum completion time 
of the task which is defined as the difference between 
the time when the job was submitted to a computational 
resource and the time it completed. Makespan also 
includes the time taken to transfer the data to the point 
of computation if that is allowed by the scheduling 
strategy[7]. 
 In other hand, in many data intensive grid 
applications, data can be decomposed into multiple 
independent sub datasets and distributed for parallel 
execution and analysis. High Energy Physics (HEP) 
experiments fall into this category[1]. HEP data are 
characterized by independent events and therefore this 
characteristic can be exploited when parallelizing the 
analysis of data across multiple sites. The DLT 
paradigm[11] has emerged as a powerful tool for 
modeling data-intensive computational problems 

incorporating communication and computations 
issues[4]. An example of this direction is the work by[5] 
where the DLT is applied to model the grid scheduling 
problem involving multiple sources to multiple sinks. In 
that model, they did not consider the communication 
time. Whereas, the scheduling in grid applications must 
consider communication and computation 
simultaneously to achieve high performance. 
 Relevant materials to the problem addressed in this 
study are in[6,8,9] where Constraint DLT (CDLT), 
Adaptive DLT (ADLT), A2DLT and Adaptive Task 
Data Present (ATDP) models are proposed. These 
models are proposed for scheduling divisible load data-
intensive grid applications. In CDLT model, they stated 
that the scheduler targets an application model wherein 
a large dataset is split into multiple smaller datasets[5]. 
Then, these datasets processed in parallel on multiple 
virtual sites, where a virtual site is considered to be a 
collection of computing resources and data servers. 
However, in CDLT, the communication time for 
transferring load is not considered. In addition, ADLT 
and A2DLT models are proposed in considering 
communication time as well as computation time in[8,9], 
respectively. The proposed TDP model is proposed 
without considering input transfer time. 
 Our objective is to design a load distribution model 
by taking into account the communication time and 
computation time in such a way that the entire 
processing time of the load is a minimum. The main 
contribution of this study is the closed form solutions 
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for the minimum completion time and the optimal data 
allocation for each processing nodes are obtained. We 
validate the model through mathematical proof and 
comprehensive simulations. 
 A generic data grid computing system 
infrastructure considered here comprises a network of 
supercomputers and/or clusters of computers connected 
by Wide Area Network (WAN), having different 
computational and communication capabilities. We 
consider the problem of scheduling large-volume loads 
(divisible loads) within in multiple sites. 
Communication is assumed to be predominant between 
such cluster nodes and is assumed to be negligible 
within a cluster node[6,8-10]. 
 The target data intensive application model can be 
decomposed into multiple independent subtasks and 
executed in parallel across multiple sites without any 
interaction among sub tasks. For example, let’s 
consider job decomposition by decomposing input data 
objects into multiple smaller data objects of arbitrary 
size and processing them on multiple virtual sites. High 
Energy Physic (HEP) jobs are arbitrarily divisible at 
event granularity and intermediate data product 
processing granularity[2]. In this research, assuming that 
a job requires a very large logical input Data set (D) 
consists of N physical datasets and each physical 
dataset (of size Lk) resides at a data source (DSk, for all 
k = 1,2…,N) of a particular site. Figure 1 shows how 
the logical input Data (D) is decomposed onto networks 
and their computing resources. 
 The scheduling problem is to decompose D into 
datasets (Di for all i = 1, 2,...,M) across N virtual sites 
in a Virtual Organization (VO) given its initial physical 
decomposition. We assume that the decomposed data 
can be analyzed on any site. 
 For the notations, definitions that used in this 
research are stated in Table 1. 
 

 
 
Fig. 1: Data decomposition and their processing 

 The execution time of a subtask allocated to the 
site i (Ti) and the turn around time of a job J 
(Tturn_around_time) can be expressed as follows:  
 

i input _ cm cp output _ cmT T (i) T (i) T (i,d)= + +  
 

turnaround _ time i
i 1,...,M

T max {T}
=

=  

 
 The cost (Ti) includes input data transfer 
(Tinput_cm(i)), computation (Tcp(i)) and output data 
transfer to the client at the destination site d 
(Toutput_cm(i,d)): 
 

input _ cm ki
k 1..m

ki

1
T (i) max{ }

z=
= α ⋅  

 
cp i iT (i) d w= ⋅  

 
output _ cm i idT (i,d) f (d ) z= ⋅  

 
 We assume that data from multiple data sources 
can be transferred to a site i concurrently in the wide 
area environment and computation starts only after the 
assigned data set is totally transferred to the site. Hence, 
the problem of scheduling a divisible job onto n sites 
can be stated as deciding the portion of original 
workload (D) to be allocated to each site, that is, 
finding a distribution of distribution of { }kiα  which 

minimizes the turn-around time of a job. The proposed 
SA approach uses this cost model when evaluating 
solutions at each generation. 
 In all the literature related to the divisible load 
scheduling domain so far, an optimality criterion[11] is 
used to derive an optimal solution is as follows. It states 
that in order to obtain an optimal processing time, it is 
necessary and sufficient that all the sites that participate 
in the computation must stop at the same time. 
Otherwise, load could be redistributed to improve the 
processing time. The timing diagram for this distributed 
system in optimal case is depicted in Fig. 2. In this 
timing diagram, communication time appears above the 
axis and computation time appears below the axis. 
 
Table 1: Terminology, definitions and notations 
N The total number of data files in the system 
M The total number of nodes in the system 
Li The loads in data file i 
Lij The loads that node i will receive from data file j 

L The sum of loads in the system, where N

ii 1
L L

=
= ∑   

αij The fraction of L that node i will receive from all data file j 
wi The inverse of the computing speed of node i 
Zij The link between node i and data source j 
T (i) The processing time in node i 
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Fig. 2: Optimal case 
 

MATERIALS AND METHODS 
 
 The load scheduling problem is to decompose $D$ 
into datasets (Di for all i = 1, 2,…,M) across M virtual 
sites in a Virtual Organization (VO) given its initial 
physical decomposition. This model includes two steps: 
 New optimal closed form formulas for scheduling 
divisible load on large scale data grid system are 
proposed. Closed-form expressions for the processing 
time and the fraction of workload for each processing 
node are derived. Since, the closed form did not 
consider the communication time[5]. The new model 
considers computation time as well as communication 
time. 
 A new closed form solution is proposed for 
obtaining the optimal fraction (αi) as follows: 
 

α1.W1+α1.Z1 = T1 
 
Where: 
W1 = The node speed 
Z1 = Link speed between the source and the node 1. 
 
 And similarly: 
 

α2.W2+α2.Z2 = T2 
 
αi.Wi+αi. Zi = Ti, i = 1,2,…,  (1) 
 
αM. WM+αM.ZM = TM  (2) 
 
 In this case: 

T1 = T2 = ... = TM = T (3) 
 
αi.Wi+αi.Zi = T, i = 1,2,…,M (4) 
 
αi.(Wi+Zi) = T (5) 
 
α1+α2+…+αM-1+αM = 1 (6) 
 
 From Eq. 5 and 6 we obtain: 
 

i

T

Wi Zi
α =

+
, i = 1,2, …, M (7) 

 

1 1

T

W Z+
+

2 2

T

W Z+
+...+

M M

T

W Z+
 = 1  (8) 

 
 Thus, the closed-form expression of processing 
time (Makespan) is given as: 
 

1 1 2 2 M M

1
T

1 1 1
...

W Z W Z W Z

=
+ + +

+ + +

 

 
 Moreover, we can add the application type 
(ccRatio) to the equation as: 
 

1 1 2 2 M M

T

1
1 1 1

...
W .ccRatio Z W .ccRatio Z W .ccRatio Z

=

+ + +
+ + +

 

 
 After we get T, we can get αi by Eq. 7. By 
calculating the αi, the optimal time will be calculated. 
 

RESULTS AND DISCUSSION 
 
 To measure the performance of the proposed model 
against CDLT, ADLT and A2DLT models, randomly 
generated experimental configurations were used. The 
estimated expected execution time for processing a unit 
dataset on each site, the network bandwidth between 
sites, input data size and the ratio of output data size to 
input data size were randomly generated with uniform 
probability over some predefined ranges. The network 
bandwidth between sites is uniformly distributed 
between 1 Mbyte sec and 10 Mbps. 
 The location of m data sources DSk is randomly 
selected and each physical dataset size Lk is randomly 
selected with a uniform distribution in the range of 1 
GB - 1 TB. It is assumed that the computing time spent 
in a site i to process a unit dataset of size 1 MB is 
uniformly distributed in the range 1-10/rcb seconds, 
where rcb is the ratio of computation speed to 
communication speed.  
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Fig. 3: Makespan Vs ccRatio for CDLT, ADLT, 

A2DLT and IDLT (M = 100) 
 
 We examined the overall performance of each 
model by running them under 100 randomly generated 
Grid configurations. These parameters are varied: 
ccRatio (0.001-1000), M (20-100), N (20-100), rcb (10-
500) and data file size (1 GB-1 TB). To show how these 
models perform on different type of application 
(different ccRatio), we created graphs in Fig. 3. 
 In Fig. 3, the Makespan for the CDLT, ADLT, 
A2DLT and the proposed models is plotted against 
application type (ccRatio). The value of ccRatio is fixed 
at 1000 and the value of number of nodes M is fixed to 
be 100. It can be shown from the Fig. 3 that the 
proposed model is the best for any type of application, 
as expected, because the proposed model produce the 
almost optimal solution for scheduling load that is 
produced from single source.  
 

CONCLUSION 
 
 In this study, we have developed an effective 
Iterative model for optimal workload allocation. The 
proposed model is proposed for load allocation to 
processors and links for scheduling divisible data grid 
applications. The experimental results showed that the 
proposed model is capable of producing almost optimal 
solution for single source scheduling. Hence, the 
proposed model can balance the processing loads 
efficiently. We are planning to adapt the proposed 
model to be implemented in multiple sources. With 
such improvements, the proposed model can be 
integrated in the existing data grid schedulers in order 
to improve their performance. 
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