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Abstract: Problem statement: Repeated observation of a given area over time yields potential for 
many forms of change detection analysis. These repeated observations are confounded in terms of 
radiometric consistency due to changes in sensor calibration over time, differences in illumination, 
observation angles and variation in atmospheric effects. Also major problem with satellite images is 
that regions below clouds are not covered by sensor. Cloud detection, removal and data prediction in 
cloudy region is essential for image interpretation. Approach: This study demonstrated applicability 
of empirical relative radiometric normalization methods to a set of multitemporal cloudy images 
acquired by Resourcesat-1 LISS III sensor. Objective of this study was to detect and remove cloud 
cover and normalize an image radiometrically. Cloud detection was achieved by using Average 
Brightness Threshold (ABT) algorithm. The detected cloud removed and replaced with data from 
another images of the same area. We proposed a new method in which cloudy pixels are replaced with 
predicted pixel values obtained by regression. After cloud removal, the proposed normalization 
method was applied to reduce the radiometric influence caused by non surface factors. This process 
identified landscape elements whose reflectance values are nearly constant over time, i.e., the subset of 
non-changing pixels are identified using frequency based correlation technique. Further, we proposed 
another method of radiometric correction in frequency domain, Pseudo-Invariant Feature regression 
and this process removed landscape elements such as vegetation whose reflectance values are not 
constant over time. It takes advantage of vegetation being typically high frequency area, can be 
removed by low pass filter. Results: The quality of radiometric normalization is statistically 
assessed by R2 value and Root Mean Square Error (RMSE) between each pair of analogous band. 
Further we verified that difference in mean and standard deviation is reduced after normalization of 
subject image with respect to reference image. Results are compared with commonly used No 
Change regression method in spatial domain. Conclusion: Cloud removal depends on spatial 
registration between the two images (reference image and cloudy subject image). Visual inspection 
shows proposed cloudy pixel prediction method performs better than replacing cloudy pixels with 
another image of the same area. Statistical analysis also shows that average RMSE of all bands is 
more in No Change method. Correlation in Fourier domain does not require water body in the scene, 
while No Change method does require.  
 
Key words: Correlation, frequency domain, multitemporal, relative radiometric correction 

 
INTRODUCTION 

 
 Satellite images are useful for monitoring changes 
in land use and land cover. But major problem with 
these images is that regions below clouds are not 
covered by sensor. The image distortion due to cloud 
cover is a classical problem of visible band of remote 
sensing imagery. Especially, for non-stationary satellite, 
it is commonly found in the earth resource observation 

application. Removing cloud cover from satellite 
imagery is very useful for assisting image 
interpretation. Hence cloud detection and removal is 
very vital in processing of satellite imagery. Further it is 
more difficult to quantify and interpret changes on 
multitemporal images under different illumination, 
atmospheric or sensor conditions without radiometric 
calibration. The relative approach to radiometric 
correction, known as relative radiometric 
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normalization, is preferred because no in situ 
atmospheric data at the time of satellite overpasses are 
required (Yang and Lo, 2000).  
 Relative radiometric normalization is a method of 
correction that applies one image as a reference and 
adjusts the radiometric properties of subject images to 
match the reference (Hall et al., 1991; Yuan and 
Elvidge, 1996). Thus, normalized images appear to 
have been acquired with the reference image sensor 
under atmospheric and illumination conditions equal to 
those in the reference scene (Hall et al., 1991). From 
the above descriptions, a key difference between the 
methods is that absolute normalization removes 
atmospheric errors that exist in both images, while 
relative normalization does not actually remove 
atmospheric errors. The subject image keeps the same 
atmospheric errors as the reference image. A variety of 
papers are available on image normalization methods 
(Schott et al., 1988; Eckhardt et al., 1990; Hall et al., 
1991; Elvidge et al., 1995; Yuan and Elvidge, 1996; 
Heo and FitzHugh, 2000; Yang and Lo, 2000) reviewed 
existing image normalization methods. 
 

METHODS AND MATERIALS 
 
Radiometric normalization methods: Image 
normalization reported in literature can be classified 
into three general categories: statistical methods (i.e., 
standard deviation method); the histogram matching 
method; linear regression methods (i.e., PIF, DB and 
NC). These normalization methods are based on simple 
linear regression.  
 
Normalization target selection: Several methods have 
been introduced by different authors showing how to 
select ideal targets for estimating the normalization 
transformation coefficients (Schott et al., 1988; 
Eckhardt et al., 1990; Hall et al., 1991; Elvidge et al., 
1995). In general, for all normalization methods, the 
targets that meet the following criteria are selected as 
ideal targets for normalization (Eckhardt et al., 1990): 
 
• The targets should be approximately at the same 

elevation so that the thickness of the atmosphere 
over each target is approximately the same 

• The targets should contain only minimal amounts 
of vegetation because vegetation spectral 
reflectance is subject to change over time  

• The targets must be in relatively flat areas  
• When viewed on the image display screen, the 

patterns on the normalization targets should not 
change over time  

• A set of targets must have a wide range of grey 
values for the regression model to be reliable 

The mathematical equation for image 
normalization: Caselles and Garcia (1989) verified the 
linear relationship between reference image y and 
subject image x. The objective of linear spectral 
normalization is to rectify subject image x to reference 
Image y through a linear transformation. The common 
form for linear radiometric image normalization is: 
 

k k k ky a x b′ = +  (1) 

 
Where: 
xk =  The DN of band k in image is x on date1  

ky′  =  The normalized DN of band k on date1 

ak, bk = Are normalization constants for band k 
 
 Image normalization can be divided into two steps: 
(1) selecting normalization targets and (2) determining 
normalization coefficients. 
 The methods reported in literature can be 
summarized as. 
  
Haze Correction (HC) normalization: One approach 
to Relative Radiometric Normalization (RRN) is to 
remove the atmospheric Haze difference between two 
images. A Haze Correction (HC) is typically 
accomplished by subtracting the digital count 
associated with the darkest material present in scene. 
The concept is that the Haze value will be equal to the 
DN count observed for a ground surface having zero 
reflectance. Haze correction assumes that pixels having 
zero reflectance (darkest 0.1% of the image pixels) 
should have the same minimum DN values on both 
subject and reference images. The HC normalization 
coefficients are: 
 

min mink k k ka 1 b y x= = −   (2) 

 
where, 

minkx and 
minky are the haze values in band k in 

images x and y, respectively. 
 
Minimum-Maximum (MM) normalization: This 
method enforces that subject image should have the 
same minimum and maximum DN values as those of 
the reference image in all bands. The normalization 
coefficients for the minimum-maximum method are: 
 

 max min

min min

max min

k k
k k k k k

k k

y y
a b y a x

x x

−
= = −

−
 (3) 

 
where,

minkx ,
minky ,

maxkx and 
maxky are the minimum and 

maximum DN values of band k for two dates required 
to isolate the upper and lower 0.1% of the image data. 
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Mean-Standard deviation (MS) normalization: This 
method normalizes image x such that subject image x 
and reference image y have the same mean and 
standard deviation in all bands. Suppose ky  and kx are 

the means, 
kys and 

kxs are the standard deviations of ky  

and kx  respectively, then the MS normalization 

coefficients are derived as: 
 

k

k

y
k k k k k

x

s
a b y a x

s
= = −  (4) 

 
Simple Regression (SR) normalization: In this 
method, the subject image is regressed against the 
reference image in each band. Simple regression 
normalization (Jensen, 1983) uses least-squares to 
derive the normalization coefficients. The SR 
normalization coefficients are solved from the least-
squares regression equation:  
 

2
k k k k

scene

Q (y a x b ) min= − − =∑  (5)  

 
where the summation runs the whole scene. To solve 
this equation, one obtains the normalization coefficients 
as: 
  

k k

k k

x y
k k k k k

x x

s
a b y a x

s
= = −  (6)  

  
Where: 
 

 
k k

2
x x k k

i 1..n

1
s (x x )

N =

= −∑   (7) 

 
and: 
 

k kx y k k k k
i 1..n

1
s (x x )(y y )

N =

= − −∑   (8) 

 
where, N is number of pixels in the scene. 
 
Dark set-Bright set (DB) normalization: Hall et al. 
(1991) used the average of a set of dark and bright 
pixels (Dark-Bright set-simply called DB), which are 
extracted from the subject and reference image through 
Kauth-Thomas greenness-brightness transformation, to 
derive the normalization coefficients. It is assumed that 
an image always contains at least some pixels that have 
the same average surface reflectance among images 
acquired at different dates. The DB normalization 
coefficients are: 

(b) (d)
(d) (d)k k

k k k k(b) (d)
k k

y y
a b y x

x x

−= = −
−

 (9) 

 
(b)

ky , (d)
ky , (b)

kx , (d)
kx  are the means of the bright set 

(b) dark set (d) and of band k in the reference and 
subject images respectively.  
 
Pseudo-Invariant (PI) normalization: Schott et al. 
(1988) presented pseudoinvariant feature normalization, 
which analyzes the elements whose reflection 
distribution has statistical invariance, such as concrete, 
asphalt and rooftops. The pseudo-invariant features are 
extracted by analyzing the infrared to red ratio of the 
subject and reference images to identify pixels having 
low green vegetation cover and a NIR threshold to 
eliminate water pixels. Differences in the gray-level 
distributions of these invariant objects are supposed to 
be linear. Let the means and standard deviations of the 
selected pseudo-invariant sets for the two dates to be 

(pi)
ky , (pi)

kx , 
k

(pi)
ys , 

k

(pi)
xs . The PI normalization 

coefficients are: 
 

k

k

(pi)
y (pi) (pi)

k k k k k(pi)
x

s
a b y a x

s
= = −   (10) 

 
 No-Change  regression  (NC) normalization: 
Elvidge et al. (1995) developed a radiometric 
normalization method, which locates the statistical 
centers for stable land and stable water data clusters 
using the near infrared date 1 versus date 2 scattergram 
to establish an initial regression line. The near-infrared 
data were used because at these wavelengths the 
spectral clusters for water and land are clearly separated 
and a distinct axis of “no change” can be observed.  
 A no-change set determined from the scattergram 
between near-infrared bands of the subject image and 
the reference image has used to compute normalization 
coefficients for all bands. Thus if the no-change subset 
NC is identified, the normalization coefficients are 
derived from following equations: 
  

k

k

(nc)
y (nc) (nc)

k k k k k(nc)
x

s
a b y a x

s
= = −  (11)  

  
where, (nc)

kx  and (nc)
ky  are the means. Sample variance 

and covariance for subset NC on two dates can be 
determined using Eq. 12 and 13: 
 

k k

(nc)(nc) 2
kx x

NC
k

1 x(x )
NCs = −∑   (12) 
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k k

(nc)(nc)(nc)

k kx y
NC

k
1 x(x )(y )ykNCs = − −∑  (13)  

 
 Here two satellite images are used, which are 
acquired at different time and different cloud 
distribution. The cloud is detected by Average 
Brightness Thresholding (ABT) algorithm. This is 
followed by relative radiometric normalization of the 
image. Here correlation procedure implemented in 
frequency domain is used for identification of non-
changing pixels. This approach is chosen because of its 
intrinsic simplicity than other methods. Also we 
suggested second method in frequency domain.  
 
Cloud removal: The practical approach for identifying 
clouds in remotely sensed images of earth from satellite 
is studied. In tropical areas where cloud cover is 
common throughout the year, it is nearly impossible to 
obtain a cloud free image of even a moderately-sized 
land area. With these imperfect cloud contaminated 
image sources, we may still interpret images by 
switching to data from a second source (of the same 
geographic area) where image data of the main source 
is corrupted by cloud cover. The only requirement is 
that images should be acquired at different times; so 
that they have different cloud cover patterns. 
 Generally, bright areas are assumed to be clouds. 
Detection of cloud is achieved by Average Brightness 
Thresholding (ABT) algorithm (Leung and Jordan, 
1995).  
 Average brightness thresholding algorithm is based 
on three observations: 
 
• Amplitude thresholding is simple to implement and 

provides quick processing  
• When correct threshold level (s) are chosen, 

amplitude thresholding is highly effective 
• Clouds are usually the brightest objects in satellite 

image 
 
 The algorithm is quite simple to implement. First, 
the average brightness of the grayscale image is 
calculated. Next, threshold brightness is chosen based 
on the average brightness. Finally this threshold is 
applied to the image to divide it into cloudy and cloud 
free regions. The detected cloud is removed and 
replaced with data from another image of same area. 
The procedure is repeated for all bands. 
 ABT uses an average-cutoff function to determine 
appropriate brightness threshold level. This function 
has the characteristic that at low average brightness 
levels, cutoff is very much above the average, whereas 
at high average brightness levels, the cutoff is 
marginally above average brightness. 

  
 (a)  (b) 
 
Fig. 1: (a) Reference Image (11 May 2004); b Subject 

image (26 May 2006) 
 
 We define cutoff function as: 
 

( )
( )

ln G _ MAX
Cutoff = Avg _ Brightness f

–ln Avg _ Brightness

 
+ ×  

 
 

  (14)  

 
Where: 
ln () = The natural logarithm 
G_MAX = The number of grayscale values, in this case 

G_MAX = 256 
f = Multiplicative coefficient, determined 

empirically, in this case, f = 22 
 
 Experimental results are presented for the case of 
cloud contaminated Resourcesat LISS III image 
acquired in 2006. This image is corrected successfully 
by using ABT algorithm with the aid of a reference 
image from 2004. Figure 1a shows original Resources 
at LISS III reference image and Fig. 1b shows cloudy 
subject image which is to be radiometrically corrected 
with respect to the reference image. 
 Figure 2a shows detected cloud region in image 
acquired  on  26 May 2006 using ABT algorithm. In 
Fig. 2b the detected cloud is removed and replaced with 
data from image acquired on 11 May 2004 of the same 
area. We suggested new method in which cloudy pixels 
are replaced with predicted pixel values obtained by 
regression. Result image is presented in Fig. 2c. Visual 
inspection shows that later performs better. 
 Figure 3 shows histograms of image (band 4) (26 
May 2006) before and after cloud removal, showing 
bright cloudy pixels is removed. 
 
Radiometric correction: Radiometric correction of 
remotely sensed data normally involves the processing 
of digital images to improve the fidelity of the 
brightness value magnitudes (as opposed to geometric 
correction which involves improving the fidelity of 
relative spatial or absolute locational aspects of image 
brightness values). The main purpose for applying 
radiometric corrections is to reduce the influence of 
errors or inconsistencies in image brightness values that 
may limit one’s ability to interpret or quantitatively 
process and analyze digital remotely sensed images. 
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 (a)  (b) 
 

 
(c) 

 
Fig. 2: Cloud detection and removal by using ABT. (a) 

Detected cloud area in image (26 May 2006); 
(b) Image (26 May 2006) after cloud removal 
and replaced with data from image (11 May 
2004) of the same area; (c) Image (26 
May2006) Pixels in cloud region are predicted 
by regression 

 
 When a sensor records the solar energy on Earth’s 
surface, the atmosphere affects both target radiance and 
irradiance. As sunlight pierces through atmosphere, it is 
both attenuated and scattered, reducing target 
illumination and making it diffuse. The atmosphere also 
acts as a scattering reflector, adding extra radiance 
directed back to sensor. When expressing these two 
atmospheric effects mathematically, total radiance 
recorded for the sensor can be related to object’s 
reflectance at the surface and to irradiance: 
  

 T R T P

R
L T E T= +

π
  (15) 

  
Where:  
LT  = Total radiance is measured by sensor  
TR  = Atmospheric transmittance  
LP  = The radiance of atmosphere the target to sensor 

trajectory (and not of the object) from the 
scattering effect  

R   = The object reflectance  
ET  = Total irradiance reaching the earth 
 
 There are number of important reasons to 
calibrate remote sensing data. The raw sensor DNs 
are simply numbers, without physical units. Each 
sensor has its own gains and offsets applied to the 
recorded signals to create DNs, they must be converted 
to at-sensor  radiances.  This  step  is sensor calibration. 

 
(a) 

 

 
(b) 

 
Fig. 3: (a) Histogram of cloudy subject image; (b) 

Histogram of cloud free subject image 
 
If we desire to compare surface features over time, or to 
laboratory or field reflectance data, corrections must be 
made for atmospheric conditions, solar angles and 
topography. This is atmospheric, solar and topographic 
correction. There are several levels of radiometric 
correction. The first converts the DNs to at sensor 
radiance and requires sensor calibration information. 
The second is transformation of the at-sensor radiances 
to radiances at the earth’s surface. This level is much 
more difficult to achieve, since it requires information 
about the view path atmospheric conditions at the time 
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and locations of the image and sensor. That information 
can be in different forms, ranging from a simple 
categorization of the atmospheric conditions as one of 
several “standard atmospheres”, to estimate of certain 
parameters such as path radiance from the image data 
itself, to coincident ground measurements. The final 
level of correction to surface reflectance is achieved by 
correction for topographic slope and aspect, 
atmospheric slope path length variation due to 
topographic relief, solar spectral irradiance, solar path 
atmospheric transmittance and down scattered skylight 
radiance. 
 Because of the complexity of full remote sensing 
image correction, there has been considerable interest in 
image based techniques that provide relative 
normalization in certain applications, such as 
multitemporal comparisons among images from the 
same sensor, or classification of multitemporal images 
before change detection.  
 
Data processing: The image data set used in this study 
is obtained from Resourcesat-1 LISS III sensor. The 
Resourcesat-1 (IRS-P6) satellite launched on October 
17, 2003 is designed to provide multispectral, 
monoscopic and stereoscopic images of the earth’s 
surface (Horne, 2003). It has LISS-III multi-spectral 
camera operating in four spectral bands, two in the 
visible and near infrared and one in SWIR region, as in 
the case of IRS-1C/1D. The new feature in LISS-III 
camera is the SWIR band (1.55-1.7 microns), which 
provides data with a spatial resolution of 23.5 m unlike 
IRS-1C/1D in which the spatial resolution is 70 m 
(courtesy: www.nrsa.gov.in). 
 
Technique 1: Correlation procedure using Fourier 
transform: Relative radiometric correction is a method 
of correction that applies one image as a reference and 
adjusts the radiometric properties of subject image to 
match the reference (Chavez and Mackinnon, 1994; 
Yuan and Elvidge, 1996).  
 After removal of cloud from subject image and 
replacing detected cloud with data from other images of 
the same area, radiometric normalization is applied on 
cloud free subject image. Following assumptions are 
made. 
 
• Camera parameters are not known 
• Imaging conditions are not known 
  
 Hall et al. (1991) concept of radiometric 
rectification is based on stable reflectance control sets 
derived from the extremes of the image scattergram 
(Heo and FitzHugh, 2000). Other methods use stable 

reflectance targets or so-called pseudo-invariant 
features (Hall et al., 1991). Some approaches interpret 
changed pixels as outliers and adopt a strategy to 
eliminate, or attenuate them.  
 To identify no-change pixels, correlation in 
frequency domain is used. The reference image and 
subject image are divided into rectangular blocks of 
size 16×16 pixels. Blocks or extracts of image were 
used in a procedure that processes images from 
different dates band to band. A block of reference 
image is placed over block centered on the same 
coordinates in the other image. Then, normalized 
correlation between two corresponding blocks is 
calculated. This operation is repeated for all blocks. 
This procedure is repeated for all bands. After this, we 
applied a threshold criterion, in order to select no-
change pixels, used to find normalization coefficients. 
A block is assumed to belong to the no-change set if it 
has normalized correlation in all bands greater than 0.9. 
Correlation can be calculated as: 
 
f(m, n) ow(m, n) = F -1[F (u, v) W*(u, v) ]  (16) 
 

Where:  
f(m,n) = Block of 16×16 pixels of 

reference image 
w(m,n) = Block of 16×16 pixels of subject 

image 
m,n = Are spatial co-ordinates 
F(u,v) and W(u, v) = Fourier transform of f(m, n) and 

w(m, n)respectively 
 F-1 = Inverse Fourier transform 
O = Correlation 
* = The complex conjugate 
  
 Normalized Correlation is defined as: 
 

( ) ( )
( ) ( )( )( )

1 *

1 *

NC  F F u,v  W u,v /

max F W u,v W u,v

−

−

 =  
 (17)  

 
 The DN values of no-change set are then used in a 
linear model as: 
 

k k k kŷ a x b= +   (18)  

  
Where: 

kx  = The DN of band k in image X on date1  

yk  = The DN of band k in image Y on date2 

ky′   =  The normalized DN of band k on date1 

k ka ,b  = Are normalization constants for band k 
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 A normalization line is constructed using a subset 
of image i.e., no change pixel set NC. The 
normalization coefficients can be obtained by solving 
the least-squares regression equation: 
 

2
k k k k

NC

Q (y a x b ) min= − − =∑   (19) 

  
To obtain the coefficients: 
  

k k (nc ) ( nc )

k k

(nc)

x y
k kk k   k(nc)

x x

a b Y a X
s
s

== −  (20) 

 
Where: 
  

k k

(nc)(nc) 2
kx x

NC
k

1 x(x )
NCs = −∑  (21) 

 
and: 
  

k k

(nc)(nc)(nc)

k kx y
NC

k
1 x(x )(y )ykNCs = − −∑  (22) 

 
are the sample variance and covariance for the subset 
NC on two dates. |NC| is the number of pixels in the set 
NC. 
 
Technique 2: Pseudo-invariant feature regression 
using Fourier transforms: Pseudo-invariant objects 
are the targets that have not experienced any significant 
change from date 1 to date 2 in terms of reflectivity 
(Jensen, 1983). Some of the Pseudo-invariant objects 
may be taken as roads, lakes and beaches, urban area, 
low vegetation area, industrial centers.  
 This technique focuses on spatial information 
content of high resolution satellite images. It takes 
advantage of vegetation being typically high frequency 
area, can be removed by low pass filter. 
 First, Fourier transform is applied to nir band 
(band4) of multispectral images of two different dates. 
Fourier Coefficients of both images are then passed 
through low pass filter to remove vegetation area. Cut 
off is calculated from spatial frequency of vegetation 
region.  
 The spatial frequency for a given image is defined 
as follows:  
 Consider an M × N image, where M = Number of 
rows and N = Number of columns. The row and column 
frequencies are given by:  
 

1
2 2

Ferq

1
Row [ [F(r,c) F(r,c 1)] ]

M N
= − −

× ∑∑  (23) 

1
2 2

Ferq

1
Column [ [F(r,c) F(r 1,c)] ]

M N
= − −

× ∑∑  (24) 

 
 The total frequency is then: 
 

1
2 2 2

Freq Ferq FerqSpatia l [Row Column ]= +  (25) 

 
 Here we selected cut off frequency of 26 to remove 
vegetation. 
 After filtering inverse Fourier transform is applied 
to obtain PIF set, which is then used for obtaining 
normalization coefficients using linear least squares 
regression. Normalization coefficients obtained are 
used for normalization. 
 
Algorithm:  
 
1: Decompose nir band of reference image using 

Fourier transform. 
 
2: Decompose nir band of subject image using Fourier 

transform. 
 
3: Apply low pass filter on transformed images. 
 
4: Apply inverse Fourier transform on filtered images. 
 
5: Regress vegetation free subject image (PIF) nir band 

against vegetation free nir band of reference image 
using linear least squares regression equation. 

 
6: Use normalization coefficients obtained in step 4 for 

Normalization. 
 

RESULTS  
 
 The quality of radiometric normalization can be 
statistically assessed with the use of R2 value and Root 
Mean Square Error (RMSE) between each pair of 
analogous bands.  
 The RMSE is defined as: 
 

( )
n

1/ 22
k k

k 1

1
ˆMSE (y y ) RMSE  MSE

n =

= − =∑  (26) 

  The R2 value is defined as: 
 

n
2

k k
2 k 1

n
2

k k
k 1

ŷ y )
R

(y y )

=

=

−
=

−

∑

∑
 (27) 

  
where, n is total number of pixels in the scene. 
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Table 1: Statistical results for cloudy images          
   After normalization correlation After normalization  After normalization 
Before normalization  in frequency domain  PIF in frequency domain NC spatial domain 
------------------------------------------------- -------------------------------------- ------------------------------- ------------------------------- 
Band RMSE R2 RMSE R2 RMSE R2 RMSE R2 
Band 1 31.0989 0.76 14.1285 0.85 17.8337 0.76 20.1834 0.76 
Band 2 41.5586 0.63 15.6910 0.83 19.0050 0.78 17.7670 0.84 
Band 3 44.4377 0.48 18.0103 0.78 16.8457 0.59 16.4055 0.79  
Band 4 44.3221 0.44 15.9433 0.82 17.3647 0.43 18.0126 0.67 

 
Table 2: Statistical results for radiometric correction of noncloudy 

images 
   Mean SD 
Method RMSE R2 difference difference 
Raw 42.3208 0.72 33.38 0.8235 
Correlation 25.7903 0.76 20.26 0.2937 
PIF 25.5053 0.73 20.63 0.2365 
NC 25.7934 0.75 19.64 0.1042 

 
Table 3: Statistical results for radiometric correction of cloudy images 
Method Mean difference SD difference 
Raw 22.5482 1.1883 
Correlation 13.2623 0.7325 
PIF 11.8349 0.5077 
NC 12.2663 0.2077 
 
 Closer the R2 value to one, better the radiometric 
process. RMSEs and R2 values are listed in Table 1. 
Results show that RMSEs of all bands of normalized 
image are less than uncorrected image and 
improvement in R2 value. This implies that normalized 
image is more similar to the reference image. Table 2 
gives statistical results for correction of another set of 
multitemporal images which are not contaminated by 
cloud, in which Subject image (8 Jan. 2007) is 
corrected by reference image (2 March 2006). 
 Further we verified that difference in mean and 
standard deviation is reduced after normalization of 
subject image with respect to reference image, listed in 
Table 2 and 3 for two sets of multitemporal images. 
 Figure 4a shows reference image acquired on 11 
May 2004. Figure 4b is subject image (26 May 2006) 
after cloud removal and cloudy pixels are replaced by 
data from another image of same area. Here we used 
three different techniques for normalization of image. 
 Raw means between subject and reference image 
before normalization.  
 Result of applying radiometric normalization using 
correlation in Fourier domain (technique 1) is presented 
in Fig. 4c. Figure 4d is Corrected image using 
commonly  used  NC  method  in spatial  domain. 
Figure 4e corrected image using proposed (technique 2) 
PIF in Frequency domain method. 
 In PIF method we used low pass filter to remove 
vegetation, as it is high frequency region. Figure 5 a 
shows Low pass filter with cut off 26. Figure 5b shows 
Filtered reference image (2 March 2006) band 4 and 
Fig. 5c is Filtered subject image (8 Jan. 2007) band 4. 
These filtered images are used for finding 
normalization coefficients. 

  
 (a)  (b) 
 

  
 (c)  (d) 

 

 
(e) 

 
Fig. 4: Radiometric normalization using correlation in 

Fourier domain. Color composition images, 
Band 4 (near-IR) = red, Band 3 (red) = green, 
Band 2 (green) = blue (a) Reference Image; (b) 
Subject image after cloud removal; (c) 
Normalized image using correlation procedure; 
(d) Corrected image using NC method; (e) 
Corrected image using PIF in Frequency domain 
method 

 
 In this case image acquired on (2 March 2006) is 
considered as reference image and image acquired on (8 
Jan. 2007) is subject image which is to be 
radiometrically corrected are shown Fig. 6a and b. 
 Figure 6c shows result of applying PIF using 
Fourier transform radiometric correction on subject 
image. Figure 6d is normalized image (8 Jan. 2007) 
using  Correlation  in Frequency domain method. 
Figure 6e shows corrected image using NC Method in 
spatial domain.  
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 (a)  (b) 
 

 
(c) 

 
Fig. 5: (a) Low pass filter cut off 26 for removing 

vegetation in PIF using Fourier transform 
method (b) Filtered reference image (2 March 
2006) band 4 (c) Filtered subject image subject 
image(8 Jan. 2007) band 4 

 

  
 (a)  (b) 
 

  
 (c) (d) 
 

 
(e) 

 
Fig. 6: Color composition images, Band 4 (near-IR) = 

red, Band 3 (red) = green, Band 2 (green) = 
blue (a) Resourcesat LISSIII Reference 
image(2 March 2006) (b) subject image(8 Jan. 
2007) (c) Corrected image by PIF using 
Fourier transform (d) Corrected image using 
Correlation in Frequency domain (e) Corrected 
image using NC Method in spatial domain 

DISCUSSION 
 

 The detected cloud if removed and replaced with 
data from image acquired on 11 May 2004 of the same 
area, patches are seen in the result image. We suggested 
new method in which cloudy pixels are replaced with 
predicted pixel values obtained by regression. Visual 
inspection shows that later performs better. 
 Visually much difference is not seen in the results 
of proposed two radiometric normalization using 
Fourier transform methods. However, result of spatial 
domain method is different. Statistical analysis also 
shows that average RMSE of all bands is more in NC 
spatial domain method.  
 We tested the proposed methods on another set of 
multitemporal images. These images are not corrupted 
by cloud cover so we applied radiometric normalization 
techniques only.  Average RMSE after normalization is 
less in correlation in frequency domain than other two 
techniques. Improvement in R2value is also better than 
other methods. Proposed PIF method work very well 
visually as well as statistically. But this requires water 
bodies in the scene. Visual and statistical analysis shows 
that proposed methods work very well. 
 

CONCLUSION 
 
 In this study, two techniques for relative 
radiometric correction of cloudy multitemporal satellite 
images are proposed. The proposed techniques 
successfully normalize cloudy subject image. However, 
Cloud removal depends on spatial registration between 
the two images (reference image and cloudy subject 
image). We suggested two radiometric normalization 
methods in frequency domain. Visually much difference 
is not seen in the results of proposed normalization 
methods. However, result of spatial domain method is 
different. Statistical analysis also shows that average 
RMSE of all bands is more in NC method. Correlation in 
Fourier domain does not require water body in the scene, 
while NC method does require. Subject image looks 
close to reference image after normalization. 
 We tested the proposed radiometric correction 
techniques for normalization of another set of images 
which do not contain cloud, visual inspection and 
statistical analysis shows that proposed methods work 
very well.  
 Proposed methods of radiometric normalization 
have following advantages: 
  
• We suggested PIF method based on spatial 

frequency. We observed that proposed PIF method 
work very well visually as well as statistically. But 
these require water bodies in the scene 
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Computing correlation in the frequency domain 
using the fast Fourier transform is more efficient 
than in spatial domain 

• Distribute normalization error among different land-
cover types 

• Eliminate the necessity of identifying bright and 
dark radiometric control pixels 

• Accelerate the speed of the normalization procedure. 
Correlation technique does not require the presence 
of both land and water areas in the satellite images 

• The results are not sensitive to outliers in the data  
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