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Abstract: Problem statement: In this study, a new descriptor for shape retrieval under affine 
transformations had been proposed; the affine length parameterization was used in this approach. 
Approach: The zero crossing of affine curvature was used to extract a descriptor of shapes in database. 
For each two successive zero crossing points we extract two parameters: the first parameter was a 
maximal surface area of the triangle constructed by these points and a point between them. The second 
parameter is the average of affine curvature of the arc constructed by these two points. Results: The 
method was also evaluated objectively through a three classified databases which are a subset of the 
MCD database with a vast variety of shapes. The obtained results and the comparison with geometric 
moment and Fourier descriptors indicated a promising performance of our method. Conclusion: In this 
study, we examined the performance of the proposed descriptor under affine transformations. It was 
observed that the performance of the proposed method is promising even under severe deformations 
caused by shear.  
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INTRODUCTION 
 
 Image databases are consisted of single objects 
which can be simplified as shape images. In these 
cases, image retrieval becomes shape retrieval. Shape is 
also one of the important visual features for image 
representation. Shape descriptors can be divided into 
two main categories: region-based and contour-base 
methods (Choras, 2007). Region-based methods use the 
whole area of an object for shape description. Region-
based shape descriptors can be applied to general 
applications. Some of the region based methods are grid 
based method, geometric moments and moments 
constructed orthogonal functions (Zhang, 2002), 
Zernike moment descriptors (Zhang and Lu, 2002a), 
Fourier descriptors (Sonk et al., 1998; Sajjanhar et al., 
2008; Zhang and Lu, 2002b). For region based 
matching of shapes. Region based method, however, 
they usually involve more computation and its 
descriptors usually need more storage than contour-
based descriptors. While contour-based methods use 
only the information present in the contour of an object, 
it transforms a shape image into one dimensional 

signature function for shape representation; it is much 
more efficient than the generally complex region based 
representation techniques which require two 
dimensional processing. Since they are computed using 
only boundary pixels, in general, their computational 
complexity is low and the sizes of their features are 
compact. Some of the contour-based methods are 
boundary moment descriptors (Chen, 1993; Sonk et al., 
1998), curvature scale space descriptor (Abbasi et al., 
2000; Mokhtarian and Bober, 2003; Mokhtarian et al., 
1996; Mokhtarian and Mackworth, 1992) and Fourier 
descriptor (Zhang and Lu, 2005). A number of shape 
representations have been proposed to recognize shapes 
under affine transformation. Some of them are the 
extensions of well known methods, such as Fourier 
descriptors (Arbter et al., 1990), moment invariants 
(Flusser and Suk, 1993; Guggenheimer, 1963) and 
CSSD with affine length parameterization (Mokhtarian 
and Abbasi, 2001). In this study, a new descriptor based 
on a contour is proposed for 2d shape retrieval under 
affine transformations. The proposed method uses the 
smoothed contour for extracting the vectors describing 
a shape under affine transformations. After smoothing 
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the curve, we calculate the surfaces areas of triangles 
constructed by each successive zero crossing points and 
a point between them so that this surface area is 
maximal, then we choose the n (the value of n is 
justified in the part of discussion) first values of the 
biggest surfaces areas of the triangles. These values 
construct the first vector of our descriptor, then we 
calculate the average affine curvature for each arc 
between two successive zero crossing points 
constructing the chosen triangles for constructing the 
second vector. Both vectors are used to charactering the 
shape. In this study we will examine the utility of using 
affine length rather than arc length to parameterize the 
curve prior to computing the proposed method. The 
proposed method is then used to find similar shapes 
from 280 shapes extracted of MCD database with a vast 
variety of shapes. Also the two classified databases 
consist of original as well as affine transformed shapes. 
This study begins by describing the proposed method, 
the experimental results, the discussion and finally the 
conclusion. 
 

MATERIALS AND METHODS 
 
Affine length: In computer vision, we always look for 
those descriptors of a shape which are invariant under 
certain transformations. For example, curvature is 
invariant under similarity transforms; i.e. rotation, 
translation and uniform scaling. However, under 
general affine transforms, the change in curvature is not 
a linear function of the transformation matrix. Affine 
curvature has been defined as an alternative for 
curvature which changes linearly under affine 
transforms. Therefore the normalized arc length 
parameter Eq. 1 is replaced by the normalized affine 
length parameter (Zhao and Chen, 1997) Eq. 2: 
 

1
u 22 2

0
1

1 22 2

0

(x y )
s(u)

(x y )

+
=

+

∫

∫

ɺ ɺ

ɺ ɺ

 (1) 

 
1

u 3

0
1

1 3

0

(xy xy)
(u)

(xy xy)

+
τ =

−

∫

∫

ɺɺɺ ɺɺɺ

ɺɺɺ ɺɺɺ

  (2) 

 
Affine curvature: The definition of affine curvature is 
based on affine length parameterization τ Eq. 2, which 
is a replacement for arc length parameterization s. The 
main disadvantage of the affine length is that its 
computation requires higher order derivatives. 

However, by using the method described in 
(Mokhtarian and Abbasi, 2001), we can parameterize 
the curve. The definition of affine curvature is based on 
affine length parameterization, as follows:  
 

1
u 3

0
(u) (x( )y( ) x(t)y( )) dtτ = τ τ − τ∫ ɺ ɺɺ ɺɺ ɺ  

 
 Consider a parametric vector equation for a 
continuous curve Γ:  
 

( )( ) x( ), y( ) [0,1]Γ τ = Γ τ τ τ∈  

 
where, τ is the normalized affine length parameter for 
the original curve Γ. Affine curvature is then defined as 
the following: 
 
v( ) (x( )y( ) x( )y( )τ = τ τ − τ τɺɺ ɺɺɺ ɺɺɺ ɺɺ  (3) 

 
 It is much easier to compute affine curvature if it is 
expressed as a function of arbitrary parameter u. The 
final formula for affine curvature as a function of an 
arbitrary parameter u is obtained as follows 
(Mokhtarian and Abbasi, 2001; Matusiak, 1999): 
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 Equation 4 presents an explicit formula for affine 
curvature as a function of an arbitrary parameter u, 
wherexɺ , xɺɺ , xɺɺɺ  and xɶ  denote the first, second, third 
and fourth derivatives of  x with respect to u 
respectively. Derivatives of y are defined similarly. The 
main advantage of this descriptor is expected to be 
invariance under general affine transformations 
(Mokhtarian and Abbasi, 2001). 
 Curve smoothing prior to affine curvature 
measurement reduces the effects of noise. The 
computation starts from convolving each coordinate 
x(u) and y(u) of the curve with a Gaussian function 
g(u,σ). In continuous form we have: 
 

X(u, ) x(u) *g(u, )σ = σ  

 
Y(u, ) y(u) *g(u, )σ = σ  

 
 The 1D Gaussian function g(u,σ) of width σ is 
defined as follow: 
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where, "*" denotes the convolution operation, 
according to the properties of convolution, the 
derivatives of every component can be calculated 
easily: 
 

X(u, ) x(u) *g(u, )σ = σɺ ɺ  

 
X(u, ) x(u) *g(u, )σ = σɺɺ ɺɺ  

 
 The same for Xɺɺɺ  and Xɶ . We will have similar 
formulas for Y. As the exact form derivative of each 
order of g(u,σ) is known, the affine curvature of an 
evolved digital curve can be computed easily. 
 
Vectors descriptor extracting: before extracting the 
vectors descriptor, we must smooth the curve to reduce 
the effects of noise. The standard deviation parameter σ 
must be properly chosen, the information imported by 
the curve must be kept and the noise must be 
eliminated. For this reason, we have fixed σ at σ0 = 5 
because experiments showed that σ = 5 gave good 
results with almost all shapes. The affine curvature zero 
crossing points should be determined at this level of 
smoothing. Due to the denominator in Eq. 4 affine 
curvature has not been defined at inflection points. As a 
result, whenever conventional curvature approaches to 
zero, affine curvature goes to infinity. The affine 
curvature zero crossings of the curve Γσo will be 
obtained by using method (Mokhtarian and Abbasi, 
2001). For every curvature zero crossing point, we 
associated a point Pi of coordinates (x(u),y(u)), 1≤i≤N 
where N is the number of inflections points of the curve 
Γσo. For each two successive zero-crossing points Pi 
and Pi+1, we search a point Si of the arc t t 1P P+

⌢

 of the 

curve Γσo where the surface of the triangle PiSiPi+1 is 
maximal as illustrated in the Fig. 1, then we choose the 
n first maximal value of the surfaces areas calculated. 
Denote VS the vector descriptor constructed by n 
maximal value of the surfaces areas of the triangles 
called Surface-Vector. Then we calculated the average 
affine curvature between each successive zero-crossing 
points Pi and Pi+1 where 1≤i≤n for constructing the 
second vector called Curvature-Vector noted VC. 
 
Similarity measurements: The process of the feature 
extraction is applied to each curve in the database. At 
the end, each curve in the database is represented and 
indexed using its feature vectors. 

 
 
Fig. 1: Part of the boundary curve of the shape  
 
 Given a query feature vectors VCQ and VsQ, 
respectively the Curvature-Vector and Surface-Vector 
and the target feature vectors VCT and VST. For 
measuring the similarity between the query and the 
database shape, we have calculated the distance 
between the feature vectors of them, the City-block 
distance is used since it is very easy to compute. If we 
suppose two points p = (x,y) and q = (u, v), the distance 
function is defined as follows: 
 

1d (p,q) | x u | | y |= − + − ν  

 
 Then the similarity between the query shape Q and 
the shape of the database (target) T is measured as 
distance between the query feature vectors and target 
feature vectors which defined as: 
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General affine transformation: A general affine 
transformation T in R2 is defined as 
 
T(X) AX B= +  (6)  

 
where, X∈R2, A is a nonsingular square matrix (a real 
matrix 2×2 with positive determinant) representing the 
rotation, scaling and shearing transformations and the 
vector T∈R2 represents the translation vector. The Eq. 6 
can be represented as follows: 
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where, (x (τ),y (τ)) represents a point on the contour 
parameterized by the affine length parameter τ, (xa 
(τ),ya (τ)) is the corresponding point after the affine 
transformation. The affine transformation matrix A can 
be expressed by several parameters as follows: 
 

x

y

S 0 cos sin 1 k
A

0 S sin cos 0 1

  θ − θ  
=      θ θ   

 

 
 Scaling, rotation and shear may be represented by 
the following matrices: 
 

x
scaling rotation shear

y

S 0 cos sin 1 k
A ;A ;A

0 S sin cos 0 1

  θ − θ   
= =       θ θ    

 

 
 If T is an affine transformation and A its matrix, 
the surfaces areas of the original and affine transformed 
curve respectively is related by this equation: 
 
Area(T( )) det(A) Area( )∆ = ⋅ ∆  (8) 
 
 By substituting x and y in Eq. 4 by xa and ya from 
Eq. 7, we obtain the following result:  
 

a 2

3

1
v v

[det(A)]

=  (9) 

 
where, x and xa denote affine curvature of the original 
and affine transformed curves respectively. 
 
Invariant to translation and rotation: since we use 
the affine length parameterization, the vectors VS and 
VC are the same for both the original shape and the 
transformed shape under translation and rotation.  
 
Invariant to scaling: the general affine transformation 
becomes the scaling transformation when we substitute 
the matrix A by the matrix Ascaling, the Eq. 8 is rewritten 
as:  
 
Area(T( )) Area( )∆ = α ⋅ ∆  (10) 
 
where, α = Sx.Sy and Area(∆) represents the surface 
area constructing the vector VS, we normalized this 
vector by dividing each component of this vector by the 
maximal value of these components. 
 By substituting the matrix A by Ascaling in Eq. 9 the 
relation between the affine curvature of the original 
shape and the transformed shape under scaling is given 
by:  

a 2

3

1
v v=

α
 (11) 

 
 The vector VC is constructed now, by normalizing 
each component of this vector by a maximal value of 
these components. Therefore, our descriptor becomes 
invariant to scaling transformation. 
 
Invariant to shear: the shear transformation is 
represent mathematically by the Eq.7 if we substitute 
the matrix A by Ashear, as the determinant of this matrix 
is unit (det(Ashear) = 1), Eq. 8 and 9 becomes:  
 
Area(T( )) Area( )∆ = ∆  (12) 
 

av v=  (13) 

 
 The Eq. 12 and 13 show that the surface triangle 
area and the affine curvature are the same for both 
original shape and the transformed shape under 
shearing transformation, by following the vectors VS 
and VC are invariant to shear transformation.  
 

RESULTS 
 
Retrieval performance test: in order to test the 
retrieval performance and the measurement of the 
proposed method using MCD database. The retrieval 
performance of our method is also compared with 
widely used shape descriptors: Geometric Moment 
Descriptor (GMD) and Fourier Descriptor using 
centroid distance (FD). 
 
Database of test: The MCD database comprises 40 
curve categories, each corresponding to a curve drawn 
from an MPEG-7 curve class. Each category in the 
dataset contains 14 curve samples that correspond to 
different perspective distortions of the original curve. 
We use 280 images as our test set of the MCD database, 
these shapes have been classified into 20 class as 
mentioned in the Fig. 2 (14 similar shapes in each 
class). The 20 class of shapes are used to test the overall 
robustness of a shape descriptor. In our experiment, all 
the 280 shapes from the 20 groups are used as queries 
to test the retrieval. 
 
Performance measurement and test dataset: There 
are a number of ways to evaluate a shape descriptor. In 
the field of shape retrieval, precision and recall are the 
most widely used methods. Basically, recall measures 
the capacity to retrieve relevant items from the database 
and precision measures the retrieval accuracy: 
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Numberof relevant returned images
Precision

Numberof returned images
=  

 
Numberof relevant returned images

Recall
Numberof images in the classof the query

=  

 
 The subset of the MCD database mentioned above 
are used to compare the retrieval of the three methods 
using the rappel-precision curve, all the 280 shapes in 
the subset are used as queries. The common retrieval 
performance measure precision and the recall are used 
as the evaluation of the query results. For each query, 
the precision of the retrieval at each level of the recall is 
obtained. The result precision of retrieval is the average 
precision of all the queries retrievals. The average 
precision and recall of the retrieval using the three 
descriptors are shown in Fig. 3. 
 

 
 
 Fig. 2: Each curve represents a class of MCD database 
 

 
 
Fig. 3: Average retrieval performance of different 

method 

 To test the retrieval performance of the proposed 
method, we have used the subset of the MCD database 
as mentioned below. After making a sequence of 
experiments, we concluded that by giving the parameter 
α in Eq. 5 the value 0.7, the best results can be 
achieved. The retrievals of some queries are shown in 
the Fig. 4.  
 
Invariance to shear: we will examine the performance 
of the proposed method under shear transformation 
with the constructed database as mentioned under. The 
measure of shape deformation depends upon the 
parameter k called shear ratio in the matrix Ashear. In the 
present form of the matrix Ashear, x axis is called shear 
axis, as the shape is pulled toward this direction. Figure 5 
shows the effects of shear transformation on the shapes, 
the deformation is much more severe for values k is 
superior than 1.  
 To create a database, we choose nine different values 
for shear ratio parameter k, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 
1.75, 2 and 2.5. We then apply the transformation on a 
database of 40 original object shapes, each class of MCD 
database is represented by one shape from this class. 
From every original object, we obtain 9 transformed 
shapes with different values of k as mentioned before.  
 

 
 
Fig. 4: Retrieval results obtained using 10 random 

queries from the MCD. The crosses mark 
retrievals that do not belong to the correct 
category 

 

 
 
Fig. 5: The original shape presented in top left. Others 

represent the transformation with different 
value of the parameter shear ratio k 
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Fig. 6: Shape retrieval results under shear 

transformation 
 

 

 
Fig. 7: The original shape presented in top left. Others 

represent the transformation with different 
value of scale parameter s  

 
Therefore the database consists of 40 original and 360 
transformed shapes. Therefore, the database consists of 
400 shapes. We then carry out a series of experiments 
on this database to verify the robustness of the proposed 
method under shear transformation. Every original 
shape was selected as the input query and the first 10 
outputs of the system were observed to see if the 
transformed versions of the query are retrieved by the 
system. We found out that for 99% of queries, all 
transformed versions of a shape appear in the first 10 
outputs of the system. The results for some queries and 
the shapes retrievals by system are presented in Fig. 6. 
 
Invariance to scale transformation: to examine the 
performance of our descriptor under uniform scaling 
transformation (Sx= Sy= s), we create a database by 
choosing nine different values for scaling parameter s, 
0.75; 1.25; 1.50… 3 as shows in Fig. 7. We then apply 
the scaling transformation as we made for shear 
examine. 

 
 
Fig. 8: Shapes retrievals results under scale 

transformation 
 
 The results for some queries and the shapes 
retrievals by system are presented in Fig. 8. 
 

DISCUSSION 
  
 The choice of n, the size of the vectors VS and VC 
must takes in consideration the following reasons:  
 
• The number n must be big enough so that the 

characteristic vectors represent well the shape, but 
still take into consideration the time of calculation 

• It must not depend on a threshold which is related 
to the triangles areas calculated because we can 
lose important information concerning the shapes 
whose surfaces areas decrease sharply  

• Some shapes after smoothing the number of 
triangles found very few, sometimes it does not 
exceed 10 triangles, then the value of n should not 
be very big 

 
 For these reasons we fixed the value of n in 20. 
 The boundary curve of some shapes after 
smoothing doesn’t contain the sufficient triangles 
(n<20), so the vectors VS and VC are not completed. 
Therefore, for completing these vectors, we completing 
their components by zero.  
 

CONCLUSION 
 
 In this study, we have proposed a method which 
uses the shape contour for indexing the shape. 
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Experiments have been performed on the MCD 
database. Experiments performed show the 
effectiveness of the proposed method and it is better 
than other methods using a subset of MCD database. 
We also show the robustness of our method under 
affine transformations. 
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