
Journal of Computer Science 6 (10): 1078-1082, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Romana Ishrat, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia,
 New Delhi-25, India Tel: +919891813458

1078

Pattern Trees for Fault-Proneness Detection in

Object-Oriented Software

1Romana Ishrat, 2Rafat Parveen and 3Syed I. Ahson
1Centre for Interdisciplinary Research in Basic Sciences,

2Department of Computer Science,
Jamia Millia Islamia, New Delhi-25, India

3Department of Administration, Patna University, Patna-800-005, India

Abstract: Problem statement: This study introduced an application of pattern tree based
classification technique in the area of object-oriented software quality estimation. This application
explored the fault prediction accuracy of pattern trees. Approach: Similarity measures and fuzzy
aggregations employed in the pattern tree technique had been used to generate tree models for fault
detection in software modules. Experiments had been performed on datasets namely, KC1 and KC3
obtained from NASA’s metric data program. Pattern tree models were built using metrics from the
object-oriented software datasets. Results: AND/OR, OWA and WA had been selected for pattern tree
induction. Pattern tree models build using RMSE similarity measure produced higher accuracy as
compared to other similarity measures. Conclusion: The proposed application succeeded in improving
the quality of the object-oriented software in terms of prediction accuracy. Pattern trees models were
found to be less structural complex as compared to fuzzy decision trees.

Key words: Pattern trees, object-oriented software, fault prediction accuracy, quality estimation

INTRODUCTION

 Advances in distributed object technologies
dramatically impact the development process of
distributed software applications. In particular, time for
providing new distributed services is decreasing
because applications are not built from scratch any
longer (Denaro et al., 2003). Object-oriented
technology brings great ease in software redevelopment
areas. One of the new issue is that how to develop
quality of the system and how to measure and improve
software quality for both development and re-
development. Object-oriented design plays a pivotal
role in software development, because it determines the
structure of the software solution (Khan et al., 2006).
Software quality estimation is a key factor in
developing a software system. High-assurance software
systems depend on the stability and reliability of
underlying software. The goal of software quality
estimation is intangible in an actual project
environment. The quality cannot be directly checked in
the product, it must be planned right from the
beginning. The failure rate of software is high in the
early stage of software development life cycle, due to
the undiscovered errors or faults. Software faults are

common reasons of complexity in modern systems.
Software faults are the defects that cause a software
failure in an executable product (Khoshgoftaar and
Seliya, 2002).
 A lack of quality in design process can make
correct implementation impossible. If these faults are
not found earlier in object-oriented software modules
then it will be very costlier to fix them in the end
thereby decreasing the quality of the end product.
Finding faults in the early stage increases the quality of
the end product and prevent ripple effects from the
changes later in the software development life cycle. It
is wise to isolate the faults as early as possible in design
phase. Therefore estimation of quality of software has
become an important factor in software development.
Software metrics have become essential in software
engineering for several reasons, among which quality
assessment and reengineering. In the field of software
evolution, metrics can be used for identifying stable or
unstable parts of software systems (Lanza and Ducasse,
2002). Software metrics is a necessary step for quality
and reliability (Wang et al., 1997).
 Decision tree is one of the simplest software
quality modeling techniques used in software quality
estimation (Ishrat et al., 2009). Decision tree is one of

J. Computer Sci., 6 (10): 1078-1082, 2010

1079

the most widely used practical methods for inductive
inference (Mitchell, 1997). Software quality estimation
models have been built using various decision tree
techniques. Khoshgoftaar and Seliya (2002) and
Wang et al. (1997) have applied regression tree
algorithms for software fault prediction. Khoshgoftaar
and Seliya (2002) and Khan et al. (2006) have also
applied classical decision tree algorithms like C4.5,
CART and S-Plus for software quality estimation. These
models effectively minimized software failures and
improved the reliability of the software systems.
Classical decision trees and ensemble techniques
(Ishrat et al., 2009), fuzzy decision trees technique
(Ishrat et al., 2010) have been applied to build quality
estimation models for object-oriented software data.

Pattern trees: Like decision trees, pattern trees are an
effective tool for classification applications. A novel
pattern tree induction method has been proposed to
build the pattern trees, by means of the similarity
measures and different aggregation operators (Huang
and Gedeon, 2006). A pattern tree is used to represent
pattern of data which belong to the same class. Under
binary context, the fact that a data matches a given
pattern tree induces that the data should be classified
into the class that the pattern tree represents. Under
fuzzy context, the matches of a data and a given pattern
tree would not be crisp yes or no, instead, a truth value
which is in the range of [0, 1] is obtained to reflect how
confident a data should be classified to the class that the
pattern tree represents (Huang, 2007). A pattern tree is
a tree which propagates fuzzy terms using different
fuzzy aggregations. Each pattern tree represents a
structure for one output class which is located at the top
as the root of the tree. The pattern tree induction
methods are based on similarity measures and fuzzy
aggregations. Note that all the nodes within the pattern
trees are leaf nodes. When a new data sample is tested
over a pattern tree, it starts from the bottom leaves and
travels to the top. It finishes with a truth value
indicating the degree of this data sample belonging to
the output class of this pattern tree. The output class
with the maximal truth value is chosen as the prediction
class (Huang and Gedeon, 2006).

Similarity measures: Let A and B be two fuzzy sets
(Zadeh, 1965) defined on the universe of discourse U.
The commonly used fuzzy similarity definitions are
shown in Table 1, where ∩ and ∪ denote a certain t-
norm operator and a t-conorm respectively. The fuzzy
similarity (Chao et al., 1996) between them can be
defined as:

A B
S(A,B)

A B

∩=
∪

 (1)

where, ∩ and ∪ denote a certain t-norm operator and a
t-conorm respectively. Usually, the MIN(∧) and
MAX(∨) operators are used. According to the
definition, 0 S(A,B) 1.≤ ≤ in practice, this measurement
can be computer as:

m
A j B jj 1

m
A j B jj 1

[(x) (x)]
S(A,B)

[(x) (x)]

=

=

µ ∧ µ
=

µ ∨ µ

∑

∑
 (2)

Where:

jx , j 1,....,m,= = The crisp values are discredited in

the variable domain

a j B(x)and (x)µ µ = The fuzzy membership values of x

for A and B

 An alternate similarity definition proposed by
Huang and Gedeon (2006) and Huang et al. (2008) for
pattern tree construction is Root Mean Square Error
(RMSE) based fuzzy set similarity. Consider that the
Root Mean Square Error of fuzzy sets A and B can be
compared as:

m 2
A j B jj 1

((x) (x))
RMSE(A,B)

m
=

µ − µ
=
∑

 (3)

 The RMSE based fuzzy set similarity can be
defined as:

Sim(A,B) 1 RMSE(A,B)= − (4)

 The large value Sim(A, B) takes, the more similar
A and B are.

Fuzzy aggregations: Fuzzy aggregations are logic
operators applied to fuzzy membership values or fuzzy
sets. They have three sub-categories, namely t-norm, t-
conorm and averaging operators such as Weighted
Averaging (WA) and Ordered Weighted Averaging
(OWA) (Huang and Gedeon, 2006; Yager, 1988). In
fuzzy sets theory, triangular norms (t-norm) and
triangular-conorms (t-conorm) are extensively used to
model logical operators and and or. The basic t-norm
and t-conorm pairs which operate on two fuzzy
membership values a and b, a,b [0,1]∈ are shown in
Table 1.

J. Computer Sci., 6 (10): 1078-1082, 2010

1080

Table 1: Basic t-norms and t-conorms pairs
Name T-norm T-conorm
MIN/MAX min{a, b} = a∧b miax{a, b} = a∨b

Algebraic AND/OR ab a+b-ab
Lukasiewicz max{z+b-1,0} min{a+b−1}

EINSTEIN
ab

2 (a b ab)− + −

a b

1 ab

+
+

 The aggregations above are only shown to apply to
a pair of fuzzy values; they can also be applied to
multiple fuzzy values as they retain associatively.
 A WA operator of dimension n is a mapping

nE : R R,→ that has an associated n-elements vector

T
1 2 n iw (w ,w ,....w) ,w [0,1],1 i n= ∈ ≤ ≤ and

n
ii 1

w 1
=

=∑

so that
n

1 n j j

j 1

E(aa) w a
=

=∑ .

 An OWA operator (Yager, 1988) of dimension n is

a mapping nF : R R→ , that has an associated n-elements

vector, T
1 2 n iw (w ,w ,....w) ,w [0,1],1 i n= ∈ ≤ ≤ and

n
ii 1

w 1
=

=∑ so that
n

1 n j j

j 1

F(aa) w b
=

=∑ where bj is the

jth largest element of the collection {a1….,an}.
 The fundamental difference of the OWA from WA
aggregation is that the former does not have a particular
weight wi associated for an element, rather a weight is
associated with a particular ordered position of the
element. The main factor to determine which
aggregation should be used relies on the relationship
between the criteria involved (Huang and Gedeon,
2006).

MATERIALS AND METHODS

Datasets: The empirical software datasets used in the
case study have been taken from NASA IV and V
Facility Metrics Data Program, a freely available
repository website. This repository contains software
metrics and associated error data. The two datasets
namely, KC1 and KC3 have been used contains a set of
software metrics and an additional attribute called fault,
to check whether a module is faulty or not. The fault
prone modules constitute only small portion in the
datasets (NASA, 2008). The numbers of cases collected
in these datasets belong to one of the two classes either
faulty or non-faulty. Each dataset contains different
number of software metrics. The metrics involved in
the datasets were taken as independent variable. The
dependent variable is fault or non-fault modules.
Table 2 shows the description of the datasets.

Table 2: Datasets used in the experiments
Project Language Modules Metrics Defects (%) Description
KC1 C++ 2107 26 15.5 Storage management
 for processing and
 receiving ground data
KC3 Java 458 42 6.3 Processing and
 delivery of satellite
 metadata

Fig. 1: Induction of simple pattern tree

Data preprocessing: These datasets have been
preprocessed to a format acceptable by the pattern tree
software tool, before they are used in the experiments.
For all datasets, a simple fuzzification method based on
three evenly distributed trapezoidal membership
functions for each input variable i.e., metrics from the
datasets is used to transform the crisp to fuzzy values
(Huang, 2007). The whole datasets are divided into
training and test sets.

Pattern tree induction method: Assume a dataset has
n input variables Ai, = 1,2,…,n and one output variable
X. Further assume that input variables each have m
fuzzy linguistic terms denoted as Aij, i = 1,2,…,m and
output variable has k fuzzy or linguistic terms denoted
as xj, = 1,2,…,k. That is, each data point is
represented by a fuzzy membership value vector of
dimension (nm+k). The task is to build k pattern trees
for the k output classes (fuzzy or linguistic terms). The
task is to build k pattern trees for the k output classes
(fuzzy or linguistic terms). The induction of pattern
tree, say for class X0, is described in algorithm shown
in Fig. 1. The induction of other pattern trees follows
the same principle.
 In the initialization, the set of primitive trees P is
constructed, in which each fuzzy term Aij , i = 1,…,n,
j = 1,…,m is use to construct a primitive pattern tree.

J. Computer Sci., 6 (10): 1078-1082, 2010

1081

The primitive tree which has highest similarity to
output class term X0, is then selected as the initial
candidate tree C0. Here P indicates that it contains a set
of trees in contrast to one tree such as C0. The subscript
of zero in C0 indicates that tree has zero depth. In
induction, the aggregation is attempted between the
previous candidate tree Ck-1 and any primitive tree S
in the primitive tree set P, using any aggregation ψ
drawn from the aggregation set ψ. When ψ = WA or
ψ = OWA, the weights which make the aggregated
term most similar to class term used. A constraint is
imposed upon the aggregation: The primitive tree S
cannot be a subset tree of the candidate tree Ck-1, which
prevents a primitive tree being used in the aggregated
tree more than once. Among all aggregated trees, the
one which has the highest similarity to class term X0 is
selected as the current candidate tree Ck, which has one
more depth than the previous candidate tree Ck-1. If the
candidate tree has reached the pre-defined depth d, or
the new candidate tree Ck has a lower similarity to X0
than the previous one Ck−1, the induction stops and the
tree which has the highest similarity is returned as the
optimal tree. In this algorithm, an aggregation always
happens between a candidate tree and a slave primitive
tree. The aggregated trees thus always have one fuzzy
term as its right child for the internal node. This kind of
tree is denoted as simple pattern trees. In contrast,
pattern trees which do not have such a constraint is
referred to as general pattern trees (Huang, 2007).

RESULTS AND DISCISSION

 The experiments have been carried out using KC1
and KC3 datasets. The aim is to estimate the quality of
the object-oriented software by predicting the number
of faults. Pattern tree models were built using all the
software metrics from the two data sets. Out of all
aggregations mentioned above and /OR, OWA and WA
have been selected for pattern tree induction. RMSE
and Jaccard similarity measures are tried on the both
datasets, out of which RMSE produced promising
results. The maximum depth d is set to 3 and the
candidate tree level is 2. The performance of both
datasets is shown in Table 3.
 In Fig. 2 FTerm0 and FTerm1 are the fuzzy terms
associated with their respective input variables i.e., the
metrics. The oval shapes are input variables and the
number inside these oval shapes denote the following
metrics participated in pattern tree induction:

• ERROR_REPORT_IN_1_YR
• HALSTEAD_LEVEL
• ERROR_DENSITY
• NUM_OPERANDS

Table 3: Prediction accuracy of pattern tree
Pattern tree KC1 KC3
Prediction accuracy 96.51% 95.80%

Table 4: Prediction accuracy of pattern tree and fuzzy decision tree
Data sets Pattern tree (%) Fuzzy decision tree (%)
KC1 96.51 96.40
KC3 95.80 95.50

Fig. 2: Pattern tree for class 0 of KC1 dataset

Fig. 3: Pattern tree for class 1 of KC1 dataset

 In Fig. 3 the following metrics corresponds to the
numbers inside the oval shapes:

• ERROR_COUNT
• ERROR_COUNT
• ERROR_COUNT
• LOC_CODE_AND_COMMENT

 The performance of the proposed application is
evaluated and compared with the fuzzy decision tree
(Ishrat et al., 2010) models. The prediction accuracy of
the pattern trees and the fuzzy decision trees are shown
in Table 4. It can be observed that pattern trees
performed in a consistent way for both datasets. The
pattern tree results in higher classification accuracy
than fuzzy decision tree. Structural complexity of
pattern trees is less than fuzzy decision trees.

J. Computer Sci., 6 (10): 1078-1082, 2010

1082

CONCLUSION

 This study has proposed a new application of
decision tree termed pattern trees, which make use of
different aggregations including both t-norms and t-
conorm, for quality estimation in the area of object
oriented software. Like decision trees, pattern trees are
found to be an effective tool for classification
applications. The pattern tree induction methods are
based on similarity measures such as RMSE and fuzzy
aggregations OWA and WA. The pattern trees have
been generated for faults prediction in the software
modules using all the metrics from the datasets. The
pattern trees build using RMSE similarity measure
produced best results. The pattern trees performed
consistently. The comparison to fuzzy decision tree
shows that the pattern tree can obtain higher
classification accuracy. The pattern trees are found to
be less complex in structure than fuzzy decision trees.

REFERENCES

Chao, C.T., Y.J. Chen and C.C. Teng, 1996.

Simplification of fuzzy neural systems using
similarity analysis. IEEE Trans. Syst. Man
Cybernet. Part B Cybernet., 26: 344-354. DOI:
10.1109/3477.485887

Denaro, G., L. Lavazza and M. Pezze, 2003. An
empirical evaluation of object oriented metrics in
industrial setting. J. Object Technol., 4: 1-4.

Huang, Z. and T.D. Gedeon, 2006. Pattern trees.
Proceeding of the IEEE International Conference
on Fuzzy Systems. Sept. 2006, WCCI, Vancouver,
BC, Canada, pp: 1784-1791.

Huang, Z., 2007. Pattern tree software (fuzzy-EBY)
user guide. EECS.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.126.6444

Huang, Z., T.D. Gedeon and M. Nikravesh, 2008.
Pattern trees induction: A new machine learning
method. IEEE Trans. Fuzzy Syst., 16: 958-970.
DOI: 10.1109/TFUZZ.2008.924348

Ishrat, R., R. Parveen and S.I. Ahson, 2009. Decision
tree techniques for object-oriented software quality
estimation. Proceeding of the International
Conference on Data Management, Feb. 2009,
Institute of Management Technology, Ghaziabad,
pp: 288-294.

Ishrat, R., R. Parveen and S.I. Ahson, 2010. Object-
oriented software quality estimation-a fuzzy
decision tree perspective. Int. J. Math. Sci. Eng.
Appli., 4: 33-46.

Khan, R.A., K. Mustafa and S.I. Ahson, 2006. Software
Quality: Concepts and Practices. 1st Edn., Narosa
Publications House, New Delhi, ISBN:
9788173197222, pp: 216.

Khoshgoftaar, T.M., N. Seliya, 2002. Tree based
software quality estimation models for fault
prediction. Proceedings of the 8th IEEE
Symposium on Software Metrics, June 4-7, IEEE
Computer Society, Washington DC., USA.,
pp: 203-203. DOI: 10.1109/Metric.2002.1011339

Lanza, M. and S. Ducasse, 2002. Beyond language
independent object oriented metrics: Model
independent metrics. Proceedings of 6th
International ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software
Engineering, (QAOOSE’02), BIBTEX, Malaga,
pp: 77-84.

Mitchell, T.M., 1997. Machine Learning. 1st Edn.,
McGraw Hill, New York, ISBN: 10: 0070428077,
pp: 432.

NASA, 2008. Metrics data repository. NASA.
http://www.mdp.ivv.nasa.gov

Wang, Y.H., C.M. Chung, T.K. Shih, H.C. Keh and
W.C. Lin, 1997. Object-oriented software quality
through data scope complexity measurement. Proc.
IEEE International Conference on Computational
Cybernetics and Simulation, Oct. 12-15, IEEE
Xplore Press, Orlando, FL., pp: 3849-3854. DOI:
10.1109/ICSMC.1997.633271

Yager, R.R., 1988. On ordered weighted averaging
aggregation operators in multicriteria decision
making. IEEE Trans. Syst. Man Cybernet.,
18: 183-190. DOI: 10.1109/21.87068

Zadeh, L.A., 1965. Fuzzy sets. Inform. Control,
8: 338-353. DOI: 10.1016/S0019-9958(65)90241-X

