
Journal of Computer Science 5 (12): 974-979, 2009
ISSN 1549-3636
© 2009 Science Publications

974

Simulated Annealing with Deterministic Decisions

Taisir Eldos
Department of Computer Engineering,

Jordan University of Science and Technology, Al Ramtha, Irbid Jordan

Abstract: Problem statement: Simulated Annealing (SA) algorithms have been used in solving a
wide range of discrete optimization problems for many years, with well know drawbacks like the
computational time and difficulties related to the parameters settings. One of the other issues that open
the door for research is the acceptance decision that provides for hill climbing; the standard SA
algorithms use a stochastic method which fails to justify the acceptance of a cost increasing solutions
while rejecting mildly cost increasing ones. Approach: To resolve this dilemma, the reversible
deformation mechanism we developed earlier replaced the stochastic decision with a deterministic one;
by deforming the problem structure and gradually reforming it towards the original one. This provides
for hill climbing in the real domain while applying a simple downhill search in the virtual sense.
Unlike the standard SA algorithm, the number of iterations must be known in advance and it is the
only stopping criteria, because the scaling functions parameters are selected based on the number of
iterations. Results: This method had produced better solutions and the new enhancement to the
algorithm improves the overall performance by examining each state more thoroughly through a set of
perturbations and thus securing a move towards a better neighborhood, the same set of tests used in the
original methods are repeated for comparison. Conclusion: The significance of this research comes
from eliminating the unpredictability of the stochastic decisions in the standard SA algorithms which
might yield less than acceptable solutions in some cases.

Key words: Evolutionary, optimization, simulated, annealing, deterministic, algorithms

INTRODUCTION

Complex problems have been solved by
approximation using a set of methodologies;
Evolutionary Algorithms (EAs) which refer to a class of
computational problem-solving algorithms inspired by
the principle of natural selection; Genetic Algorithms
(GAs) by Holland in 1975[10], as an adaptation of the
well known survival of the fittest principle and the
Simulated Annealing (SA) and its variants invented by
Kirkpatrick in 1983[11] as an adaptation of the
Metropolis-Hastings algorithm, a Monte Carlo method
to generate sample states of a thermodynamic system,
invented by Metropolis in 1953[12]. Since then, many
variants and closely related works have been
introduced, but the SA seems to have been well
explored and not much is added lately, while the EA
has sibling like the Particle Swarm Algorithms (PSAs).
In all cases, the basic idea is to start with a solution or
more and evolve towards more fit ones hoping for an
optimal or semi-optimal solution. Generally, the SA
algorithm is a local search that allows uphill moves
with stochastically controlled acceptance. Although it
has been used in many fields for years, it is slow by

nature and its parameters setting have no rigorous
justification.
 In an early study, we proposed an algorithm that
mimics the SA behavior except in the solution
acceptance; it replaces the stochastic acceptance with a
deterministic mechanism. The algorithm performs the
search as a downhill procedure in the virtual sense that
is capable of climbing hills in the real domain. Mapping
the problem from the real sense to the virtual sense is
carried out through a reversible deformation mechanism
that is problem dependent.

A key to this decision mechanism is the reversible
deformation; a constructive distortion that provides for
real hill climbing through virtual local search. The
randomized acceptance of cost increasing
configurations in simulated annealing and possibly all
other evolutionary algorithms is meant to enhance the
exploratory power of the search through, but may fail to
achieve its purpose because of its pure randomized
decision. The proposed mechanism eliminates this
drawback through deterministic decisions. This
approach is close to some extent to the threshold
acceptance approach, which accepts cost increasing

J. Computer Sci., 5 (12): 974-979, 2009

975

solutions with some limit above the current cost and
this threshold is gradually decreased towards the end.
Although it is a general technique, it requires the
problem nature to lend itself to the reversible
structuring; we applied it to the cell placement problem
to show that it outperforms the standard simulated
annealing. However, it can be applied to similar
optimization problems like the traveling salesman
problem, where the distance matrix is scaled up to the
largest distance between any two cities to compute the
factor matrix.

Related work: Research over the last two decades tried
to overcome the challenges that faced the SA
algorithms and reduce its computational time and
increase its chance of producing an optimal solution.
Parallel SA and Hybrid SA-GA[1] and others addressed
the computational complexity, while other variants
addressed the certain aspects related to the settings and
schedules. Threshold acceptance algorithms[2] for
example accept a solution that increases the cost by an
amount less than a threshold; this threshold is decreased
by time to limit the rate of acceptance of cost increasing
solutions. However, the threshold and its rate of
reduction are yet to be tuned and there exists no rules
for optimal settings. Another variation is the old
bachelor[3] algorithm, which is similar to the threshold
acceptance algorithm, except that if a solution is not
accepted the threshold is increased. The degraded
ceiling algorithm[4] is yet another variant with absolute
bound threshold that decreases by time.
 In all cases, finding the temperature values and
thresholds are tedious and tests have shown that a
variant may perform well on certain class of problems
but not as a general procedure. However, the statistical
promise of finding the globally optimal solution is
considered an important feature of SA; this ensures a
uniform sampling of the search space, which is
reassuring when little is known about the nature of the
space. Attempts to speed up SA, such as Simulated
Quenching (SQ), usually trade this promise off with the
gain in efficiency[5]. Many researchers have found it
very attractive to take advantage of the ease of coding
and implementing SA, utilizing its ability to handle
quite complex cost functions and constraints. However,
the long time of execution of standard Boltzmann-type
SA has many times driven these projects to utilize a
temperature schedule too fast to satisfy the sufficiency
conditions required to establish a true (weak) ergodic
search[6].
 A logarithmic temperature schedule is consistent
with the Boltzmann algorithm, e.g., the temperature
schedule is taken to be with expediency the only reason

given. While perhaps someday less stringent necessary
conditions may be developed for the Boltzmann
algorithm, this is not now the state of affairs[7].
 Guofang and colleagues[8] used an adaptive
simulated annealing, in which they considered the
characters of different circuits to be placed and revealed
its advantages in placement results and time
performance when compared with the traditional
simulated annealing algorithm.
 The primary criticism to the simulated annealing is
that it is too slow, another criticisms is that the
algorithm is too broadly based on physical intuition and
is too short on mathematical rigor, as a matter of fact
some researchers gave their own calculations to
demonstrate that SA could be a very poor algorithm to
search for global optima in some instances. The other
criticisms may be considered by some to be more
subjective, but they are likely no more extreme than the
use of SQ to solve for global optima under the
protective umbrella of SA.
 The threshold based solutions have parameters that
are hard to select or control and a major drawback of
ignoring the problem details; for example in a cell
placement problem the large and small cells are dealt
with equally, while the small cells are easier to move
and should be given this advantage
 As a way out, we propose an algorithm that
eliminates the temperature based probabilistic
acceptance of negative transitions and uses a
deterministic mechanism for such decisions instead.
However, unlike the threshold acceptance and the
degraded ceiling algorithms, it is executed as a
downhill search and accepts only positive transitions in
the virtual domain. The algorithm starts by scaling up
all the dimensions in a process called deformation,
which emulates a melting space and scales down using
a certain schedule, a process called reformation; which
brings the problems dimensions back to normal,
mimicking the freezing point.
 The RDA algorithm has shown better performance
compared to the standard SA algorithm[9]. However, a
new enhancement towards even better permanence is
devised and tested using the same benchmark, using
higher performance machines.

MATERIALS AND METHODS

Implementation: The new algorithm depends on
deforming the structure at the beginning and reforming
it during the search process. The proposed algorithm is
applicable to a wide range of problems, but we will
discuss its implementation with cell placement problem
of the VLSI design as a case study.

J. Computer Sci., 5 (12): 974-979, 2009

976

 There are three parameters to be defined here; the
number of iterations N, the deformation array; set of
factors αwi and αdi for each cell and the maximum cell
dimensions wmax and dmax. N is typically a large number
that represents the number of iterations to complete the
search and Ns = β*N is the number of iterations during
which the scaling down completes, where the rest is
carried out in local search mode. The largest
dimensions are used to deform the structure by scaling
up the width and depth of each cell as starting
dimension.

 The ith cell dimensions in the jth iterations are:

wij = (αwi*αwi* … * αwi)*wmax = (αwi)

j*wmax (1)

dij = (αdi*αdi* … * αdi)*dmax = (αdi)

j*dmax (2)

 Hence, the dimension scaling factors for each cell
are computed as follows:

αwi = (wi0/wmax)

1/ β*N (3)

αdi = (di0/dmax)

1/ β*N (4)

 The outline below shows the standard SA steps,
without the details of stopping criteria and perturbation
methods that make transition from one solution to a
neighboring solution.

SA algorithm outline:

1 i = 0;
2 GET(Tm); Initial temperature
3 GET(S0); Random initial solution
4 GET(S’); Neighbor S’∈N(Si)
5 ∆i = C(S’)-C(Si); Evaluate cost difference
6 Px = exp(-∆i /Ti); Acceptance probability
7 Py = GET(P); Random number (0,1)
8 Py<Px:Si+1 = S’; Accept/reject solution
9 Ti = NEXT(Ti); Adjust temperature
10 Ti>Tf:GOTO4; Stopping criteria

 The stopping criterion may be a time budget, a
fixed number of iterations, reaching a freezing
temperature, or relative improvement below a certain
threshold or a certain number of iterations without
getting a cost decreasing solution.
 Initial and freezing temperatures can be computed
by using the initial solution cost along with selected
probabilities for acceptance at the beginning and at the
end. Let Pm and Pf be the probabilities of accepting a

cost increase of 25% using the initial cost as reference,
then.
 If the initial solution cost is Ci then the melting and
freezing temperatures are Tm and Tf:

Pm = exp (-0.25*Ci /Tm) (5)

Tm = -0.25*Ci /ln(Pm) (6)

and:

Pf = exp (-0.25*Ci /Tf) (7)

Tf = -0.25*Ci/ln(Pf) (8)

For Pm = 0.999 and Pf = 0.001, we get:

Tm = 250*Ci and Tf = 0.036*Ci

 The proposed algorithm allows a local search
algorithm to behave like a simulated annealing in the
sense that it accepts cost increasing solution within
limits defined by the scaling function, although it looks
like a local search that accepts only cost decreasing
solutions. The advantage of this method is it limits the
randomization to the neighborhood generation and
replaces the temperature schedule with a scaling
schedule, which is more predictable in terms of time
budget allocation, as it dictates the number of iterations.
It also provides more realistic acceptance as it is
proportional to the actual cost function, in which some
moves are unfairly accepted or rejected.
 The algorithm uses two functions DEFORM and
REFORM. The first is used only once at the beginning
to restructure the problem, while the second is used to
gradually bring back the structure to its real form RDA
algorithm outline.

RDA algorithm outline:

1 i = 0;
2 DEFORM; Scale up
3 GET(S0); Random initial solution
4 i<Ns: REFORM; Scale down
5 GET(S’); Neighbor S’ϵN(Si)
6 C(S’)<C(Si):Si+1 = S’; Accept if a better one
7 i< N: GOTO 4; Stopping criteria

 Typically, the REFORM process scales down the
structure slowly enough by selecting large a value for N
and to avoid the rare chance of not getting out a trap of
local minimum; we reverse the last REFORM step if a
certain number of trails carried out in sequence with no

J. Computer Sci., 5 (12): 974-979, 2009

977

acceptance. The initialization strategy could have a
crucial influence on the performance; especially when
the search space is disconnected. So, we randomly look
for an initial solution that satisfies a certain constraint;
area that is less than twice the algebraic sum of the cells
in our case.
 As the outline of the RDAe shows; rather than
moving through the scale down process regardless of
the accept/reject decision, we keep trying perturbation
until a successful move is achieved. This increases the
computational time in a limited number of trials but the
overall increase in time is quite small.

RDAe algorithm outline:

8 i = 0;
9 DEFORM; Scale up
10 GET(S0); Random initial solution
11 i<Ns: REFORM; Scale down
12 LOOP; Forceful Find of
 {; virtually better Solution
13 GET(S’); Neighbor S’∈N(Si)
 } C(S’)>C(Si); Loop and accept only a
14 Si+1 = S’; better or equal one
15 i<N: GOTO 4; Stopping criteria

 We used a set of similar workstations in a lab to
carry out 10 rounds per test, to compare the standard
SA with the proposed RDA and RDAe, in terms few
factors:

• Score; a measure of probability of finding a

solution with quality exceeding a certain value in a
fixed amount of time

• Minimum, maximum and average quality for
several runs with nearly same time budget

• Time to find a solution with quality higher than a
certain value

 Figure 1 shows a sequence of transitions at
different scales, it shows how virtual local search path
climbs the hill in the real sense, the inner surfaces
represent the cost surfaces over time; the doubled solid
line on the top represents the initial cost of the sequence
after the DEFORM step while the doubled solid line at
the bottom represents the real cost surface over the
same sequence and the dashed lines in-between
represent the cost surface at different scaling levels.
 Figure 2 shows a detailed snapshot of the two
paths; the real (by standard SA) and the virtual (by
RDA and RDAe) with a focus on the transitions between
two sets of iterations; from 41-41 and from 42-43.

Fig. 1: Path: Virtual Vs actual surface

Fig. 2: Path: Virtual Vs actual surface

The first transition is a cost decreasing and hence
accepted whether taken early in time (the upper
segment) or late in time (the lower segment). On the
other hand, the transition from 42-43 would be taken in
the early stage and rejected in the late one.

RESULTS AND DISCUSSION

 Figure 3 and 4 show snapshots of the three paths
towards the end of the search; RDA and RDAe are
always along a cost decreasing path while the simulated
running on the real problem.

J. Computer Sci., 5 (12): 974-979, 2009

978

Fig. 3: Behaviors, cost Vs iteration snapshot

Fig. 4: Behaviors, cost Vs iteration snapshot

 To compare the performance of the RDAe with the
RDA and the standard SA, we measured the time
required to perform 100 trials on each and selected the
number of iterations such that they execute to
completion in nearly the same amount of time. We used
faster computers in this research compared to the

Table 1: Performance, waste and time (ami 33, 857)
 SA RDA RDAe
Min (%) 9.50 5.60 5.30
Max (%) 11.50 6.20 6.10
Mean (%) 10.30 5.80 5.50
Time (h) 2.95 3.06 3.17

Table 2: Performance, waste and time (ami 49, 1598)
 SA RDA RDAe
Min (%) 13.6 6.30 5.90
Max (%) 14.4 7.60 7.10
Mean (%) 13.8 6.90 6.50
Time (h) 7.08 7.32 7.48

Table 3: Performance, score Vs tolerance (ami 15, 400)
 Score of 10 rounds (20 min)

Target (%) SA RDA RDAe
0 1 2 3
2 2 3 3
4 3 4 5
6 3 5 6
8 4 5 7
10 5 6 7
12 5 7 7
14 5 7 8
16 6 8 8

Table 4: Performance, time Vs tolerance (ami 15, 400)
 Average run time (min)
 --
Target (%) SA RDA RDAe
0 32.6 35.7 37.5
2 30.5 33.5 35.3
4 29.5 32.6 33.8
6 27.9 28.2 30.8
8 27.3 27.6 30.0
10 26.4 26.9 29.3
12 25.8 26.5 28.5
14 25.2 26.3 27.8
16 24.5 25.3 26.1

previous one[9] to carry out the measurements and hence
the results are nearly scaled down in time by around
30% and the statistical nature of the moves prevents the
exact reproductions of the old results too.
 Using the benchmark test of 33 cells and 10 rounds
per algorithm, Table 1 shows that the RDAe beats the
standard in the min, max and mean dead area, the worst
case is even better than the best case of the SA and the
time is only slightly more. And the enhanced version
RDAe is slightly better than RDA in almost all cases.
 A comparison between the three algorithms on a
larger problem of 49 cells is shown in Table 2 using 10
rounds per algorithm. The results are consistent
regardless of the problem size.
 Table 3 depicts the performance of the proposed
algorithm compared to the others in terms of possibility
of achieving its goal; how many of 10 rounds will get a
solutions of predefined quality within a fixed time.

J. Computer Sci., 5 (12): 974-979, 2009

979

 Table 4 shows a comparative performance in terms
the time to achieve a certain requirement, a dead space
less than certain percent of the algebraic sum of cells
areas. The RDAe takes little more time due to its
continuous use of the REFORM function. The better
score of RDAe justifies this extra time.

CONCLUSION

 Standard Simulated Annealing (SA) and many of
its variants are quite sensitive to the initial conditions
and hence may get stuck at local optima, while the
deterministic acceptance of cost increasing solutions of
the Reversible Deformation Annealing (RDA) seems to
reduce the sensitivity to the initial conditions, hence
increase the likelihood of optimality. In addition, the
RDAe outperformed the RDA which has proven to be
better than the standard SA in every single run in terms
of the quality of the solution when run for the same
amount of time including the few trials tested on the
same initial condition. The RDA has only a small price
of increased time due to the iterative down scaling and
the RDAe add to that little price a bit more due to the
several transitions in a limited number of iterations to
enhance the acceptance rate. The results are
encouraging to extend to similarly problems that lend
themselves to reversible deformation, like traveling
salesman and binary knapsack.

REFERENCES

1. Calaor, A.E., A.Y. Hermosilla and B.O. Corpus Jr.,

2002. Parallel hybrid adventures with simulated
annealing and genetic algorithms. Proceedings of
International Symposium on Parallel Architectures,
Algorithms and Networks, (PAAN’02), IEEE
Computer Society, Washington DC., USA., pp: 33-38.
http://doi.ieeecomputersociety.org/10.1109/ISPAN.
2002.1004258

2. Dueck, G. and T. Scheuer, 1990. Threshold
accepting: A general purpose optimization
algorithm appearing superior to simulated
annealing. J. Comput. Phys., 90: 161-175.
http://dx.doi.org/10.1016/0021-9991(90)90201-B

3. Hu, T.C., A.B. Kahng and C.W. Tsao, 1995. Old
bachelor acceptance: A new class of non-monotone
threshold accepting methods. ORSA Journal on
Computing, 7: 417-425. DOI: 10.1287/ijoc.7.4.417

4. Burke, E.K., Y. Bykov, J.P. Newall and
S. Petrovic, 2004. A time-predefined local search
approach to exam time tabling problems. IIE
Trans., 36: 509-528. DOI:
10.1080/07408170490438410

5. Desai, R. and R. Pateil, 1996. Combining
simulated annealing and local optimization for
efficient global optimization. Proceedings of the
9th Florida AI Research Symposium, June 1996,
The Florida Artificial Intelligence Research
Society, Key West, FL., pp: 233-237. ISBN: 0-
9629-1738-8.

6. Perumal, A.I. and S.P. Rajagopalan, 2007.
Adaptive simulated annealing: Useful lesson
learned. Int. J. Soft Comput., 2: 572-579.

7. Ingber, L., 1996. Adaptive Simulated Annealing
(ASA): Lessons learned. Control Cybernet., 25: 33-54.

8. Guofang Nan, Minqiang Li, Sanlin and Jisong
Kou, 2005, Adaptive simulated annealing for
standard cell placement. Adv. Neural Comput.,
3612: 943-947. DOI: 10.1007/11539902_117

9. Eldos, T. and R, Qasim, 2009. Reversible
deformation annealing: A new variant of simulated
annealing. Proceeding of the International
Conference on Genetic and Evolutionary Methods,
July, 13-16, WorldComp, Las Vegas, Nevada, US.,
pp: 270-274.

10. Holland, J., 1975. Adaptation in Natural and
Artificial Systems. The University of Michigan
Press, Ann Arbour, ISBN: 10: 0-262-58111-6.

11. Kirkpatrick, S., C.D. Gelatt Jr. and M.P. Vecchi,
1983. Optimization by simulated annealing.
Science, 220: 671-680. DOI:
10.1126/science.220.4598.671

12. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth
and A.H. Teller, 1953. Equation of state
calculations by fast computing machines. J. Chem.
Phys., 21: 1087. DOI: 10.1063/1.1699114

