Journal of Computer Science 6 (11): 1293-1300, 2010
ISSN 1549-3636
© 2010 Science Publications

Mining Sequential Access Pattern with Low Support
From Large Pre-Processed Web L ogs

!S. Vijayalakshmi andv. Mohan
'Department of Computer Applications,
’Department of Mathematics,
Thiagarajar College of Engineering, Madurai, TaNaldu, India

Abstract: Problem statement: To find frequently occurring Sequential patterreaf web log file on
the basis of minimum support provided. We introduaa efficient strategy for discovering Web usage
mining is the application of sequential pattern ingntechniques to discover usage patterns from Web
data, in order to understand and better serve ¢eglsnof Web-based applicatiodgoproach: The
approaches adopt a divide-and conquer pattern-grprinciple. Our proposed method combined tree
projection and prefix growth features from pattgrowth category with position coded feature from
early-pruning category, all of these features ag &haracteristics of their respective categoses,
we consider our proposed method as a pattern graatty-pruning hybrid algorithnResults: Our
proposed Hybrid algorithm eliminated the need tresnumerous intermediate WAP trees during
mining. Since only the original tree was storeddrastically cuts off huge memory access costs,
which may include disk I/0O cost in a virtual memeanyironment, especially when mining very long
sequences with millions of recordSonclusion: An attempt had been made to our approach for
improving efficiency. Our proposed method totallyménates reconstructions of intermediate WAP-
trees during mining and considerably reduces ei@ttime.

Key words: Data mining, sequential pattern mining, frequenttgqua mining, web usage mining,
hybrid algorithm, WAP-tree

INTRODUCTION world wide web for E-Commerce businesses, web
services and others, web usage mining has appé@ared

One of the data mining methods is sequentiafhe literature as one of the most prevalent apjiioa
pattern discovery introduced in (Ren and Zhou, 2006 areas of sequential pattern mining (Hetnal., 2000;
informally, sequential patterns are the most fregye Ezeife and Lu, 2005; El-Sayetial., 2004; Haret al.,
occurring subsequence’s in sequences of setsrofite 2004; 2005; Madan and Madan, 2010) This study
Among many proposed sequential pattern-miningfocuses on sequential pattern mining techniques
algorithms, most of them are designed to discovler aincluding those applicable to web usage mining.
sequential patterns exceeding a user specifiechmimi Currently, most web usage mining solutions
support threshold. consider web access by a user as one page at a time

Sequential pattern mining is an important datadiving rise to special sequence database with onky
mining problem with broad applications, includirlget item in each sequence’s ordered event list. Thiveng
analyses of customer purchase behavior, web accedsset of events E = {a, b, ¢, d, e, f },which may
patterns, scientific experiments, disease treasnentf€present product web pages accessed by usersbn an
natural disaster and protein formations. A seqaenti Commerce application, a web access sequence databas
pattern mining algorithm mines the sequence dagabador four users may have the four records (Table 1).
looking for repeating patterns (known as frequen _
sequences) that can be used later by end users té%ﬂillbww access sequence
management to find associations between the differe—;

Web access sequence
<abdac>

items or events in their data for purposes such asgp <eaebcac>
marketing campaigns, business reorganizationT3 <babfaec>
prediction and planning. With increase in the usthe T4 <abfac>

Corresponding Author: S. Vijayalakshmi, Department of Computer Applioas, Thiagarajar College of Engineering, Madurai,
Tamil Nadu, India
1293

J. Computer i, 6 (11): 1293-1300, 2010

Mining on this web sequence database can find 2006), but they lack of two important things; tHaj to
frequent sequence abac indicating that over 90% dfi) focus on sequential patterns as a completetisolu
users who visit product a's web page of(ii) include a deep investigation of the techniqaes

http://www.company.com/producta.htm also theories used in mining sequential patterns.
immediately visit product b's web page of
http://www.compay.com/productb.htm and then revisit MATERIALSAND METHODS

product a’s page, before visiting product c’s pdgfere

managers may then place promotional prices on gtodu The objective of this work is to apply data mining
a’'s web page, that is visited a number of times intechniques to a sequential database for the puspafse
sequence, to increase the sale of other produtis. T discovering the correlation relationships that exis
web log could be on the server side, client-sideroa among an ordered list of events. Given a WASD (Web
proxy server, each having its own benefits andAccess Sequence Database), the problem to find
drawbacks on finding the users’ relevant pattemmd a frequently occurring Sequential patterns on thesbafs
navigational sessions (lvancsy and Vajk, 2006).I&/hi minimum support provided. The problem of web user
web log data recorded on the server side refleet thaccess pattern mining is: given web access sequence
access of a web site by multiple users and is good database WASD and a support threshgjldnine the
mining multiple users’ behavior and for web complete set of-patterns of WASD.

recommender systems, server logs may not be gntirel

reliable due to caching as cached page views are ngxample: Let {s, t, u, v, w, X} be a set of events and
recorded in a server log. Client-side data coleetti 100, 200, 300 and 400 are identifiers of users. A

require that a remote agent be implemented or @agment of web log records the information asofa:
modified browser be used to collect single-useradat

thus eliminating caching and session identification
problems and is useful for web content personatimat 888 3 888 3 ggg zg ggg 3)((220006 ?J)(‘ggo

applications. A proxy server can, on the other hand
reveal the actual HTTP requests from multiple dben (200,) (300, 1) (400,) (400, u) (300, 5)

to multiple web servers, thus, characterizing the

browsing behavior of a group of anonymous users A pre-processing which divides the log files into
sharing a common server (Real., 2006). Web user access sequences of individual users is appliettheto
navigational patterns can be mined using sequentidPg file, while the resulting access sequence detap
pattern mining of the preprocessed web log. Welglenoted as WAS, is shown in the first two colurms i
usage mining works on data generated by observingable 2. There are totally 4 access sequencesein th
web surf sessions or behaviors, which are storéden database. They are not with same length. The first
web log, from where all users' behaviors on each weaccess sequence, stvsu, is a 5-sequence, whiteast i
server can be extracted. An example of a line ¢& da subsequence of it. In access sequence of useba@o,

in a web log is: w and wswtu prefix with respect to su. xu is a 50%

pattern because it gets supports from access segoén
137.207.76.120 - [30/Aug/2007:12:03:24-0500]“GET yser 300 and 400. Please note that even xu appears

/jdk1.3/docs/relnotes/deprecatedlist.html HTTP/1.0%yjice in the access sequence of user 400, sxtsuxu,
200 2781 the sequence contributes only one to the countiof x
Study of WAP-mine algorithm (Haset al. 2000)-
Pattern-Growth miner with Tree Projection At thensa
time of FreeSpan and PrefixSpan in 2000/2001, anoth
major contribution was made as a pattern growthtieeed

This recorded information is in the format: hqst/i
user [date: time] “request url” status bytes amtasents
from left to right, the host IP address of the catep
accessing the web page. In most cases, reseawnigers o . S .
assuming that user web visit information is cormgliet structure -mining technlque,_ Wh'Ch is_the WAP-mine
recorded in the web server log, which is prepraass algorithm (Haret al., 2000) with its WAP-tree structure.
obtain the transaction database to be mined for
sequences. Several sequential pattern mining pedmi 1able 2: A web access sequence database

that can be applied to web usage mining have beplr\ser ID Web access sequence Frequent subsequence
introduced in the literature since mid 1990’s. Rves j\};’\i:usu zttf;

surveys Iooke_d at different mining methods applieab_ 300 1SIXSWU tsts

web logs (Srivastavat al., 2000; lvancsy and Vajk, 400 sxtsuxu stsuu

1294

J. Computer i, 6 (11): 1293-1300, 2010

Fig. 2: WAP tree |e

Table 3: Frequent subsequence of web access segDénc

<«
Fig. 1: Complete WAP tree @
®

User ID Web access sequence Frequent subsequence

Tl <bcbae> <bbae> Fig. 3: WAP tree |be

T2 <bacbae> <babae>

T3 <abe> <abe> In this example (Fig. 1), we start with item e
T4 <abebd> <abeb> ple (Fig. 1), ,

5 <abad> <aba> which is added to the set of frequent sequencés as

{e} and follow its header links to find sequencdmbl,
baba:1, ab:2, having supports of b(4) and a(4)pieeta
Here, the sequence database is scanned only twice 4nd b as frequent 1-sequences. Now, build a WAP-sub
build the WAPtree from frequent sequences alond wit tree for suffix |e as in Fig. 2 for sequences bpa:l
their support, a “header table” is maintained t;pat baba:1, ab:2 and mine it to obtain conditionaliguytie

the first occurrence for each item in a frequesmnitset, as shown in Fig. 3 following the b-header link, siag
which is later tracked in a threaded way to mireettke sequence be to get added to the set of frequent
for frequent sequences, building on the suffix. Tiret sequences mined as fs = {e, be}.

scan of the database finftequent 1-sequences and the ~ Following the header links of b in WAP-treele

second scan builds the WAPtree with only frequentconditional search on e) gives b:1, ba:1, b:-2, waith

subsequences. As an example of WAP-tree, the databaSUPPOrts of b (1) and a (3), b's support is lesmnt
min_sup so we remove it, resulting in a:1, a:2jrgjv

of Problem 1 (Table 3) is mined with the min_suB= the conditional WAP-tree|be as in Fig. 3

transactions. . Next, we add the newly discovered frequent
The freq_u_ent subsequences (third column of Table 3Sequence to fs building on the suffix as fs = {e, &#be}
of each original database sequence are created Ry follow its header link in WAP-treefioeget o
removing non-frequent 1-sequences. The tree statlts (Fig. 3). Now, the algorithm recursively backtradks
an empty root node and builds downward by insertingVAP-tree|e in Fig. 1 to mine the link for WAP-trae|
each frequent subsequence as a branch from réedfto (Fig. 4). Complete mining of our example WAP-tree
During the construction of the tree, a header falke is can be traced in the rest of Fig. 5 and 6 with detep
also constructed, which contains frequent 1-itsmgyr ~ Set of frequent sequence fs ={e, be, abe, ae, mthta,
example a, b and e) each one with a link connettiritg ba}. WAP-mine algorithm is reported to have better
first occurrence in the tree and threading its #mgugh ~ Sc@lability than GSP and to outperform it by a nrarg

the branches to each subsequent occurrence obdes n (H_anet al., 2000). AlthOUQh it scans the database o_nIy
L : . twice and can avoid the problem of generating
type as shown n Fig. 1. To mine the_ tree_, WAP'm'neexplosive candidates as in Apriori-based and catdid
glgonthm starts Wlth_the least frgquent |tem ie beader generate-and-test methods, WAP-mine suffers from a
link table and uses it as a conditional suffix tmstruct memory consumption problem as it recursively
an intermediate conditional WAP-tree and findsreconstructs numerous intermediate WAP-trees during
frequent items building on the suffix to get frequ& mining and in particular, as the number of mined

sequences. frequent patterns increases.
1295

J. Computer ci., 6 (11): 1293-1300, 2010
<> <D
© D
(R 2z
@‘@ Fig. 6: WAP tree | b
‘ (R

Fig. 4: WAP tree|ae

Link Count
] 0 @ b 2 {
b-a 3 "/ (b)
Fig. 5: WAP tree |ab a-e 2 5 =
a-b 3
Table 4: Access sequence database D b-e 2 S
User ID TID Access sequence a)
100 T1 <bcbae>
200 T2 <bachae>
300 T3 <abe>
;‘88 % :ZEZES> Fig. 7: FS-Tree and header table HT for Web Lognfro
Table 4

Study of FS-miner algorithm (El-Sayeet al. _) o
2004): Inspired by FP-tree (Haet al., 2000; 2004) Potentially _frequent links are malntz?uned to sup_[a_tmd
and ISM (Thakuret al., 2006) FS-Miner is a tree enable t_he incremental and interactive mining caipab
projection pattern growth algorithm that resemblesOf FS-miner. , ,
WAP-mine and supports incremental and interactive ~ Frequent links and potentially frequent links are
mining. The significance of FS-Miner is that itgga Marked in the Header Table (HT) in Fig. 7. Only
mining immediately with 2-subsequences from thefrequent links are used in mining. Assume MSupC
second-which is also the last- scan of the datatetse = 2 and MSupp&®= 3 for our example. The sequence
k = 2). It is able to do so due to the compressediatabase (Table 4) is scanned once to find cownts f
representation in the FS-tree, which utilizes adeea links and insert them in the header table. There&-s
table of edges (referred to as links in El-Sagedl. built during the second scan of the database ianer
(2004)) rather than single nodes and items comparesimilar to WAP-tree and PLWAP-tree except that a
to WAP-tree. It is also considered a variationr® is sequence which contains non-frequent links is spiit
it stores support count in nodes as well as edféi®eo each part is inserted in the tree separately. Eoiintks
tree that represent 2-sequences and are requiréidefo from the header table are built to connect occeesn
incremental mining process. Consider Table 1 for &f header table entries as they are inserted hed=S-
running example on FS-Miner and keep in mind that itree similar to WAP-tree linkage (i.e., first ocremce
only considerscontiguous sequences (e.g., cba is gysed and not pre-ordered). As only frequent linky

contiguous subsequence of bcbae, but ca is notynnear in frequent sequences, only frequent links a
Figure 5 shows the header table generated along, cijered during mining (El-Sayeet al., 2004)

with FS-tree for segquences in _Table 4 FS-miner aN mention four important properties of the FS-tree as
the FS-tree R maintain two kinds of support count%nows_

and minimum support, namely MSupp® the

minimum frequent sequence support, similar to . .
min_sup used throughout this study and MSUBphC * ANy input sequence that has non-frequent link (s)
the minimum frequent link (a frequent 2-sequence) 1S pruned bgfore being inserted into the FS-tree_
support. A link h with support count SUpp(h) * If MSuppClink<sMSuppCseq, the FS-tree is storing

is considered a frequent link if Supf(h) > more information than required. This is a drawback
MSuppC*®® and is considered potentially frequent as discussed in the features earlier in introdactio
link if MSuppC"™<Supg™(h)<MSuppC® If but is required by FS-miner to support incremental
Supg™(h) does not satisfy both MSuppt and interactive mining in a manner similar to ISM
and MSupp€? then it is a non-frequent link. (Thakuret al., 2006)

1296

J. Computer i, 6 (11): 1293-1300, 2010

« All possible subsequences that end with a given
frequent link h can be obtained by following the
pointer of h from the header table to correct FE&-tr
branches

* In order to extract a sequence that ends with a
certain link h from an FS-tree branch, we only need
to examine the branch prefix path that ends with
that link backward up to the tree root

Proposed method (hybrid algorithm): Our goal is to
find a data structure that supports efficient FSP
(Frequent Sequence Pattern) mining in terms of both
memory and time. Below we propose a special data
structure, for this purpose. Table 2 shows some
example Web Access Sequences to detect FSP.
Our approach is based on WAP-tree, but avoid$ig. 8: Position code assignment with node position
recursively re-constructing intermediate WAP-trees its complete tree (binary tree)
during mining of the original WAP tree for frequent
Sequence patterns. The Hybrid algorithm is able taConstruction of tree: The tree data structure Fig. 8,
quickly determine the suffix of any frequent patter similar to WAP-tree, is used to store access sempsen
prefix under consideration by comparing the asgignein the database and the corresponding counts of
binary position codes of nodes of the tree. frequent events compactly, so that the tedious @iipp
A tree is a data structure accessed startingsat itcounting is avoided during mining. A Binary code is
root node and each node of a tree is either adeah assigned to each node in our tree. These codesade
interior node. A leaf is an item with no child. An during mining for identifying the position of thedes
interior node has one or more child nodes andllecta in the tree. The header table is constructed bsirign
the parent of its child nodes. All children of tkeme the nodes in sequential events fashion. Here tiink
node are siblings. Like WAP-tree mining, everyis used to keep track of nodes with the same Ifdsel
frequent sequence in the database can be représente traversing prefix sequences. This mining algoritsm
a branch of a tree. Thus, from the root to any nede prefix sequence search rather than suffix search.
the tree defines a frequent sequence. For any node |n data structure, when implementing a general
labeled e in the WAP-tree, all nodes in the patmfr tree data structure, a tree is usually transforinéal
root of the tree to this node (itself excluded)nfoa its equivalent binary tree, which has a fixed numife
prefix sequence of e. The count of this node elled child nodes. To convert a given general tree, Thwi
the count of the prefix sequence. Any node in tfedip nodes at n levels an root at level 0, the leaf soate
sequence of e is an ancestor of e. On the othet, iad |evel (n-1), to a binary tree, the following ruls i
nodes from e (itself excluded) to leaves form thfixs applied. The root of the binary tree is the leftinos
sequences of e. child of the root of the general tree, T. Thenrtstg
Given a WAP-tree with some nodes, the binaryfrom level 1 of the general tree and working down t
code of each node can simply be assigned followirg |evel n-1 of the tree, for every node:
rule that the root has null position code and #ieriost
child of the root has a code of 1, but the codamf <+ The leftmost child of this node in the general tree

other node is derived by appending 1 to the pasitio is the left child of the node in the binary tree

code of its parent, if this node is the leftmosiicchor ~ « The immediate right sibling of this node in the
appending 10 to the position code of the parettiig general tree is the right child of this node in the
node is the second leftmost child, the third lefmo binary tree. For example, given a tree shown as
child has 100 appended. In general, for the ntimiest Fig. 1. It can be transformed into its binary tree
child, the position code is obtained by appending t equivalent shown in Fig. 3, where every node has
binary number for 2n-1 to the parent’s code. A nade at most two links, one is its left child and the
is an ancestor of another nofeif and only if the other is its sibling

position code ofi with “1” appended to its end, equals

the first x number of bits in the position code ff The position code is assigned to the nodes on the
where x is the ((number of bits in the positioneaf binary tree equivalent of the tree using the Hufima
a) +1). coding idea. Here, the code assignment rule sfants

1297

J. Computer i, 6 (11): 1293-1300, 2010

the leftmost child of the root node of the gendraé, sequence of the last database transaction is easert
which has a binary position code of 1 becauserthiee the tree, the tree is traversed to build the frague
is the root of the binary tree equivalent of theetr header node linkages. All the nodes in the treé thie
Thus, given the binary tree equivalent of a treghw same label are linked by shared-label linkages &to
root node having a code of 1, the single temporaryueue. Then, the algorithm recursively mines tlee tr
position code assignment rule assigns 1 to theckélitl ~ using prefix conditional sequence search to firdvab
of each node and 0 is assigned to the right cliilshoh frequent access patterns.
node. These temporary position codes are used to Starting with an event, en the header list, it finds
define the actual binary position code for eachenmd the next prefix frequent event to be appended to an
the original general tree. The position code obdenon already computed m-sequence frequent subsequence,
the WAP tree is defined as the concatenation of allvhich confirms an en node in the root set;pfrequent
temporary position codes of its ancestors fromrtied only if the count of all current suffix trees of és
to the node itself (inclusive) in the transformadaoy frequent. It continues the search for each nextixpre
tree equivalent of the tree. event along the path, using subsequent suffix tofes
For example, in Fig. 3, (s: 1:1110) is an ancestor some en (a frequent 1-event in the header tabig), u
(u: 1:111011) because the position code of (u: 1011 there are no more suffix trees to search.
is 1110 and after appending 1 at the end of 11&0get To mine the tree, the algorithm starts with an
11101, which is equal to the first 5 (i.e., lengftu + 1) empty list of already discovered frequent patteand
bits of (u: 1:111011). On the other hand, (u: 1M1 the list of frequent events in the head linkageletab
not the ancestor of (u: 1:101111), since after agipgy Then, for each event;, én the head table, it follows its
1, the code will be 11101 and is not equal to tlte & linkage to first mine 1-sequences, which are recehs
bits position code of (u: 1:101111). Not only cae w extended until the m-sequences are discovered. The
use the position code to find the ancestor andilgorithm finds the next tree node, en; to be agpdn
descendant relationships between nodes, but we cda the last discovered sequence, by counting thpati
also find whether one node belongs to the rigtg-te of en in the current suffix tree of éheader linkage
lefttree of another node. From Fig. 8, it can bensthat event). Note that;eand en could be the same events.
node (u: 1:1111) and node (u: 1:111011) are tweesod The mining process would start with anewxent and
that belong to two sub trees, which are rootedsat (given the tree, it first mines the first event inet
2:111) and (s: 1:1110) respectively. The node (sfrequent pattern by obtaining the sum of the cowfits
1:1111) belongs to a left-tree of (s: 1:111011fesithe the first en nodes in the suffix sub-trees of thmR
fourth bit of (s: 1:111011) is 0, which means tloel@is This event is confirmed frequent if this count reaer
extended from the node with position code 1110. Theéhan or equal to minimum support. To find frequent
node with position code 1110 is a right siblingnode sequences that start with this event, the nexbstréfes
with 111, which is an ancestor of node (s: 1:1111)of ¢ are mined in turn to possibly obtain frequent 2-
Thus, (s: 1:111011) is a right-tree of (s: 1:1111). sequences respectively if support thresholds are me
Frequent 3-sequences are computed using frequent 2-
Hybrid algorithm: The algorithm scans the accesssequences and the appropriate suffix sub-trees. All
sequence database first time to obtain the sumb@it frequent events in the header list are searchedirfor
events in the event set, E. All events that hasepport each round of mining in each suffix tree set. Otiee
greater than or equal to the minimum support aremining of the suffix sub-trees near the leaveseftree
frequent. Each node in a tree registers three pie€e are completed, it recursively backtracks to thefisuf
information: node label, node count and node codetrees towards the root of the tree until the mindhgll
denoted as label: count: position. The root ofttee is suffix trees of all patterns starting with all elents in
a special virtual node with an empty label and ¢dun the header link table are completed.
Every other node is labeled by an event in the esen
E. Then it scans the database a second time tdnobtaAlgorithm 1 (Tree Construction for Web access
the frequent sequences in each transaction. The nosequences):
frequent events in each sequence are deleted fiem t
sequence. Input: Access sequence database D (i), min suppsrt
This algorithm also builds a prefix tree data(0< MS<1)
structure by inserting the frequent sequence oh eacOutput: frequent sequential patterns in D (i).
transaction in the tree the same way the WAP-tre&ariables: G stores total number of events in suffix
algorithm would insert them. Once the frequenttrees, A stores whether a node is ancestor in queue

1298

J. Computer i, 6 (11): 1293-1300, 2010

Begin
1. Create a root node for T;

2. For each access sequence S in the access sequer
1

database do
a) Extract frequent subsequenck <5, S,

Si(1<=I<=n) are events in Sl.Let current node

point to the root of T.
b) fori=1tondo,
if cuurent_node has a child labeledy 1
and make cuurent_node point Si,
else
create a

new childnode($),make

250

200

D FS-min

50

. WAP-mine

100

50 D Proposed method

0 T T T

Denes
Less sqarse
Sqarse

More denes

Fig. 9: Sequence Database density Vs algorithm
execution time (sec), at minimum support of 1%

current_node point to the new node,and insert

it into the $queue
3. Return (T);

Algorithm 2 (Hybrid algorithm-mining the binary
coded WAP tree):

Input: WAP tree T, header linkage table L,
Minimum support (0<&<1), Frequent m-sequence
F).
Suffix tree roots set R(R includes root and Frigpgy
first time algorithm is called.
Output: Frequent (m+1) sequencé, F
Other Variables: S stores whether node is ancestor

the following nodes in the queue, C stores thel tot

number of events, & the suffix trees.
Begin
If R is empty, return
For each even, @ L, find the suffix tree of,@n T,
do
Save first event in;equeue to S.
Following the equeue
If event ei is the descendant of any event
in R and is not descendant of S,
Insert it into suffix-tree-header set R
Add count of gto C.
Replace the S with e
If C is greated thef
Append eafter F to Eand output E
Call algorithm hybrid-Mine and
passing Rand B.
End // Hybrid algorithm //

RESULTS

We report our experimental

Table 5: Sequence database density Vs algorithroutire time (in
sec), at minimum support of 1%

Proposed

Fsmine WA pmine method
More dense 220 200 170
C15T10SBN20D200K
Dense 58 55 32
C12T8S6N60D200K
Less sparse 9 5 2
C10T6SNBOD200K
Sparse 12 3 2
C8T5S4N100D200K

results on the

All the experiments are performed on a 2.20 GHz
core2duo laptop with 3 GB memory, running Microsoft

AWindows/NT. The synthetic datasets we used for our

experiments were generated using standard procedure
The execution time of every algorithm decreases as
the minimum support increases. This is because when
the minimum support increases, the number of
candidate sequence decreases. Thus, the algorithms
need less time to find the frequent sequences. The
proposed algorithm always uses less runtime than th
WAP algorithm (Fig 9 and Table 5). WAP tree mining
incurs higher storage cost (memory or 1/0). Even in
memory only systems, the cost of storing internmtedia
trees adds appreciably to the overall executior toh
the program. It is however, more realistic to assum
that such techniques are run in regular systems
available in many environments, which are not mgmor
only, but could be multiple processor systems sigari
memories and CPU'’s with virtual memory support.

DISCUSSION

Our performance study shows that our proposed

performance of hybrid algorithm in comparison method is more efficient and scalable than WAP Tree
with WAP Tree and FS-Tree. It shows that ourand FS-Tree, Whereas WAP tree is faster than €S -tr
proposed algorithm is outperforms other previouslywhen the support threshold is low and there areyman
proposed methods and is efficient and scalabldong patterns. Our proposed Hybrid algorithm
for mining sequential patterns in large databaseseliminates the need to store numerous intermediate

1299

J. Computer i, 6 (11): 1293-1300, 2010

WAP trees during mining. Since only the originaer Han, J., J. Pei and Y. Yin, 2000. Mining frequent
is stored, it drastically cuts off huge memory asce patterns without candidate generation. Proceeding o
costs, which may include disk 1/O cost in a virtual the 2000 ACM SIGMOD International Conference
memory environment, especially when mining very on Management of Data, May 15-18, ACM Press,
long sequences with millions of records. This ation Dallas, Texas, United States, pp: 1-12. DOI:
also eliminates the need to store and scan intéate=d 10.1145/342009.335372

conditional pattern bases for reconstructingHan, J., J. Pei, Y. Yin and R. Mao, 2004. Mining

intermediate WAP trees. frequent patterns without candidate generation: A
frequent pattern tree approach. Data Min. Knowl.
CONCLUSION Discov., 8: 53-87. DOI:

10.1023/B:DAMI.0000005258.31418.83

In this study, we have developed a novel, scalablélan, J. M. Kamber and J. Pei, 2005. Data Mining:
and efficient frequent sequential pattern mining Concepts and Techniques. Morgan Kaufmann, San
method. Our systematic performance study shows that Francisco, CA., ISBN: 10: 1558609016, pp: 800.
our proposed method mines the complete set ofrpatte lvancsy, R. and |. Vajk, 2006. Frequent patterningn
and is efficient and runs considerably faster thath in web log data. Acta Polytech. Hungarica, 3: 77-90
WAP Tree and FS-Tree algorithms. This algorithmsuse http://fbmf.hu/journal/lvancsy_Vajk_5.pdf
the pre-order linking of header nodes to storewaints Madan, M. and S. Madan, 2010. Convalesce

g in the same suffix tree closely together in tinddige, optimization for input allocation problem using
making the search process more efficient. A simple hybrid genetic_ algorithm. J. Comput. Sci., 6: 41%4
technique for assigning position codes to nodeanyf http://www.scipub.org/fulltext/jcs/jcs64413-416.pdf

tree has also emerged, which can be used to démde Ren, J., X. Zhang and H. Peng, 2006. MFTPM:
relationship between tree nodes without repetiive Maximum frequent traversal pattern mining with
traversals. The Proposed Hybrid algorithm is able t bidirectional constraints. J. Comput. Sci., 2: 70%-
quickly determine the suffix of any frequent patter http://www.scipub.org/fulltext/jcs/jcs29704-709.pdf
prefix under consideration by comparing the assigne Reén, J.D. and X.L. Zhou, 2006. A new incremental

binary position codes of nodes of the tree. updating algorithm for mining sequential patterns.
J. Comput. Sci., 2: 318-321.
REFERENCES http://www.scipub.org/fulltext/jcs/jcs24318-321.pdf

Srivastava, J., R. Cooley, M. Deshpande and P.N, Ta

El-Sayed, M., C. Ruiz and E.A. Rundensteiner, 2004, 2000. Web usage mining: Discovery and
FS-miner: Efficient and incremental mining of @pplications of usage patterns from Web data.
frequent sequence patterns in web logs. ACM SIGKDD Explorat. Newslett., 1: 12-23.

Proceedings of the 6th Annual ACM International DOL: 10-1145/846133-846188)

Workshop on Web Information and Data, Nov. 12_Thaku_r,_ R.S., R.C. J_aln and KR Pardasani, 2006.

13, ACM Press, Washington, DC., USA., pp: 128-135. Mining level-crossing association _rules from large

DOI: 10.1145/1031453.1031477 databases. .J. Comput. - S.CI., 2: 76-81.
Ezeife, C.I. and Y. Lu, 2005. Mining web log http://www.scipub.org/fulltext/jcs/jcs2176-81.pdf

sequential patterns with position coded pre-order

linked WAP-tree. Data Min. Knowl. Discov.,

10: 5-38. DOI: 10.1007/s10618-005-0248-3

1300

