
Journal of Computer Science 6 (11): 1293-1300, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: S. Vijayalakshmi, Department of Computer Applications, Thiagarajar College of Engineering, Madurai,
Tamil Nadu, India

1293

Mining Sequential Access Pattern with Low Support

From Large Pre-Processed Web Logs

1S. Vijayalakshmi and 2V. Mohan
1Department of Computer Applications,

2Department of Mathematics,
Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

Abstract: Problem statement: To find frequently occurring Sequential patterns from web log file on
the basis of minimum support provided. We introduced an efficient strategy for discovering Web usage
mining is the application of sequential pattern mining techniques to discover usage patterns from Web
data, in order to understand and better serve the needs of Web-based applications. Approach: The
approaches adopt a divide-and conquer pattern-growth principle. Our proposed method combined tree
projection and prefix growth features from pattern-growth category with position coded feature from
early-pruning category, all of these features are key characteristics of their respective categories, so
we consider our proposed method as a pattern growth, early-pruning hybrid algorithm. Results: Our
proposed Hybrid algorithm eliminated the need to store numerous intermediate WAP trees during
mining. Since only the original tree was stored, it drastically cuts off huge memory access costs,
which may include disk I/O cost in a virtual memory environment, especially when mining very long
sequences with millions of records. Conclusion: An attempt had been made to our approach for
improving efficiency. Our proposed method totally eliminates reconstructions of intermediate WAP-
trees during mining and considerably reduces execution time.

Key words: Data mining, sequential pattern mining, frequent pattern mining, web usage mining,

hybrid algorithm, WAP-tree

INTRODUCTION

 One of the data mining methods is sequential
pattern discovery introduced in (Ren and Zhou, 2006).
informally, sequential patterns are the most frequently
occurring subsequence’s in sequences of sets of items.
Among many proposed sequential pattern-mining
algorithms, most of them are designed to discover all
sequential patterns exceeding a user specified minimum
support threshold.
 Sequential pattern mining is an important data
mining problem with broad applications, including the
analyses of customer purchase behavior, web access
patterns, scientific experiments, disease treatments,
natural disaster and protein formations. A sequential
pattern mining algorithm mines the sequence database
looking for repeating patterns (known as frequent
sequences) that can be used later by end users or
management to find associations between the different
items or events in their data for purposes such as
marketing campaigns, business reorganization,
prediction and planning. With increase in the use of the

world wide web for E-Commerce businesses, web
services and others, web usage mining has appeared in
the literature as one of the most prevalent application
areas of sequential pattern mining (Han et al., 2000;
Ezeife and Lu, 2005; El-Sayed et al., 2004; Han et al.,
2004; 2005; Madan and Madan, 2010) This study
focuses on sequential pattern mining techniques
including those applicable to web usage mining.
 Currently, most web usage mining solutions
consider web access by a user as one page at a time,
giving rise to special sequence database with only one
item in each sequence’s ordered event list. Thus, given
a set of events E = {a, b, c, d, e, f },which may
represent product web pages accessed by users in an E-
Commerce application, a web access sequence database
for four users may have the four records (Table 1).

Table 1: Web access sequence
USER ID Web access sequence
T1 <abdac>
T2 <eaebcac>
T3 <babfaec>
T4 <abfac>

J. Computer Sci., 6 (11): 1293-1300, 2010

1294

 Mining on this web sequence database can find a
frequent sequence abac indicating that over 90% of
users who visit product a’s web page of
http://www.company.com/producta.htm also
immediately visit product b’s web page of
http://www.compay.com/productb.htm and then revisit
product a’s page, before visiting product c’s page. Store
managers may then place promotional prices on product
a’s web page, that is visited a number of times in
sequence, to increase the sale of other products. The
web log could be on the server side, client-side or on a
proxy server, each having its own benefits and
drawbacks on finding the users’ relevant patterns and
navigational sessions (Ivancsy and Vajk, 2006). While
web log data recorded on the server side reflect the
access of a web site by multiple users and is good for
mining multiple users’ behavior and for web
recommender systems, server logs may not be entirely
reliable due to caching as cached page views are not
recorded in a server log. Client-side data collection,
require that a remote agent be implemented or a
modified browser be used to collect single-user data,
thus eliminating caching and session identification
problems and is useful for web content personalization
applications. A proxy server can, on the other hand,
reveal the actual HTTP requests from multiple clients
to multiple web servers, thus, characterizing the
browsing behavior of a group of anonymous users
sharing a common server (Ren et al., 2006). Web user
navigational patterns can be mined using sequential
pattern mining of the preprocessed web log. Web
usage mining works on data generated by observing
web surf sessions or behaviors, which are stored in the
web log, from where all users' behaviors on each web
server can be extracted. An example of a line of data
in a web log is:

137.207.76.120 - [30/Aug/2007:12:03:24-0500]“GET
/jdk1.3/docs/relnotes/deprecatedlist.html HTTP/1.0"
200 2781

 This recorded information is in the format: host/ip
user [date: time] “request url” status bytes and represents
from left to right, the host IP address of the computer
accessing the web page. In most cases, researchers are
assuming that user web visit information is completely
recorded in the web server log, which is preprocessed to
obtain the transaction database to be mined for
sequences. Several sequential pattern mining techniques
that can be applied to web usage mining have been
introduced in the literature since mid 1990’s. Previous
surveys looked at different mining methods applicable to
web logs (Srivastava et al., 2000; Ivancsy and Vajk,

2006), but they lack of two important things; they fail to
(i) focus on sequential patterns as a complete solution,
(ii) include a deep investigation of the techniques and
theories used in mining sequential patterns.

MATERIALS AND METHODS

 The objective of this work is to apply data mining
techniques to a sequential database for the purposes of
discovering the correlation relationships that exist
among an ordered list of events. Given a WASD (Web
Access Sequence Database), the problem to find
frequently occurring Sequential patterns on the basis of
minimum support provided. The problem of web user
access pattern mining is: given web access sequence
database WASD and a support threshold ξ, mine the
complete set of ξ-patterns of WASD.

Example: Let {s, t, u, v, w, x} be a set of events and
100, 200, 300 and 400 are identifiers of users. A
fragment of web log records the information as follows:

(100, s) (100, t) (200, s) (300, t) (200, t) (400, s)
(100, s) (400, t) (300, s) (100, u) (200, u) (400, s)
(200, s) (300, t) (400, u) (400, u) (300, s)

 A pre-processing which divides the log files into
access sequences of individual users is applied to the
log file, while the resulting access sequence database,
denoted as WAS, is shown in the first two columns in
Table 2. There are totally 4 access sequences in the
database. They are not with same length. The first
access sequence, stvsu, is a 5-sequence, while st is a
subsequence of it. In access sequence of user 200, both
w and wswtu prefix with respect to su. xu is a 50%
pattern because it gets supports from access sequence of
user 300 and 400. Please note that even xu appears
twice in the access sequence of user 400, sxtsuxu, but
the sequence contributes only one to the count of xu.
 Study of WAP-mine algorithm (Han et al. 2000)-
Pattern-Growth miner with Tree Projection At the same
time of FreeSpan and PrefixSpan in 2000/2001, another
major contribution was made as a pattern growth and tree
structure mining technique, which is the WAP-mine
algorithm (Han et al., 2000) with its WAP-tree structure.

Table 2: A web access sequence database
User ID Web access sequence Frequent subsequence
100 stvsu stsu
200 wswtusu stus
300 tstxswu tsts
400 sxtsuxu stsuu

J. Computer Sci., 6 (11): 1293-1300, 2010

1295

Fig. 1: Complete WAP tree

Table 3: Frequent subsequence of web access sequence DB
User ID Web access sequence Frequent subsequence
T1 <bcbae> <bbae>
T2 <bacbae> <babae>
T3 <abe> <abe>
T4 <abebd> <abeb>
T5 <abad> <aba>

Here, the sequence database is scanned only twice to
build the WAPtree from frequent sequences along with
their support, a “header table” is maintained to point at
the first occurrence for each item in a frequent item set,
which is later tracked in a threaded way to mine the tree
for frequent sequences, building on the suffix. The first
scan of the database finds frequent 1-sequences and the
second scan builds the WAPtree with only frequent
subsequences. As an example of WAP-tree, the database
of Problem 1 (Table 3) is mined with the min_sup = 3
transactions.
 The frequent subsequences (third column of Table 3)
of each original database sequence are created by
removing non-frequent 1-sequences. The tree starts with
an empty root node and builds downward by inserting
each frequent subsequence as a branch from root to leaf.
During the construction of the tree, a header link table is
also constructed, which contains frequent 1-items (in our
example a, b and e) each one with a link connecting to its
first occurrence in the tree and threading its way through
the branches to each subsequent occurrence of its node
type as shown in Fig. 1. To mine the tree, WAP-mine
algorithm starts with the least frequent item in the header
link table and uses it as a conditional suffix to construct
an intermediate conditional WAP-tree and finds
frequent items building on the suffix to get frequent k-
sequences.

Fig. 2: WAP tree |e

Fig. 3: WAP tree |be

 In this example (Fig. 1), we start with item e,
which is added to the set of frequent sequences as fs =
{e} and follow its header links to find sequences bba: 1,
baba:1, ab:2, having supports of b(4) and a(4) to have a
and b as frequent 1-sequences. Now, build a WAP-sub-
tree for suffix |e as in Fig. 2 for sequences bba:1,
baba:1, ab:2 and mine it to obtain conditional suffix |be
as shown in Fig. 3 following the b-header link, causing
sequence be to get added to the set of frequent
sequences mined as fs = {e, be}.
 Following the header links of b in WAP-tree|e
(conditional search on e) gives b:1, ba:1, b:-1, a:2, with
supports of b (1) and a (3), b’s support is less than
min_sup so we remove it, resulting in a:1, a:2, giving
the conditional WAP-tree|be as in Fig. 3.
 Next, we add the newly discovered frequent
sequence to fs building on the suffix as fs = {e, be, abe}
and follow its header link in WAP-tree|be to get ø
(Fig. 3). Now, the algorithm recursively backtracks to
WAP-tree|e in Fig. 1 to mine the link for WAP-tree|ae
(Fig. 4). Complete mining of our example WAP-tree
can be traced in the rest of Fig. 5 and 6 with complete
set of frequent sequence fs ={e, be, abe, ae, b, bb, ab, a,
ba}. WAP-mine algorithm is reported to have better
scalability than GSP and to outperform it by a margin
(Han et al., 2000). Although it scans the database only
twice and can avoid the problem of generating
explosive candidates as in Apriori-based and candidate
generate-and-test methods, WAP-mine suffers from a
memory consumption problem as it recursively
reconstructs numerous intermediate WAP-trees during
mining and in particular, as the number of mined
frequent patterns increases.

J. Computer Sci., 6 (11): 1293-1300, 2010

1296

Fig. 4: WAP tree|ae

Fig. 5: WAP tree |ab

Table 4: Access sequence database D
User ID TID Access sequence
100 T1 <bcbae>
200 T2 <bacbae>
300 T3 <abe>
400 T4 <abebd>
500 T5 <abad>

 Study of FS-miner algorithm (El-Sayed et al.
2004): Inspired by FP-tree (Han et al., 2000; 2004)
and ISM (Thakur et al., 2006) FS-Miner is a tree
projection pattern growth algorithm that resembles
WAP-mine and supports incremental and interactive
mining. The significance of FS-Miner is that it starts
mining immediately with 2-subsequences from the
second-which is also the last- scan of the database (at
k = 2). It is able to do so due to the compressed
representation in the FS-tree, which utilizes a header
table of edges (referred to as links in El-Sayed at al.
(2004)) rather than single nodes and items compared
to WAP-tree. It is also considered a variation of trie as
it stores support count in nodes as well as edges of the
tree that represent 2-sequences and are required for the
incremental mining process. Consider Table 1 for a
running example on FS-Miner and keep in mind that it
only considerscontiguous sequences (e.g., cba is a
contiguous subsequence of bcbae, but ca is not).
Figure 5 shows the header table generated along
with FS-tree for sequences in Table 4 FS-miner and
the FS-tree R maintain two kinds of support counts
and minimum support, namely MSuppCseq, the
minimum frequent sequence support, similar to
min_sup used throughout this study and MSuppClink,
the minimum frequent link (a frequent 2-sequence)
support. A link h with support count Supplink (h)
is considered a frequent link if Supplink(h) ≥
MSuppCseq and is considered potentially frequent
link if MSuppClink

≤Supplink(h)<MSuppCseq. If
Supplink(h) does not satisfy both MSuppClink
and MSuppCseq then it is a non-frequent link.

Fig. 6: WAP tree | b

Fig. 7: FS-Tree and header table HT for Web Log from

Table 4

Potentially frequent links are maintained to support and
enable the incremental and interactive mining capability
of FS-miner.
 Frequent links and potentially frequent links are
marked in the Header Table (HT) in Fig. 7. Only
frequent links are used in mining. Assume MSuppClink
= 2 and MSuppCseq = 3 for our example. The sequence
database (Table 4) is scanned once to find counts for
links and insert them in the header table. The FS-tree is
built during the second scan of the database in a manner
similar to WAP-tree and PLWAP-tree except that a
sequence which contains non-frequent links is split and
each part is inserted in the tree separately. Pointer links
from the header table are built to connect occurrences
of header table entries as they are inserted into the FS-
tree similar to WAP-tree linkage (i.e., first occurrence
based and not pre-ordered). As only frequent links may
appear in frequent sequences, only frequent links are
considered during mining (El-Sayed et al., 2004)
mention four important properties of the FS-tree as
follows:

• Any input sequence that has non-frequent link (s)

is pruned before being inserted into the FS-tree
• If MSuppClink<MSuppCseq, the FS-tree is storing

more information than required. This is a drawback
as discussed in the features earlier in introduction
but is required by FS-miner to support incremental
and interactive mining in a manner similar to ISM
(Thakur et al., 2006)

J. Computer Sci., 6 (11): 1293-1300, 2010

1297

• All possible subsequences that end with a given
frequent link h can be obtained by following the
pointer of h from the header table to correct FS-tree
branches

• In order to extract a sequence that ends with a
certain link h from an FS-tree branch, we only need
to examine the branch prefix path that ends with
that link backward up to the tree root

Proposed method (hybrid algorithm): Our goal is to
find a data structure that supports efficient FSP
(Frequent Sequence Pattern) mining in terms of both
memory and time. Below we propose a special data
structure, for this purpose. Table 2 shows some
example Web Access Sequences to detect FSP.
 Our approach is based on WAP-tree, but avoids
recursively re-constructing intermediate WAP-trees
during mining of the original WAP tree for frequent
Sequence patterns. The Hybrid algorithm is able to
quickly determine the suffix of any frequent pattern
prefix under consideration by comparing the assigned
binary position codes of nodes of the tree.
 A tree is a data structure accessed starting at its
root node and each node of a tree is either a leaf or an
interior node. A leaf is an item with no child. An
interior node has one or more child nodes and is called
the parent of its child nodes. All children of the same
node are siblings. Like WAP-tree mining, every
frequent sequence in the database can be represented on
a branch of a tree. Thus, from the root to any node in
the tree defines a frequent sequence. For any node
labeled e in the WAP-tree, all nodes in the path from
root of the tree to this node (itself excluded) form a
prefix sequence of e. The count of this node e is called
the count of the prefix sequence. Any node in the prefix
sequence of e is an ancestor of e. On the other hand, the
nodes from e (itself excluded) to leaves form the suffix
sequences of e.
 Given a WAP-tree with some nodes, the binary
code of each node can simply be assigned following the
rule that the root has null position code and the leftmost
child of the root has a code of 1, but the code of any
other node is derived by appending 1 to the position
code of its parent, if this node is the leftmost child, or
appending 10 to the position code of the parent if this
node is the second leftmost child, the third leftmost
child has 100 appended. In general, for the nth leftmost
child, the position code is obtained by appending the
binary number for 2n-1 to the parent’s code. A node α
is an ancestor of another node β if and only if the
position code of α with “1” appended to its end, equals
the first x number of bits in the position code of β,
where x is the ((number of bits in the position code of
α) + 1).

Fig. 8: Position code assignment with node position in
its complete tree (binary tree)

Construction of tree: The tree data structure Fig. 8,
similar to WAP-tree, is used to store access sequences
in the database and the corresponding counts of
frequent events compactly, so that the tedious support
counting is avoided during mining. A Binary code is
assigned to each node in our tree. These codes are used
during mining for identifying the position of the nodes
in the tree. The header table is constructed by linking
the nodes in sequential events fashion. Here the linking
is used to keep track of nodes with the same label for
traversing prefix sequences. This mining algorithm is
prefix sequence search rather than suffix search.
 In data structure, when implementing a general
tree data structure, a tree is usually transformed into
its equivalent binary tree, which has a fixed number of
child nodes. To convert a given general tree, T, with
nodes at n levels an root at level 0, the leaf nodes at
level (n-1), to a binary tree, the following rule is
applied. The root of the binary tree is the leftmost
child of the root of the general tree, T. Then, starting
from level 1 of the general tree and working down to
level n-1 of the tree, for every node:

• The leftmost child of this node in the general tree

is the left child of the node in the binary tree
• The immediate right sibling of this node in the

general tree is the right child of this node in the
binary tree. For example, given a tree shown as
Fig. 1. It can be transformed into its binary tree
equivalent shown in Fig. 3, where every node has
at most two links, one is its left child and the
other is its sibling

 The position code is assigned to the nodes on the
binary tree equivalent of the tree using the Huffman
coding idea. Here, the code assignment rule starts from

J. Computer Sci., 6 (11): 1293-1300, 2010

1298

the leftmost child of the root node of the general tree,
which has a binary position code of 1 because this node
is the root of the binary tree equivalent of the tree.
Thus, given the binary tree equivalent of a tree, with
root node having a code of 1, the single temporary
position code assignment rule assigns 1 to the left child
of each node and 0 is assigned to the right child of each
node. These temporary position codes are used to
define the actual binary position code for each node in
the original general tree. The position code of a node on
the WAP tree is defined as the concatenation of all
temporary position codes of its ancestors from the root
to the node itself (inclusive) in the transformed binary
tree equivalent of the tree.
 For example, in Fig. 3, (s: 1:1110) is an ancestor of
(u: 1:111011) because the position code of (u: 1:1110)
is 1110 and after appending 1 at the end of 1110, we get
11101, which is equal to the first 5 (i.e., length of u + 1)
bits of (u: 1:111011). On the other hand, (u: 1:1110) is
not the ancestor of (u: 1:101111), since after appending
1, the code will be 11101 and is not equal to the first 5
bits position code of (u: 1:101111). Not only can we
use the position code to find the ancestor and
descendant relationships between nodes, but we can
also find whether one node belongs to the right-tree or
lefttree of another node. From Fig. 8, it can be seen that
node (u: 1:1111) and node (u: 1:111011) are two nodes
that belong to two sub trees, which are rooted at (s:
2:111) and (s: 1:1110) respectively. The node (s:
1:1111) belongs to a left-tree of (s: 1:111011) since the
fourth bit of (s: 1:111011) is 0, which means the node is
extended from the node with position code 1110. The
node with position code 1110 is a right sibling of node
with 111, which is an ancestor of node (s: 1:1111).
Thus, (s: 1:111011) is a right-tree of (s: 1:1111).

Hybrid algorithm: The algorithm scans the access
sequence database first time to obtain the support of all
events in the event set, E. All events that have a support
greater than or equal to the minimum support are
frequent. Each node in a tree registers three pieces of
information: node label, node count and node code,
denoted as label: count: position. The root of the tree is
a special virtual node with an empty label and count 0.
Every other node is labeled by an event in the event set
E. Then it scans the database a second time to obtain
the frequent sequences in each transaction. The non-
frequent events in each sequence are deleted from the
sequence.
 This algorithm also builds a prefix tree data
structure by inserting the frequent sequence of each
transaction in the tree the same way the WAP-tree
algorithm would insert them. Once the frequent

sequence of the last database transaction is inserted in
the tree, the tree is traversed to build the frequent
header node linkages. All the nodes in the tree with the
same label are linked by shared-label linkages into a
queue. Then, the algorithm recursively mines the tree
using prefix conditional sequence search to find all web
frequent access patterns.
 Starting with an event, ei on the header list, it finds
the next prefix frequent event to be appended to an
already computed m-sequence frequent subsequence,
which confirms an en node in the root set of ei, frequent
only if the count of all current suffix trees of en is
frequent. It continues the search for each next prefix
event along the path, using subsequent suffix trees of
some en (a frequent 1-event in the header table), until
there are no more suffix trees to search.
 To mine the tree, the algorithm starts with an
empty list of already discovered frequent patterns and
the list of frequent events in the head linkage table.
Then, for each event, ei, in the head table, it follows its
linkage to first mine 1-sequences, which are recursively
extended until the m-sequences are discovered. The
algorithm finds the next tree node, en; to be appended
to the last discovered sequence, by counting the support
of en in the current suffix tree of ei (header linkage
event). Note that ei and en could be the same events.
The mining process would start with an ei event and
given the tree, it first mines the first event in the
frequent pattern by obtaining the sum of the counts of
the first en nodes in the suffix sub-trees of the Root.
This event is confirmed frequent if this count is greater
than or equal to minimum support. To find frequent 2-
sequences that start with this event, the next suffix trees
of ei are mined in turn to possibly obtain frequent 2-
sequences respectively if support thresholds are met.
Frequent 3-sequences are computed using frequent 2-
sequences and the appropriate suffix sub-trees. All
frequent events in the header list are searched for, in
each round of mining in each suffix tree set. Once the
mining of the suffix sub-trees near the leaves of the tree
are completed, it recursively backtracks to the suffix
trees towards the root of the tree until the mining of all
suffix trees of all patterns starting with all elements in
the header link table are completed.

Algorithm 1 (Tree Construction for Web access
sequences):

Input: Access sequence database D (i), min support MS
(0< MS ≤1)
Output: frequent sequential patterns in D (i).
Variables: Cn stores total number of events in suffix
trees, A stores whether a node is ancestor in queue.

J. Computer Sci., 6 (11): 1293-1300, 2010

1299

Begin
1. Create a root node for T;
2. For each access sequence S in the access sequence
database do
 a) Extract frequent subsequence S1 =S1 S2
…...Sn , WHERE
 S1(1<=I<=n) are events in S1.Let current node
point to the root of T.
 b) for i=1 to n do ,
 if cuurent_node has a child labeled Si by 1
and make cuurent_node point Si,
 else

 create a new childnode(S1:1),make
current_node point to the new node,and insert
it into the Si queue

3. Return (T);

Algorithm 2 (Hybrid algorithm-mining the binary
coded WAP tree):

Input: WAP tree T, header linkage table L,
Minimum support ξ (0< ξ<1), Frequent m-sequence
F).
 Suffix tree roots set R(R includes root and F is empty
first time algorithm is called.
Output: Frequent (m+1) sequence, F1.
Other Variables: S stores whether node is ancestor of
the following nodes in the queue, C stores the total
number of events ei in the suffix trees.
Begin
 If R is empty, return
For each even ei in L, find the suffix tree of ei in T,
do
 Save first event in ei -queue to S.
 Following the ei queue
 If event ei is the descendant of any event
in R and is not descendant of S,
 Insert it into suffix-tree-header set R1
 Add count of ei to C.
 Replace the S with ei

 If C is greated then ξ
 Append ei after F to F1 and output F1

 Call algorithm hybrid-Mine and
passing R1 and F1.
End // Hybrid algorithm //

RESULTS

 We report our experimental results on the
performance of hybrid algorithm in comparison
with WAP Tree and FS-Tree. It shows that our
proposed algorithm is outperforms other previously
proposed methods and is efficient and scalable
for mining sequential patterns in large databases.

Fig. 9: Sequence Database density Vs algorithm

execution time (sec), at minimum support of 1%

Table 5: Sequence database density Vs algorithm execution time (in

sec), at minimum support of 1%
 Proposed
 Fsmine WA pmine method
More dense 220 200 170
C15T10SBN20D200K
Dense 58 55 32
C12T8S6N60D200K
Less sparse 9 5 2
C10T6SNB0D200K
Sparse 12 3 2
C8T5S4N100D200K

All the experiments are performed on a 2.20 GHz
core2duo laptop with 3 GB memory, running Microsoft
Windows/NT. The synthetic datasets we used for our
experiments were generated using standard procedure.
 The execution time of every algorithm decreases as
the minimum support increases. This is because when
the minimum support increases, the number of
candidate sequence decreases. Thus, the algorithms
need less time to find the frequent sequences. The
proposed algorithm always uses less runtime than the
WAP algorithm (Fig 9 and Table 5). WAP tree mining
incurs higher storage cost (memory or I/O). Even in
memory only systems, the cost of storing intermediated
trees adds appreciably to the overall execution time of
the program. It is however, more realistic to assume
that such techniques are run in regular systems
available in many environments, which are not memory
only, but could be multiple processor systems sharing
memories and CPU’s with virtual memory support.

DISCUSSION

 Our performance study shows that our proposed
method is more efficient and scalable than WAP Tree
and FS-Tree, Whereas WAP tree is faster than FS -tree
when the support threshold is low and there are many
long patterns. Our proposed Hybrid algorithm
eliminates the need to store numerous intermediate

J. Computer Sci., 6 (11): 1293-1300, 2010

1300

WAP trees during mining. Since only the original tree
is stored, it drastically cuts off huge memory access
costs, which may include disk I/O cost in a virtual
memory environment, especially when mining very
long sequences with millions of records. This algorithm
also eliminates the need to store and scan intermediate
conditional pattern bases for reconstructing
intermediate WAP trees.

CONCLUSION

 In this study, we have developed a novel, scalable
and efficient frequent sequential pattern mining
method. Our systematic performance study shows that
our proposed method mines the complete set of patterns
and is efficient and runs considerably faster than both
WAP Tree and FS-Tree algorithms. This algorithm uses
the pre-order linking of header nodes to store all events
ei in the same suffix tree closely together in the linkage,
making the search process more efficient. A simple
technique for assigning position codes to nodes of any
tree has also emerged, which can be used to decide the
relationship between tree nodes without repetitive
traversals. The Proposed Hybrid algorithm is able to
quickly determine the suffix of any frequent pattern
prefix under consideration by comparing the assigned
binary position codes of nodes of the tree.

REFERENCES

El-Sayed, M., C. Ruiz and E.A. Rundensteiner, 2004.
FS-miner: Efficient and incremental mining of
frequent sequence patterns in web logs.
Proceedings of the 6th Annual ACM International
Workshop on Web Information and Data, Nov. 12-
13, ACM Press, Washington, DC., USA., pp: 128-135.
DOI: 10.1145/1031453.1031477

Ezeife, C.I. and Y. Lu, 2005. Mining web log
sequential patterns with position coded pre-order
linked WAP-tree. Data Min. Knowl. Discov.,
10: 5-38. DOI: 10.1007/s10618-005-0248-3

Han, J., J. Pei and Y. Yin, 2000. Mining frequent
patterns without candidate generation. Proceeding of
the 2000 ACM SIGMOD International Conference
on Management of Data, May 15-18, ACM Press,
Dallas, Texas, United States, pp: 1-12. DOI:
10.1145/342009.335372

Han, J., J. Pei, Y. Yin and R. Mao, 2004. Mining
frequent patterns without candidate generation: A
frequent pattern tree approach. Data Min. Knowl.
Discov., 8: 53-87. DOI:
10.1023/B:DAMI.0000005258.31418.83

Han, J. M. Kamber and J. Pei, 2005. Data Mining:
Concepts and Techniques. Morgan Kaufmann, San
Francisco, CA., ISBN: 10: 1558609016, pp: 800.

Ivancsy, R. and I. Vajk, 2006. Frequent pattern mining
in web log data. Acta Polytech. Hungarica, 3: 77-90.
http://bmf.hu/journal/Ivancsy_Vajk_5.pdf

Madan, M. and S. Madan, 2010. Convalesce
optimization for input allocation problem using
hybrid genetic algorithm. J. Comput. Sci., 6: 413-416.
http://www.scipub.org/fulltext/jcs/jcs64413-416.pdf

Ren, J., X. Zhang and H. Peng, 2006. MFTPM:
Maximum frequent traversal pattern mining with
bidirectional constraints. J. Comput. Sci., 2: 704-709.
http://www.scipub.org/fulltext/jcs/jcs29704-709.pdf

Ren, J.D. and X.L. Zhou, 2006. A new incremental
updating algorithm for mining sequential patterns.
J. Comput. Sci., 2: 318-321.
http://www.scipub.org/fulltext/jcs/jcs24318-321.pdf

Srivastava, J., R. Cooley, M. Deshpande and P.N. Tan,
2000. Web usage mining: Discovery and
applications of usage patterns from Web data.
ACM SIGKDD Explorat. Newslett., 1: 12-23.
DOI: 10.1145/846183.846188

Thakur, R.S., R.C. Jain and K.R. Pardasani, 2006.
Mining level-crossing association rules from large
databases. J. Comput. Sci., 2: 76-81.
http://www.scipub.org/fulltext/jcs/jcs2176-81.pdf

