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Abstract: Problem statement: This study introduced an application of pattern tree based 
classification technique in the area of object-oriented software quality estimation. This application 
explored the fault prediction accuracy of pattern trees. Approach: Similarity measures and fuzzy 
aggregations employed in the pattern tree technique had been used to generate tree models for fault 
detection in software modules. Experiments had been performed on datasets namely, KC1 and KC3 
obtained from NASA’s metric data program. Pattern tree models were built using metrics from the 
object-oriented software datasets. Results: AND/OR, OWA and WA had been selected for pattern tree 
induction. Pattern tree models build using RMSE similarity measure produced higher accuracy as 
compared to other similarity measures. Conclusion: The proposed application succeeded in improving 
the quality of the object-oriented software in terms of prediction accuracy. Pattern trees models were 
found to be less structural complex as compared to fuzzy decision trees.  
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INTRODUCTION 

 
 Advances in distributed object technologies 
dramatically impact the development process of 
distributed software applications. In particular, time for 
providing new distributed services is decreasing 
because applications are not built from scratch any 
longer (Denaro et al., 2003). Object-oriented 
technology brings great ease in software redevelopment 
areas. One of the new issue is that how to develop 
quality of the system and how to measure and improve 
software quality for both development and re-
development. Object-oriented design plays a pivotal 
role in software development, because it determines the 
structure of the software solution (Khan et al., 2006). 
Software quality estimation is a key factor in 
developing a software system. High-assurance software 
systems depend on the stability and reliability of 
underlying software. The goal of software quality 
estimation is intangible in an actual project 
environment. The quality cannot be directly checked in 
the product, it must be planned right from the 
beginning. The failure rate of software is high in the 
early stage of software development life cycle, due to 
the undiscovered errors or faults. Software faults are 

common reasons of complexity in modern systems. 
Software faults are the defects that cause a software 
failure in an executable product (Khoshgoftaar and 
Seliya, 2002).  
 A lack of quality in design process can make 
correct implementation impossible. If these faults are 
not found earlier in object-oriented software modules 
then it will be very costlier to fix them in the end 
thereby decreasing the quality of the end product. 
Finding faults in the early stage increases the quality of 
the end product and prevent ripple effects from the 
changes later in the software development life cycle. It 
is wise to isolate the faults as early as possible in design 
phase. Therefore estimation of quality of software has 
become an important factor in software development. 
Software metrics have become essential in software 
engineering for several reasons, among which quality 
assessment and reengineering. In the field of software 
evolution, metrics can be used for identifying stable or 
unstable parts of software systems (Lanza and Ducasse, 
2002). Software metrics is a necessary step for quality 
and reliability (Wang et al., 1997). 
 Decision tree is one of the simplest software 
quality modeling techniques used in software quality 
estimation (Ishrat et al., 2009). Decision tree is one of 



J. Computer Sci., 6 (10): 1078-1082, 2010 
 

1079 

the most widely used practical methods for inductive 
inference (Mitchell, 1997). Software quality estimation 
models have been built using various decision tree 
techniques. Khoshgoftaar and Seliya (2002) and 
Wang et al. (1997) have applied regression tree 
algorithms for software fault prediction. Khoshgoftaar 
and Seliya (2002) and Khan et al. (2006) have also 
applied classical decision tree algorithms like C4.5, 
CART and S-Plus for software quality estimation. These 
models effectively minimized software failures and 
improved the reliability of the software systems. 
Classical decision trees and ensemble techniques 
(Ishrat et al., 2009), fuzzy decision trees technique 
(Ishrat et al., 2010) have been applied to build quality 
estimation models for object-oriented software data.  

 
Pattern trees: Like decision trees, pattern trees are an 
effective tool for classification applications. A novel 
pattern tree induction method has been proposed to 
build the pattern trees, by means of the similarity 
measures and different aggregation operators (Huang 
and Gedeon, 2006). A pattern tree is used to represent 
pattern of data which belong to the same class. Under 
binary context, the fact that a data matches a given 
pattern tree induces that the data should be classified 
into the class that the pattern tree represents. Under 
fuzzy context, the matches of a data and a given pattern 
tree would not be crisp yes or no, instead, a truth value 
which is in the range of [0, 1] is obtained to reflect how 
confident a data should be classified to the class that the 
pattern tree represents (Huang, 2007). A pattern tree is 
a tree which propagates fuzzy terms using different 
fuzzy aggregations. Each pattern tree represents a 
structure for one output class which is located at the top 
as the root of the tree. The pattern tree induction 
methods are based on similarity measures and fuzzy 
aggregations. Note that all the nodes within the pattern 
trees are leaf nodes. When a new data sample is tested 
over a pattern tree, it starts from the bottom leaves and 
travels to the top. It finishes with a truth value 
indicating the degree of this data sample belonging to 
the output class of this pattern tree. The output class 
with the maximal truth value is chosen as the prediction 
class (Huang and Gedeon, 2006). 

 
Similarity measures: Let A and B be two fuzzy sets 
(Zadeh, 1965) defined on the universe of discourse U. 
The commonly used fuzzy similarity definitions are 
shown in Table 1, where ∩ and ∪ denote a certain t-
norm operator and a t-conorm respectively. The fuzzy 
similarity (Chao et al., 1996) between them can be 
defined as: 

A B
S(A,B)

A B

∩=
∪

 (1) 

 
where, ∩ and ∪ denote a certain t-norm operator and a 
t-conorm respectively. Usually, the MIN(∧) and 
MAX( ∨) operators are used. According to the 
definition, 0 S(A,B) 1.≤ ≤  in practice, this measurement 
can be computer as:  
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Where: 

jx , j 1,....,m,=  = The crisp values are discredited in 

the variable domain  

a j B(x )and (x )µ µ  =  The fuzzy membership values of x 

for A and B 
 
 An alternate similarity definition proposed by 
Huang and Gedeon (2006) and Huang et al. (2008) for 
pattern tree construction is Root Mean Square Error 
(RMSE) based fuzzy set similarity. Consider that the 
Root Mean Square Error of fuzzy sets A and B can be 
compared as: 
  

m 2
A j B jj 1

( (x ) (x ))
RMSE(A,B)

m
=

µ − µ
=
∑

  (3) 

  
 The RMSE based fuzzy set similarity can be 
defined as: 
 

Sim(A,B) 1 RMSE(A,B)= −    (4) 
 
 The large value Sim(A, B) takes, the more similar 
A and B are.  
 
Fuzzy aggregations: Fuzzy aggregations are logic 
operators applied to fuzzy membership values or fuzzy 
sets. They have three sub-categories, namely t-norm, t-
conorm and averaging operators such as Weighted 
Averaging (WA) and Ordered Weighted Averaging 
(OWA) (Huang and Gedeon, 2006; Yager, 1988). In 
fuzzy sets theory, triangular norms (t-norm) and 
triangular-conorms (t-conorm) are extensively used to 
model logical operators and and or. The basic t-norm 
and t-conorm pairs which operate on two fuzzy 
membership values a and b, a,b [0,1]∈  are shown in 
Table 1.  
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Table 1:  Basic t-norms and t-conorms pairs   
Name T-norm T-conorm 
MIN/MAX min{a, b} = a∧b miax{a, b} = a∨b

 
 

Algebraic AND/OR ab a+b-ab 
Lukasiewicz max{z+b-1,0} min{a+b−1} 

EINSTEIN 
ab

2 (a b ab)− + −
 

a b

1 ab

+
+

 

 
 The aggregations above are only shown to apply to 
a pair of fuzzy values; they can also be applied to 
multiple fuzzy values as they retain associatively. 
 A WA operator of dimension n is a mapping 

nE : R R,→  that has an associated n-elements vector 

T
1 2 n iw (w ,w ,....w ) ,w [0,1],1 i n= ∈ ≤ ≤  and 

n
ii 1

w 1
=

=∑  

so that 
n

1 n j j

j 1

E(a .....a ) w a
=

=∑ . 

 An OWA operator (Yager, 1988) of dimension n is 

a mapping nF : R R→ , that has an associated n-elements 

vector, T
1 2 n iw (w ,w ,....w ) ,w [0,1],1 i n= ∈ ≤ ≤  and 

n
ii 1

w 1
=

=∑  so that 
n

1 n j j

j 1

F(a .....a ) w b
=

=∑  where bj is the 

jth largest element of the collection {a1….,an}. 
 The fundamental difference of the OWA from WA 
aggregation is that the former does not have a particular 
weight wi associated for an element, rather a weight is 
associated with a particular ordered position of the 
element. The main factor to determine which 
aggregation should be used relies on the relationship 
between the criteria involved (Huang and Gedeon, 
2006).  
 

MATERIALS AND METHODS 
 
Datasets: The empirical software datasets used in the 
case study have been taken from NASA IV and V 
Facility Metrics Data Program, a freely available 
repository website. This repository contains software 
metrics and associated error data. The two datasets 
namely, KC1 and KC3 have been used contains a set of 
software metrics and an additional attribute called fault, 
to check whether a module is faulty or not. The fault 
prone modules constitute only small portion in the 
datasets (NASA, 2008). The numbers of cases collected 
in these datasets belong to one of the two classes either 
faulty or non-faulty. Each dataset contains different 
number of software metrics. The metrics involved in 
the datasets were taken as independent variable. The 
dependent  variable  is  fault or non-fault modules. 
Table 2 shows the description of the datasets. 

Table 2: Datasets used in the experiments 
Project  Language Modules Metrics Defects (%) Description 
KC1 C++ 2107 26 15.5 Storage management 
     for processing and  
     receiving ground data 
KC3 Java 458 42 6.3 Processing and  
     delivery of satellite  
     metadata 
 

 
 
Fig. 1: Induction of simple pattern tree 
 
Data preprocessing: These datasets have been 
preprocessed to a format acceptable by the pattern tree 
software tool, before they are used in the experiments. 
For all datasets, a simple fuzzification method based on 
three evenly distributed trapezoidal membership 
functions for each input variable i.e., metrics from the 
datasets is used to transform the crisp to fuzzy values 
(Huang, 2007). The whole datasets are divided into 
training and test sets.  
 
Pattern tree induction method: Assume a dataset has 
n input variables Ai, = 1,2,…,n and one output variable 
X. Further assume that input variables each have m 
fuzzy linguistic terms denoted as Aij, i = 1,2,…,m and 
output variable has k fuzzy or linguistic terms denoted 
as xj, = 1,2,…,k. That is, each data point is 
represented by a fuzzy membership value vector of 
dimension (nm+k). The task is to build k pattern trees 
for the k output classes (fuzzy or linguistic terms). The 
task is to build k pattern trees for the k output classes 
(fuzzy or linguistic terms). The induction of pattern 
tree, say for class X0, is described in algorithm shown 
in Fig. 1. The induction of other pattern trees follows 
the same principle.  
 In the initialization, the set of primitive trees P is 
constructed, in which  each  fuzzy term Aij , i = 1,…,n, 
j = 1,…,m is use to construct a primitive pattern tree. 
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The primitive tree which has highest similarity to 
output class term X0, is then selected as the initial 
candidate tree C0. Here P indicates that it contains a set 
of trees in contrast to one tree such as C0. The subscript 
of zero in C0 indicates that tree has zero depth. In 
induction, the aggregation is attempted between the 
previous candidate tree Ck-1 and any primitive tree S 
in the primitive tree set P, using any aggregation ψ 
drawn from the aggregation set ψ. When ψ = WA or 
ψ = OWA, the weights which make the aggregated 
term most similar to class term used. A constraint is 
imposed upon the aggregation: The primitive tree S 
cannot be a subset tree of the candidate tree Ck-1, which 
prevents a primitive tree being used in the aggregated 
tree more than once. Among all aggregated trees, the 
one which has the highest similarity to class term X0 is 
selected as the current candidate tree Ck, which has one 
more depth than the previous candidate tree Ck-1. If the 
candidate tree has reached the pre-defined depth d, or 
the new candidate tree Ck has a lower similarity to X0 
than the previous one Ck−1, the induction stops and the 
tree which has the highest similarity is returned as the 
optimal tree. In this algorithm, an aggregation always 
happens between a candidate tree and a slave primitive 
tree. The aggregated trees thus always have one fuzzy 
term as its right child for the internal node. This kind of 
tree is denoted as simple pattern trees. In contrast, 
pattern trees which do not have such a constraint is 
referred to as general pattern trees (Huang, 2007). 
 

RESULTS AND DISCISSION  
 
 The experiments have been carried out using KC1 
and KC3 datasets. The aim is to estimate the quality of 
the object-oriented software by predicting the number 
of faults. Pattern tree models were built using all the 
software metrics from the two data sets. Out of all 
aggregations mentioned above and /OR, OWA and WA 
have been selected for pattern tree induction. RMSE 
and Jaccard similarity measures are tried on the both 
datasets, out of which RMSE produced promising 
results. The maximum depth d is set to 3 and the 
candidate tree level is 2. The performance of both 
datasets is shown in Table 3. 
 In Fig. 2 FTerm0 and FTerm1 are the fuzzy terms 
associated with their respective input variables i.e., the 
metrics. The oval shapes are input variables and the 
number inside these oval shapes denote the following 
metrics participated in pattern tree induction: 
 
• ERROR_REPORT_IN_1_YR 
• HALSTEAD_LEVEL 
• ERROR_DENSITY 
• NUM_OPERANDS 

Table 3: Prediction accuracy of pattern tree 
Pattern tree KC1 KC3 
Prediction accuracy 96.51% 95.80% 

 
Table 4: Prediction accuracy of pattern tree and fuzzy decision tree 
Data sets Pattern tree (%)  Fuzzy decision tree (%) 
KC1 96.51 96.40 
KC3 95.80 95.50 

 

 
 
Fig. 2:  Pattern tree for class 0 of KC1 dataset 
 

 
 

Fig. 3: Pattern tree for class 1 of KC1 dataset 
 
 In Fig. 3 the following metrics corresponds to the 
numbers inside the oval shapes: 
 
• ERROR_COUNT 
• ERROR_COUNT 
• ERROR_COUNT 
• LOC_CODE_AND_COMMENT 

 
 The performance of the proposed application is 
evaluated and compared with the fuzzy decision tree 
(Ishrat et al., 2010) models. The prediction accuracy of 
the pattern trees and the fuzzy decision trees are shown 
in Table 4. It can be observed that pattern trees 
performed in a consistent way for both datasets. The 
pattern tree results in higher classification accuracy 
than fuzzy decision tree. Structural complexity of 
pattern trees is less than fuzzy decision trees.  
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CONCLUSION 
 
 This study has proposed a new application of 
decision tree termed pattern trees, which make use of 
different aggregations including both t-norms and t-
conorm, for quality estimation in the area of object 
oriented software. Like decision trees, pattern trees are 
found to be an effective tool for classification 
applications. The pattern tree induction methods are 
based on similarity measures such as RMSE and fuzzy 
aggregations OWA and WA. The pattern trees have 
been generated for faults prediction in the software 
modules using all the metrics from the datasets. The 
pattern trees build using RMSE similarity measure 
produced best results. The pattern trees performed 
consistently. The comparison to fuzzy decision tree 
shows that the pattern tree can obtain higher 
classification accuracy. The pattern trees are found to 
be less complex in structure than fuzzy decision trees.  
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