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Abstract: Problem statement: To find frequently occurring Sequential patterns from web log file on 
the basis of minimum support provided. We introduced an efficient strategy for discovering Web usage 
mining is the application of sequential pattern mining techniques to discover usage patterns from Web 
data, in order to understand and better serve the needs of Web-based applications. Approach: The 
approaches adopt a divide-and conquer pattern-growth principle. Our proposed method combined tree 
projection and prefix growth features from pattern-growth category with position coded feature from 
early-pruning category, all of these features are key characteristics of their respective categories, so 
we consider our proposed method as a pattern growth, early-pruning hybrid algorithm. Results: Our 
proposed Hybrid algorithm eliminated the need to store numerous intermediate WAP trees during 
mining. Since only the original tree was stored, it drastically cuts off huge memory access costs, 
which may include disk I/O cost in a virtual memory environment, especially when mining very long 
sequences with millions of records. Conclusion: An attempt had been made to our approach for 
improving efficiency. Our proposed method totally eliminates reconstructions of intermediate WAP-
trees during mining and considerably reduces execution time. 
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INTRODUCTION 
 
 One of the data mining methods is sequential 
pattern discovery introduced in (Ren and Zhou, 2006). 
informally, sequential patterns are the most frequently 
occurring subsequence’s in sequences of sets of items. 
Among many proposed sequential pattern-mining 
algorithms, most of them are designed to discover all 
sequential patterns exceeding a user specified minimum 
support threshold. 
 Sequential pattern mining is an important data 
mining problem with broad applications, including the 
analyses of customer purchase behavior, web access 
patterns, scientific experiments, disease treatments, 
natural disaster and protein formations. A sequential 
pattern mining algorithm mines the sequence database 
looking for repeating patterns (known as frequent 
sequences) that can be used later by end users or 
management to find associations between the different 
items or events in their data for purposes such as 
marketing campaigns, business reorganization, 
prediction and planning. With increase in the use of the 

world wide web for E-Commerce businesses, web 
services and others, web usage mining has appeared in 
the literature as one of the most prevalent application 
areas of sequential pattern mining (Han et al., 2000; 
Ezeife and Lu, 2005; El-Sayed et al., 2004; Han et al., 
2004; 2005; Madan and Madan, 2010) This study 
focuses on sequential pattern mining techniques 
including those applicable to web usage mining. 
 Currently, most web usage mining solutions 
consider web access by a user as one page at a time, 
giving rise to special sequence database with only one 
item in each sequence’s ordered event list. Thus, given 
a set of events E = {a, b, c, d, e, f },which may 
represent product web pages accessed by users in an E-
Commerce application, a web access sequence database 
for four users may have the four records (Table 1). 
 
Table 1: Web access sequence 
USER ID  Web access sequence 
T1  <abdac> 
T2  <eaebcac> 
T3  <babfaec> 
T4  <abfac> 
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 Mining on this web sequence database can find a 
frequent sequence abac indicating that over 90% of 
users who visit product a’s web page of 
http://www.company.com/producta.htm also 
immediately visit product b’s web page of 
http://www.compay.com/productb.htm and then revisit 
product a’s page, before visiting product c’s page. Store 
managers may then place promotional prices on product 
a’s web page, that is visited a number of times in 
sequence, to increase the sale of other products. The 
web log could be on the server side, client-side or on a 
proxy server, each having its own benefits and 
drawbacks on finding the users’ relevant patterns and 
navigational sessions (Ivancsy and Vajk, 2006). While 
web log data recorded on the server side reflect the 
access of a web site by multiple users and is good for 
mining multiple users’ behavior and for web 
recommender systems, server logs may not be entirely 
reliable due to caching as cached page views are not 
recorded in a server log. Client-side data collection, 
require that a remote agent be implemented or a 
modified browser be used to collect single-user data, 
thus eliminating caching and session identification 
problems and is useful for web content personalization 
applications. A proxy server can, on the other hand, 
reveal the actual HTTP requests from multiple clients 
to multiple web servers, thus, characterizing the 
browsing behavior of a group of anonymous users 
sharing a common server (Ren et al., 2006). Web user 
navigational patterns can be mined using sequential 
pattern mining of the preprocessed web log. Web 
usage mining works on data generated by observing 
web surf sessions or behaviors, which are stored in the 
web log, from where all users' behaviors on each web 
server can be extracted. An example of a line of data 
in a web log is:  
  
137.207.76.120 - [30/Aug/2007:12:03:24-0500]“GET 
/jdk1.3/docs/relnotes/deprecatedlist.html HTTP/1.0" 
200 2781 
 
 This recorded information is in the format: host/ip 
user [date: time] “request url” status bytes and represents 
from left to right, the host IP address of the computer 
accessing the web page. In most cases, researchers are 
assuming that user web visit information is completely 
recorded in the web server log, which is preprocessed to 
obtain the transaction database to be mined for 
sequences. Several sequential pattern mining techniques 
that can be applied to web usage mining have been 
introduced in the literature since mid 1990’s. Previous 
surveys looked at different mining methods applicable to 
web logs (Srivastava et al., 2000; Ivancsy and Vajk, 

2006), but they lack of two important things; they fail to 
(i) focus on sequential patterns as a complete solution, 
(ii) include a deep investigation of the techniques and 
theories used in mining sequential patterns. 
 

MATERIALS AND METHODS 
 
 The objective of this work is to apply data mining 
techniques to a sequential database for the purposes of 
discovering the correlation relationships that exist 
among an ordered list of events. Given a WASD (Web 
Access Sequence Database), the problem to find 
frequently occurring Sequential patterns on the basis of 
minimum support provided. The problem of web user 
access pattern mining is: given web access sequence 
database WASD and a support threshold ξ, mine the 
complete set of ξ-patterns of WASD.  
  
Example: Let {s, t, u, v, w, x} be a set of events and 
100, 200, 300 and 400 are identifiers of users. A 
fragment of web log records the information as follows: 
 
(100, s) (100, t) (200, s) (300, t) (200, t) (400, s) 
(100, s) (400, t) (300, s) (100, u) (200, u) (400, s) 
(200, s) (300, t) (400, u) (400, u) (300, s) 

 
 A pre-processing which divides the log files into 
access sequences of individual users is applied to the 
log file, while the resulting access sequence database, 
denoted as WAS, is shown in the first two columns in 
Table 2. There are totally 4 access sequences in the 
database. They are not with same length. The first 
access sequence, stvsu, is a 5-sequence, while st is a 
subsequence of it. In access sequence of user 200, both 
w and wswtu prefix with respect to su. xu is a 50% 
pattern because it gets supports from access sequence of 
user 300 and 400. Please note that even xu appears 
twice in the access sequence of user 400, sxtsuxu, but 
the sequence contributes only one to the count of xu. 
 Study of WAP-mine algorithm (Han et al. 2000)-
Pattern-Growth miner with Tree Projection At the same 
time of FreeSpan and PrefixSpan in 2000/2001, another 
major contribution was made as a pattern growth and tree 
structure mining technique, which is the WAP-mine 
algorithm  (Han et al., 2000)  with  its WAP-tree structure. 

 
Table 2: A web access sequence database 
User ID Web access sequence Frequent subsequence 
100  stvsu  stsu 
200  wswtusu  stus 
300  tstxswu  tsts 
400  sxtsuxu  stsuu 
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Fig. 1: Complete WAP tree 

 
Table 3: Frequent subsequence of web access sequence DB 
User ID  Web access sequence  Frequent subsequence 
T1  <bcbae>  <bbae> 
T2  <bacbae>  <babae> 
T3  <abe>  <abe> 
T4  <abebd>  <abeb> 
T5  <abad>  <aba> 

 
Here, the sequence database is scanned only twice to 
build the WAPtree from frequent sequences along with 
their support, a “header table” is maintained to point at 
the first occurrence for each item in a frequent item set, 
which is later tracked in a threaded way to mine the tree 
for frequent sequences, building on the suffix. The first 
scan of the database finds frequent 1-sequences and the 
second scan builds the WAPtree with only frequent 
subsequences. As an example of WAP-tree, the database 
of Problem 1 (Table 3) is mined with the min_sup = 3 
transactions.  
 The frequent subsequences (third column of Table 3) 
of each original database sequence are created by 
removing non-frequent 1-sequences. The tree starts with 
an empty root node and builds downward by inserting 
each frequent subsequence as a branch from root to leaf. 
During the construction of the tree, a header link table is 
also constructed, which contains frequent 1-items (in our 
example a, b and e) each one with a link connecting to its 
first occurrence in the tree and threading its way through 
the branches to each subsequent occurrence of its node 
type as shown in Fig. 1. To mine the tree, WAP-mine 
algorithm starts with the least frequent item in the header 
link table and uses it as a conditional suffix to construct 
an intermediate conditional WAP-tree and finds 
frequent items building on the suffix to get frequent k-
sequences.  

 
 
Fig. 2: WAP tree |e 
 

 
 
Fig. 3: WAP tree |be 
 
 In this example (Fig. 1), we start with item e, 
which is added to the set of frequent sequences as fs = 
{e} and follow its header links to find sequences bba: 1, 
baba:1, ab:2, having supports of b(4) and a(4) to have a 
and b as frequent 1-sequences. Now, build a WAP-sub-
tree for suffix |e as in Fig. 2 for sequences bba:1, 
baba:1, ab:2 and mine it to obtain conditional suffix |be 
as shown in Fig. 3 following the b-header link, causing 
sequence be to get added to the set of frequent 
sequences mined as fs = {e, be}.  
 Following the header links of b in WAP-tree|e 
(conditional search on e) gives b:1, ba:1, b:-1, a:2, with 
supports of  b (1) and a (3), b’s support is less than 
min_sup so we remove it, resulting in a:1, a:2, giving 
the conditional WAP-tree|be as in Fig. 3.  
 Next, we add the newly discovered frequent 
sequence to fs building on the suffix as fs = {e, be, abe} 
and follow   its   header    link   in WAP-tree|be to get ø 
(Fig. 3). Now, the algorithm recursively backtracks to 
WAP-tree|e in Fig. 1 to mine the link for WAP-tree|ae 
(Fig. 4). Complete mining of our example WAP-tree 
can be traced in the rest of Fig. 5 and 6 with complete 
set of frequent sequence fs ={e, be, abe, ae, b, bb, ab, a, 
ba}. WAP-mine algorithm is reported to have better 
scalability than GSP and to outperform it by a margin 
(Han et al., 2000). Although it scans the database only 
twice and can avoid the problem of generating 
explosive candidates as in Apriori-based and candidate 
generate-and-test methods, WAP-mine suffers from a 
memory consumption problem as it recursively 
reconstructs numerous intermediate WAP-trees during 
mining and in particular, as the number of mined 
frequent patterns increases. 
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Fig. 4: WAP tree|ae 
 

 
 

Fig. 5: WAP tree |ab 
 

Table 4: Access sequence database D 
User ID TID  Access sequence 
100  T1  <bcbae> 
200  T2  <bacbae> 
300  T3  <abe> 
400  T4  <abebd> 
500  T5  <abad> 

 
 Study of FS-miner algorithm (El-Sayed et al. 
2004): Inspired by FP-tree (Han et al., 2000; 2004) 
and ISM (Thakur et al., 2006) FS-Miner is a tree 
projection pattern growth algorithm that resembles 
WAP-mine and supports incremental and interactive 
mining. The significance of FS-Miner is that it starts 
mining immediately with 2-subsequences from the 
second-which is also the last- scan of the database (at 
k = 2). It is able to do so due to the compressed 
representation in the FS-tree, which utilizes a header 
table of edges (referred to as links in El-Sayed at al. 
(2004)) rather than single nodes and items compared 
to WAP-tree. It is also considered a variation of trie as 
it stores support count in nodes as well as edges of the 
tree that represent 2-sequences and are required for the 
incremental mining process. Consider Table 1 for a 
running example on FS-Miner and keep in mind that it 
only considerscontiguous sequences (e.g., cba is a 
contiguous subsequence of bcbae, but ca is not). 
Figure 5 shows the header table generated along 
with FS-tree for sequences in  Table 4  FS-miner and 
the FS-tree R maintain two kinds of support counts 
and minimum support, namely MSuppCseq, the 
minimum frequent sequence support, similar to 
min_sup  used throughout this study and MSuppClink, 
the  minimum frequent link (a frequent 2-sequence) 
support. A link h with support count Supplink (h) 
is considered a frequent link if Supplink(h) ≥ 
MSuppCseq and is considered potentially frequent 
link if MSuppClink

≤Supplink(h)<MSuppCseq. If 
Supplink(h)  does not  satisfy both MSuppClink 
and  MSuppCseq  then it is a non-frequent link. 

 
 
Fig. 6: WAP tree | b 
 

 
 
Fig. 7: FS-Tree and header table HT for Web Log from 

Table 4 
 
Potentially frequent links are maintained to support and 
enable the incremental and interactive mining capability 
of FS-miner. 
 Frequent links and potentially frequent links are 
marked in the Header Table (HT) in Fig. 7. Only 
frequent links are used in mining. Assume MSuppClink 
= 2 and MSuppCseq = 3 for our example. The sequence 
database (Table 4) is scanned once to find counts for 
links and insert them in the header table. The FS-tree is 
built during the second scan of the database in a manner 
similar to WAP-tree and PLWAP-tree except that a 
sequence which contains non-frequent links is split and 
each part is inserted in the tree separately. Pointer links 
from the header table are built to connect occurrences 
of header table entries as they are inserted into the FS-
tree similar to WAP-tree linkage (i.e., first occurrence 
based and not pre-ordered). As only frequent links may 
appear in frequent sequences, only frequent links are 
considered during mining (El-Sayed et al., 2004) 
mention four important properties of the FS-tree as 
follows:  
 
• Any input sequence that has non-frequent link (s) 

is pruned before being inserted into the FS-tree 
• If MSuppClink<MSuppCseq, the FS-tree is storing 

more information than required. This is a drawback 
as discussed in the features earlier in introduction 
but is required by FS-miner to support incremental 
and interactive mining in a manner similar to ISM 
(Thakur et al., 2006) 
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• All possible subsequences that end with a given 
frequent link h can be obtained by following the 
pointer of h from the header table to correct FS-tree 
branches 

• In order to extract a sequence that ends with a 
certain link h from an FS-tree branch, we only need 
to examine the branch prefix path that ends with 
that link backward up to the tree root 

 
Proposed method (hybrid algorithm): Our goal is to 
find a data structure that supports efficient FSP 
(Frequent Sequence Pattern) mining in terms of both 
memory and time. Below we propose a special data 
structure, for this purpose. Table 2 shows some 
example Web Access Sequences to detect FSP.  
 Our approach is based on WAP-tree, but avoids 
recursively re-constructing intermediate WAP-trees 
during mining of the original WAP tree for frequent 
Sequence patterns. The Hybrid algorithm is able to 
quickly determine the suffix of any frequent pattern 
prefix under consideration by comparing the assigned 
binary position codes of nodes of the tree.  
 A tree is a data structure accessed starting at its 
root node and each node of a tree is either a leaf or an 
interior node. A leaf is an item with no child. An 
interior node has one or more child nodes and is called 
the parent of its child nodes. All children of the same 
node are siblings. Like WAP-tree mining, every 
frequent sequence in the database can be represented on 
a branch of a tree. Thus, from the root to any node in 
the tree defines a frequent sequence. For any node 
labeled e in the WAP-tree, all nodes in the path from 
root of the tree to this node (itself excluded) form a 
prefix sequence of e. The count of this node e is called 
the count of the prefix sequence. Any node in the prefix 
sequence of e is an ancestor of e. On the other hand, the 
nodes from e (itself excluded) to leaves form the suffix 
sequences of e.  
 Given a WAP-tree with some nodes, the binary 
code of each node can simply be assigned following the 
rule that the root has null position code and the leftmost 
child of the root has a code of 1, but the code of any 
other node is derived by appending 1 to the position 
code of its parent, if this node is the leftmost child, or 
appending 10 to the position code of the parent if this 
node is the second leftmost child, the third leftmost 
child has 100 appended. In general, for the nth leftmost 
child, the position code is obtained by appending the 
binary number for 2n-1 to the parent’s code. A node α 
is an ancestor of another node β if and only if the 
position code of α with “1” appended to its end, equals 
the first x number of bits in the position code of β, 
where x is the ((number of bits in the position code of 
α) + 1). 

 
 

Fig. 8: Position code assignment with node position in 
its complete tree (binary tree) 

  
Construction of tree: The tree data structure Fig. 8, 
similar to WAP-tree, is used to store access sequences 
in the database and the corresponding counts of 
frequent events compactly, so that the tedious support 
counting is avoided during mining. A Binary code is 
assigned to each node in our tree. These codes are used 
during mining for identifying the position of the nodes 
in the tree. The header table is constructed by linking 
the nodes in sequential events fashion. Here the linking 
is used to keep track of nodes with the same label for 
traversing prefix sequences. This mining algorithm is 
prefix sequence search rather than suffix search. 
 In data structure, when implementing a general 
tree data structure, a tree is usually transformed into 
its equivalent binary tree, which has a fixed number of 
child nodes. To convert a given general tree, T, with 
nodes at n levels an root at level 0, the leaf nodes at 
level (n-1), to a binary tree, the following rule is 
applied. The root of the binary tree is the leftmost 
child of the root of the general tree, T. Then, starting 
from level 1 of the general tree and working down to 
level n-1 of the tree, for every node: 
 
• The leftmost child of this node in the general tree 

is the left child of the node in the binary tree 
• The immediate right sibling of this node in the 

general tree is the right child of this node in the 
binary tree. For example, given a tree shown as 
Fig. 1. It can be transformed into its binary tree 
equivalent shown in Fig. 3, where every node has 
at most two links, one is its left child and the 
other is its sibling 

 
 The position code is assigned to the nodes on the 
binary tree equivalent of the tree using the Huffman 
coding idea. Here, the code assignment rule starts from 
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the leftmost child of the root node of the general tree, 
which has a binary position code of 1 because this node 
is the root of the binary tree equivalent of the tree. 
Thus, given the binary tree equivalent of a tree, with 
root node having a code of 1, the single temporary 
position code assignment rule assigns 1 to the left child 
of each node and 0 is assigned to the right child of each 
node. These temporary position codes are used to 
define the actual binary position code for each node in 
the original general tree. The position code of a node on 
the WAP tree is defined as the concatenation of all 
temporary position codes of its ancestors from the root 
to the node itself (inclusive) in the transformed binary 
tree equivalent of the tree.  
 For example, in Fig. 3, (s: 1:1110) is an ancestor of 
(u: 1:111011) because the position code of (u: 1:1110) 
is 1110 and after appending 1 at the end of 1110, we get 
11101, which is equal to the first 5 (i.e., length of u + 1) 
bits of (u: 1:111011). On the other hand, (u: 1:1110) is 
not the ancestor of (u: 1:101111), since after appending 
1, the code will be 11101 and is not equal to the first 5 
bits position code of (u: 1:101111). Not only can we 
use the position code to find the ancestor and 
descendant relationships between nodes, but we can 
also find whether one node belongs to the right-tree or 
lefttree of another node. From Fig. 8, it can be seen that 
node (u: 1:1111) and node (u: 1:111011) are two nodes 
that belong to two sub trees, which are rooted at (s: 
2:111) and (s: 1:1110) respectively. The node (s: 
1:1111) belongs to a left-tree of (s: 1:111011) since the 
fourth bit of (s: 1:111011) is 0, which means the node is 
extended from the node with position code 1110. The 
node with position code 1110 is a right sibling of node 
with 111, which is an ancestor of node (s: 1:1111). 
Thus, (s: 1:111011) is a right-tree of (s: 1:1111). 
 
Hybrid algorithm: The algorithm scans the access 
sequence database first time to obtain the support of all 
events in the event set, E. All events that have a support 
greater than or equal to the minimum support are 
frequent. Each node in a tree registers three pieces of 
information: node label, node count and node code, 
denoted as label: count: position. The root of the tree is 
a special virtual node with an empty label and count 0. 
Every other node is labeled by an event in the event set 
E. Then it scans the database a second time to obtain 
the frequent sequences in each transaction. The non-
frequent events in each sequence are deleted from the 
sequence. 
 This algorithm also builds a prefix tree data 
structure by inserting the frequent sequence of each 
transaction in the tree the same way the WAP-tree 
algorithm would insert them. Once the frequent 

sequence of the last database transaction is inserted in 
the tree, the tree is traversed to build the frequent 
header node linkages. All the nodes in the tree with the 
same label are linked by shared-label linkages into a 
queue. Then, the algorithm recursively mines the tree 
using prefix conditional sequence search to find all web 
frequent access patterns. 
 Starting with an event, ei on the header list, it finds 
the next prefix frequent event to be appended to an 
already computed m-sequence frequent subsequence, 
which confirms an en node in the root set of ei, frequent 
only if the count of all current suffix trees of en is 
frequent. It continues the search for each next prefix 
event along the path, using subsequent suffix trees of 
some en (a frequent 1-event in the header table), until 
there are no more suffix trees to search. 
 To mine the tree, the algorithm starts with an 
empty list of already discovered frequent patterns and 
the list of frequent events in the head linkage table. 
Then, for each event, ei, in the head table, it follows its 
linkage to first mine 1-sequences, which are recursively 
extended until the m-sequences are discovered. The 
algorithm finds the next tree node, en; to be appended 
to the last discovered sequence, by counting the support 
of en in the current suffix tree of ei (header linkage 
event). Note that ei and en could be the same events. 
The mining process would start with an ei event and 
given the tree, it first mines the first event in the 
frequent pattern by obtaining the sum of the counts of 
the first en nodes in the suffix sub-trees of the Root. 
This event is confirmed frequent if this count is greater 
than or equal to minimum support. To find frequent 2-
sequences that start with this event, the next suffix trees 
of ei are mined in turn to possibly obtain frequent 2-
sequences respectively if support thresholds are met. 
Frequent 3-sequences are computed using frequent 2-
sequences and the appropriate suffix sub-trees. All 
frequent events in the header list are searched for, in 
each round of mining in each suffix tree set. Once the 
mining of the suffix sub-trees near the leaves of the tree 
are completed, it recursively backtracks to the suffix 
trees towards the root of the tree until the mining of all 
suffix trees of all patterns starting with all elements in 
the header link table are completed. 
 
Algorithm 1 (Tree Construction for Web access 
sequences): 
 
Input: Access sequence database D (i), min support MS 
(0< MS ≤1) 
Output: frequent sequential patterns in D (i). 
Variables: Cn stores total number of events in suffix 
trees, A stores whether a node is ancestor in queue. 
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Begin 
1. Create a root node for T; 
2. For each access sequence S in the access sequence 
database do  
 a) Extract frequent subsequence S1 =S1 S2 
…...Sn , WHERE 
 S1(1<=I<=n) are events in S1.Let current node 
point to the root of T. 
 b) for i=1 to n do , 
 if cuurent_node has a child labeled Si by 1 
and make cuurent_node point Si, 
 else 

 create a new childnode(S1:1),make 
current_node point to the new node,and insert 
it into the Si queue 

3. Return (T);  
 
Algorithm 2 (Hybrid algorithm-mining the binary 
coded WAP tree): 
 
Input: WAP tree T, header linkage table L, 
Minimum support ξ (0< ξ<1), Frequent m-sequence 
F). 
 Suffix tree roots set R(R includes root and F is empty 
first time algorithm is called. 
Output: Frequent (m+1) sequence, F1. 
Other Variables: S stores whether node is ancestor of 
the following nodes in the queue, C stores the total 
number of events ei in the suffix trees. 
Begin 
 If R is empty, return 
For each even ei in L, find the suffix tree of ei in T, 
do 
 Save first event in ei -queue to S. 
 Following the ei queue 
 If event ei is the descendant of any event 
in R and is not descendant of S, 
 Insert it into suffix-tree-header set R1 
 Add count of ei to C. 
 Replace the S with ei 

 If C is greated then ξ 
 Append ei after F to F1 and output F1 

 Call algorithm hybrid-Mine and 
passing R1 and F1. 
End // Hybrid algorithm //  
 

RESULTS 
 
 We report our experimental results on the 
performance of hybrid algorithm in comparison 
with WAP Tree and FS-Tree. It shows that our 
proposed algorithm is outperforms other previously 
proposed methods and is efficient and scalable 
for mining sequential patterns in large databases. 

 
 
Fig. 9: Sequence Database density Vs algorithm 

execution time (sec), at minimum support of 1% 
 
Table 5: Sequence database density Vs algorithm execution time (in 

sec), at minimum support of 1% 
   Proposed 
 Fsmine WA pmine method 
More dense 220 200 170 
C15T10SBN20D200K 
Dense 58 55 32 
C12T8S6N60D200K 
Less sparse 9  5  2 
C10T6SNB0D200K 
Sparse 12  3  2 
C8T5S4N100D200K 

 
All the experiments are performed on a 2.20 GHz 
core2duo laptop with 3 GB memory, running Microsoft 
Windows/NT. The synthetic datasets we used for our 
experiments were generated using standard procedure. 
 The execution time of every algorithm decreases as 
the minimum support increases. This is because when 
the minimum support increases, the number of 
candidate sequence decreases. Thus, the algorithms 
need less time to find the frequent sequences. The 
proposed algorithm always uses less runtime than the 
WAP algorithm (Fig 9 and Table 5). WAP tree mining 
incurs higher storage cost (memory or I/O). Even in 
memory only systems, the cost of storing intermediated 
trees adds appreciably to the overall execution time of 
the program. It is however, more realistic to assume 
that such techniques are run in regular systems 
available in many environments, which are not memory 
only, but could be multiple processor systems sharing 
memories and CPU’s with virtual memory support.  
 

DISCUSSION 
 

 Our performance study shows that our proposed 
method is more efficient and scalable than WAP Tree 
and FS-Tree, Whereas WAP tree is faster than FS -tree 
when the support threshold is low and there are many 
long patterns. Our proposed Hybrid algorithm 
eliminates the need to store numerous intermediate 
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WAP trees during mining. Since only the original tree 
is stored, it drastically cuts off huge memory access 
costs, which may include disk I/O cost in a virtual 
memory environment, especially when mining very 
long sequences with millions of records. This algorithm 
also eliminates the need to store and scan intermediate 
conditional pattern bases for reconstructing 
intermediate WAP trees.  
 

CONCLUSION 
 

 In this study, we have developed a novel, scalable 
and efficient frequent sequential pattern mining 
method. Our systematic performance study shows that 
our proposed method mines the complete set of patterns 
and is efficient and runs considerably faster than both 
WAP Tree and FS-Tree algorithms. This algorithm uses 
the pre-order linking of header nodes to store all events 
ei in the same suffix tree closely together in the linkage, 
making the search process more efficient. A simple 
technique for assigning position codes to nodes of any 
tree has also emerged, which can be used to decide the 
relationship between tree nodes without repetitive 
traversals. The Proposed Hybrid algorithm is able to 
quickly determine the suffix of any frequent pattern 
prefix under consideration by comparing the assigned 
binary position codes of nodes of the tree.  
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