Journal of Computer Science 6 (12): 1535-1540, 2010
ISSN 1549-3636
© 2010 Science Publications

Controlling Label Size Increment of Efficient XML Encoding and
L abeling Schemein Dynamic XML Update

Meghdad Mirabi, Hamidah lbrahim, Ali Mamat, Nur tauJdzir and Leila Fathi
Department of Computer Science,
Faculty of Computer Science and Information Tecbgg|
University Putra Malaysia, 43400 Serdang, Selangafaysia

Abstract: Problem statement: In order to facilitate XML query processing, label schemes are used
to determine the structural relationships betwe&hlXhodes. However, labeling schemes have to
reliable the existing nodes or recalculate thellabafies when a new node is inserted into the XML
document during XML update process. EXEL as a lagetcheme is able to remove relabeling for
existing nodes during XML update process. Alsoisitable to compute the structural relationship
between nodes effectively. However, for the casskefved insertions where nodes are always inserted
at a fixed place, the label size of EXEL schemeaeases very fasfpproach: This study discussed
how to control the increment of label size for EMEL scheme. In addition, EXEL does not consider
the process of deleting labels. We also study lovetise the deleted labels for future label ingpsti
Results: We proposed an algorithm which is able to contnel label size incremenEonclusion: It
required less storage size to store the insert@@dryibit string and thus can improve query
performance.

Key words: Bit string, reuse of deleted label, skewed insertXML relabeling

INTRODUCTION 2008; Ko and Lee, 2006; 2010). However, how to
process the deleted labels is a new challenge in
XML (Bray et al, 2006) has been proposed as a delynamic XML update (Let al, 2006b; 2008; Yun and
facto standard to represent and exchange the ddateo Chung, 2008; Ko and Lee, 2006; 2010).
Internet. Generally, XML documents can be In dynamic XML updating process, one of the
represented as an XML tree or XML graph. Elememts i important issues is the label update cost in imsgrnd
XML document can be labeled based on the structire deleting a node into or from the XML tree. Thuse th
XML document to facilitate XML query processing. In maintenance of the XML document order is very
order to improve the XML query processing time, theimportant when update is performed. Several rekearc
structural relationships between XML nodes must béhave been suggested to solve the problem of réatapel
determined. In other words, XML query processingthe existing nodes in dynamic update process of XML
requires the information of the structural relasibips (Min et al, 2007; 2009; Wt al, 2004; Amagasat al,
among XML nodes. The basic structural relationship2003; O'Neilet al, 2004; Li and Ling, 2005; Lét al,
are Parent-Child (P-C) and Ancestor-Descendant JA-D2006a; 2008; 2006b; Li and Moon, 2001; Yun and
and the core operation of XML query processingois t Chung, 2008; Ko and Lee, 2006; 2010).
find all occurrences of structural relationships an Efficient XML Encoding and Labeling (EXEL)
XML document. However, labeling schemes have to re{Min et al, 2007; 2009) as an insert-friendly order-
label the existing nodes or recalculate the laladlies based bit string labeling scheme is able to remove
when a new node is inserted into the XML documaent i relabeling for existing nodes during XML update
dynamic XML update process. Recently, moreprocess. Also, it is able to compute the structural
researches are focused on how to update the labaislationship between nodes effectively. Thus, wa ca
when nodes are inserted into the XML tree (Mtral, use EXEL to make a label for a new inserted node in
2007; 2009; Wuet al, 2004; Amagasa&t al, 2003; XML tree without violating the ordering of the ind=d
O'Neil et al, 2004; Li and Ling, 2005; let al, 2006a; and encoded nodes of XML tree. However, for thecas
2006b; 2008; Li and Moon, 2001; Yun and Chung,of skewed insertion where nodes are always insated

Corresponding Author: Meghdad Mirabi, Department of Computer Scienceufaof Computer Science and Information Technology
University Putra Malaysia, 43400 Serdang, Selandataysia
1535

J. Computer Sci., 6 (12): 1535-1540, 2010

a fixed place, the label size of EXEL scheme insesa increasing the size of length field, it still cahradle to
very fast. This study discusses how to control theemove relabeling completely and it will waste ate
increment of label size for the EXEL scheme. Inspace. This problem is called overflow problem. In
addition, EXEL does not consider the process ofaddition, in contrast with QED which the last 2sbitf
deleting labels. We also study how to reuse thetdél the neighbor label must be modified, only the it
labels for future label insertions to control thbél size needs to be modified in CDBS. Thus, update cost of
increment and improve the query performance. CDBS is smaller than update cost of QED.

In addition, deleted labels can be reused during
Related works: Wu et al (2004) have proposed a insertion operation of nodes to decrease the stosag
scalable prime based labeling scheme which uses thmst and improve XML query processing performance.
property of prime number to label the XML nodes.Li et al (2006b) have proposed an algorithm to reuse
Each node is labeled by an integer which can oely bdeleted labels and control the increment of stosge
divided exactly by its own ancestor label in XMleér when nodes are inserted into and deleted from XML
The structural relationship between nodes in thiddocument frequently. Relabeling the existing noges
scheme depends on whether the label of a descendamit required in the proposed algorithm. The QED (Li
node is divisible by the label of an ancestor ot. no and Ling, 2005; Liet al, 2008) labeling approach is
Prime number labeling scheme uses the Simultaneousiable to guarantee inserting the labels with s¥stll
Congruence (SC) values in Chinese reminder theoremsize when some labels are deleted.etial (2006b)
to decide the document order. However, prime néeds have suggested a reuse algorithm to modify QED
recalculate the SC values based on the new ordefing labeling approach to find the smallest Ilabel
the nodes. lexicographically between two labels.

To solve the relabeling problem of region number In order to overcome the overflow problem of
labeling scheme, Amagas# al. (2003) have extended CDBS, Compact Dynamic Quaternary String (CDQS)
a region by using float-point values for the staatue (Li et al, 2008) encoding approach is devised which is
and end value of intervals. However, this solutisn able to remove relabeling in updating the leaf node
unable to remove the relabeling in the case ofueatf completely. CDQS also can be applied into different
insertions. labeling schemes like CDBS and QED. In addition

ORDPATH as a prefix insert-friendly XML node Li et al (2008) have proposed some techniques to
label scheme (O’'Neikt al, 2004) is able to insert update interval nodes efficiently but it is not elib
nodes at any position of XML documents. ORDPATH completely remove the relabeling in interval node
is similar to the Dewey labeling scheme. It onlesis updates. In addition, to reuse all CDQS deletedlfala
odd numbers during initialization of labels. Evemda new algorithm is devised. One solution to labed th
negative numbers are reserved for later insertita i XML document which can remove relabeling in
XML tree. Also, due to compressed binary updating process is to leave some unused values for
representation of node labels in ORDPATH, thefuture insertion (O’Neilet al, 2004; Li and Moon,
structural relationship between two nodes is damech 2001). However, when the unused values are used up
by the substring comparison. It does not almostinee later, they have to re-label the existing nodeg th
re-label existing nodes during node insertion pssce proposed algorithms (Li and Ling, 2005; Et al,
but binary representation length of labels is laagel 2006a; 2006b; 2008) do not need to leave some dnuse
becomes longer by data insertion frequently. Invalues for future insertion.
addition, ORDPATH has the problem of skewed The interval property of node labels in region
insertion. number labeling scheme causes relabeling the egisti

QED (Li and Ling, 2005; Liet al, 2008) and nodes in XML update. Although reserving space for
CDBS (Li et al, 2006a) remove the need of relabelingfuture node insertion is as a solution to avoidiveling
the nodes when the XML document is updated. Irin existing nodes, when a large number of data is
addition, they can be applied to different labelinginserted relabeling is required (O'Nait al, 2004; Li
schemes which need to maintain the order. Mosand Moon, 2001). If we can process a large XML
important feature of QED and CDBS is that the label insertion with a small space, we are able to sdhee
are compared based on lexicographical order rathegroblem of relabeling in existing node of XML tree.
than numerical order. The main problem of CDBS isYun and Chung (2008) have devised the Nested Tree
overflow. If the numbers of inserted nodes aredatge Structure according to this motivation to avoid
length field size is not enough for new label. Hoere relabeling for interval based number labeling soeem
relabeling all of existing nodes is required. Evan in updating process. In this approach, each XML

1536

J. Computer Sci., 6 (12): 1535-1540, 2010

element is considered as an XML data update umit anrelabeling for existing nodes during XML update
is expressed by a sub-tree. In order to labelubetree, process. Also, it is able to compute the structural
each node in the sub-tree is labeled by new nuiab@r relationship between nodes effectively. Thus, we us
then the sub-tree is labeled as a leaf node okiie EXEL to make a label for a new inserted node in XML
tree. Thus, the structural relationship betweeon@erin data without any violating on the ordering of the
the inserted sub-tree and other nodes which arénnot existing nodes of XML data. EXEL uses bit string to
the inserted sub-tree is determined by comparigg thencode the XML data. This bit string is ordinalveel
label of sub-tree and the label of other nodesrtter as insert friendly. The definition of lexicographic
to obtain the structural relationship between noibes order (<) of bit string is defined as follows:

the inserted sub-tree, the new labels which arekedar Lexicographical Order (<):

in the sub-tree are used. This approach is callested

Tree Structure because if the data insertion ocours « 0 is smaller than 1 (0<1) lexicographically

the previous inserted sub-tree, a new sub-treerisefld « Bijt string a is equal to bit string b

in the inserted sub-tree. As the data insertickes this lexicographically, if a and b are the same (a = b)
occur continually, the structure of the whole afetris « For bit stringsoy, oy, by and b, obi<ozb,, iff
nested by sub-trees. In addition, Yun and Chun@&20 (0u<0y) or (= 0o and h< by) or (@, = a, and h is

have proposed an algorithm to release nested tnees null (empty string)), where lengtla) = length ()
the process of sub-tree deletion as much as pessibl

IBSL as a binary string based prefix scheme (Ko According to the above definition, for each bit
and Lee, 2006; 2010) is able to remove relabelimy) a string s which ends with ‘0’, the largest bit strin
recalculation in XML updating process. Also, inerd among bit strings which are smaller than s
to handle reusability of the deleted labels, Ko &eé |exicographically is the s's longest prefix p (i.. =
(2010) have proposed an algorithm to decreasedbie ¢ p0). However, we cannot generate any bit stringctvhi
of storage size when the large number of labels arg greater than the prefix p and smaller than g. Fo
inserted and deleted without worrying aboutexample, there is not any bit string which can be
degradation of query performance. An algorithm forinserted between ‘1110’ and its longest prefixsitng
inserting a sibling as well as sub-tree into XMeer <111’ Thus, if the last bits of any two consecaetibit
without the need to relabeling the nodes are p®pas strings are ‘1’, we can insert a new one betweerbth
(KO and Lee, 2006, 2010) but the proposed algorithrrstrings without any Changes on them.
does not support inserting a node as a parentiktb The key idea to remove relabeling during updating
tree like (Minet al, 2007; 2009; Li and Ling, 2005; process of a node in the XML tree is property 1.
Li et al, 2006a; 2006b; 2008).

EXEL (Min et al, 2007; 2009) removes relabeling property 1: For two bit strings al and b1, if al<bl
the nodes for updating. EXEL is able to inserttdisy |exicographically, then a < b lexicographically.
or a parent as well as a child into the XML tre¢haut The algorithm of generating the bit string for red
the need to relabeling the nodes. EXEL can save tim is shown in Fig. 1 which is the enhanced binary
update operations because of complete avoidance @hcoding algorithm in (Miret al, 2007; 2009). This
relabeling the XML tree. However, the problem of gigorithm obeys the property 1.
EXEL is the increment of label size when node |n order to encode N ordinal values, the bit strin

insertions and deletions are performed frequently. generation algorithm needgogy)+1] bits for each bit

string. Thus, the total size for encoding N valaeNi
[(logy)+1] for example, in order to encode 18 values,

Here we present the EXEL scheme and show hothe size of the longest bit string is 6 and thaltsiz_e is _
update to the XML can be done without relabeling th 618 = 108. Table 1 shows the enhanced bit string
existing nodes and then our proposed algorithm i€ncoding of 18 numbers based on bit string gererati
presented to control the label size increment & th&lgorithm.

EXEL scheme for the case of skewed insertions and
process of reusability of the deleted labels.

MATERIALSAND METHODS

Let N be the total number of nodes of XML tree,
For first bit string b (1), b(1) = (0'=2) 1.
For (i+1) th bit string b (i+1), b (i+1)=b (i) + 10.

EXEL labeling and encoding scheme: According to
(Min et al, 2007; 2009), EXEL as an insert friendly bit
string order based labeling scheme is able to removFig. 1: Algorithm of bit string generation

1537

J. Computer Sci., 6 (12): 1535-1540, 2010

MakeNewBitString (LefiB, RightB)

Begin ModifiedMakeNewBitString (LeftB. RightB)
If length(LeftB) = length(RightB) then Begin
newB = LeftB concatenate with 1: templ:= LeftB +10;
Else temp2:= RightB — 10;
newB:= (RightB with last bit changed to 0) if (LeftB < templ) and (templ < RightB) then

newB:= templ:
else if (LeftB < temp2) and (temp2 < RightB) then
newB:= temp2;

concatenate with 1;
Retum newB:

End

else
If length(LeftB) = length(RightB) then
newB:= LeftB concatenate with 1:
Fig. 2: MakeNewBitString algorithm else
newB:= (RightB with last bit changed to 0)
concatenate with 1:
Return newB;
End

001001 001011 Fig. 4: ModifiedMakeNewBitString algorithm

00101001 00101011

If we want to generate a binary bit string between
“001001” and “0010101", the binary bit string
generated by the algorithm is “00101001". Also, the
Fig. 3: Insertion of a new node between two exgsti Pinary bit string between “0010101" and “001011"
nodes generated by the algorithm is “00101011".
According to the example 1, it is observed that fo
Table 1: Enhanced binary encoding scheme in EXElL8onumbers ~ each binary bit string insertion, the size of Hiing

0010101

Decimal number Bit string increases 1 bit. In other words, the label sizeciases

% 888321 linearly (O(N)) using MakeNewBitString algorithm.

3 000101

4 000111 The proposed algorithm: The MakeNewBitString

5 001001 Igorith t bi bit string b
5 001011 algorithm generates a new binary bit string by
7 001101 increasing 1 bit in the label size. In order totcohnthe

8 001111 label size increment, we modify the MakeNewBitSirin
9 010001 algorithm. The proposed algorithm which is shown in
10 010011 . X . . I

1 010101 Fig. 4 is a modified version of the MakeNewBitStyin
12 010111 algorithm.

13 011001

14 011011)

15 011101 Example 2: Assume that we want to insert a new node
16 011111 between two nodes which are labeled with “001001”
g igggﬂ and “001011” as shown in Fig. 5. If we use the

proposed algorithm to generate a binary bit string
EXEL uses MakeNewBitString algorithm which is between “001001" and *001011", the inserted binary

shown in Fig. 2 to make a new bit string betweea tw Pt Sting is “0010101" similar to the previous
preexisting bit strings. algorithm. We cannot find any other binary bit rsy$

which are ended with “1” and are between “001001”

Example 1: As shown in Fig. 3, assume that we use@nd “001011” lexicographically with the small size.
MakeNewBitString algorithm to make a binary bifrggr ~ However, if we want to insert a binary bit string
between two existing nodes with binary bit stringsbetween “001001” and “0010101", the binary bit regri
“001001” and “001011”, the inserted binary strirgg i generated by the proposed algorithm is “001001he T
“0010101" We cannot find any other binary bit strings result is different with the previous one which is
which are ended with “1”, are between “001001” “00101001". It saves 1 bit in the label size anch ca
and “001011” lexicographically with the small iz reduce label size.

1538

J. Computer Sci., 6 (12): 1535-1540, 2010

Based on Example 2, it is observed that the size cExample 3. Assume that the two binary bit strings
inserted binary bit string increases 1 bit in warase “001001” and “001011” are deleted. Now, we want to

for each binary bit string insertion in the propbse 9enerate two new binary bit strings between “000111
algorithm. In other words, the label size increase%ndk NOOlleS as shlowr_1h|n Fig. 6. If we use the
linearly (O(N)) in worst case while it increasesvays akeNewBItString algorithm to generate two nhew

. . : : binary bit strings, the new binary bit strings wie
linearly (O(N)) in the previous algorithm. “0011001” and “00110011" while the two new binary

In addition, the proposed algorithm is able 10y qings generated by the proposed algorithnh tveil
control the size of new inserted label in EXEL het «991001” and “001011". Thus, the proposed algorithm
update environment with both insertions and detetio s aple to reuse deleted nodes for future binargthing
frequently. Example 3 shows this fact. insertion as well as control the label size.

Another problem of the MakeNewBitString
algorithm is its behavior in skewed insertions. In
skewed insertions, nodes are always inserted ixed f
place. Thus, the label size increases 1 bit forheac
insertion using the MakeNewBitString algorithm. We
® 001101 can control label size increment using the proposed
001011 algorithm. Example 4 presents the behavior of the
proposed algorithm in the skewed insertions.

000111
001001

)

00101001/0010011 0010101/0010101 Example 4: Assume that we want to insert three binary
bit strings between “110101” and “110111” as shamvn
Fig. 7. If we use the MakeNewBitString algorithm to
Fig. 5: Insertion of a new node between two existin 9enerate new binary bit strings, “1101101”,

nodes “11011001" and "110110001” are the three new binary
bit strings while if we use the proposed algorithmn
generate new bit strings, “1101101”, “1101011” and
“11010101" are the binary bit strings.

Based on example 4, it is observed that label size
increment in the proposed algorithm for skewed
000111 001101 insertions is equal or less than the inserted lalzel in
the MakeNewBitString algorithm.

RESULTSAND DISCUSSION

0011001/001001 00110011/001011 The comparison of the proposed algorithm with the
MakeNewBitString algorithm in terms of label size
increment is shown in Table 2.

F|g 6: De|eting and |nserting nodes frequenﬂy Based on Table 2, it is observed that the sizbef
inserted binary bit string increases 1 bit in warase

for each binary bit string insertion in the propbse
algorithm. In other words, the label size increases
linearly (O(N)) in worst case while it increasesays
linearly (O(N)) in the previous algorithm.

110111 Table 2: The comparison of the proposed algorithith vthe
110101 MakeNewBitString algorithm
110110001/11010101 1101101/1101101 The proposed algorithm MakeNe®Bing algorithm
11011001/1101011 Worst case Best case Worst case and Best case

a O(N) 0(1) O(N)

b O(N) O(1) O(N)

c O(N) 0(1) O(N)
. . . . a: Insertion of new node between two existing nptie®eletion and insertion

Fig. 7: The behavior of skewed insertions of nodes frequently; c: The behavior of skewed iises

1539

J. Computer Sci., 6 (12): 1535-1540, 2010
CONCLUSION Li, C., T.W. Ling and M. Hu, 2006a. Reuse or never
reuse the deleted labels in XML query processing
This study modifies the MakeNewBitString based on labeling schemes. Lecture Notes Comput.
algorithm of EXEL encoding and labeling scheme in Sci., 3882: 659-673. DOI: 10.1007/11733836_46
order to control the label size increment of insért Li, C., T.W. Ling and M. Hu, 2006b. Efficient

nodes in XML update for skewed insertions. In

addition, the MakeNewBitString algorithm is unale
reuse the deleted labels for future insertion wikiie

processing of updates in dynamic XML data.
Proceeding of the 22nd International Conference
on Data Engineering. Apr. 3-7, IEEE Computer

proposed algorithm can reuse the deleted labels. Society, Atlanta, Georgia, USA., pp: 13-13. DOI:

However, for each label insertion, the size of new 10.1109/ICDE.2006.58

binary bit string is increased by 1 bit in the Li, C., T.W. Ling and M. Hu, 2008. Efficient updata

MakeNewBitString algorithm while in the proposed dynamic XML data: From binary string to

algorithm the size of inserted label is increasgd Ibit quaternary string. VLDB J., 17: 573-601. DOI:

in the worst case. As a result, the proposed gihgor 10.1007/s00778-006-0021-2

requires less storage size than the MakeNewBitptrinLi, Q. and B. Moon, 2001. Indexing and querying XML

algorithm to store the inserted binary bit strimgl ahus data for regular path expressions. Proceedingeof th

can improve query performance. 27th International Conference on Very Large Data
As a future study, we intend to evaluate the Bases, Sept. 11-14, |IEEE Press, Roma, lItaly,

behavior of the proposed algorithm and compareth w pp: 361-370.

the MakeNewBitString algorithm using different XML http://citeseerx.ist.psu.edu/viewdoc/download?doi=

dataset for dynamic XML updating process. 10.1.1.22.862&rep=repl&type=pdf

Min, J.K., J. Lee and C.W. Chung, 2007. An effitien
encoding and labeling for dynamic XML data.
Lecture Notes Comput. Sci., 4443; 715-726. DOI:

Amagasa, T., M. Yoshikawa and S. Uemura, 2003. 10.1007/978-3-540-71703-4_60
QRS: A robust numbering scheme for XML Min, J.K., J. Lee and C.W. Chung, 2009. An effitie
documents. Proceeding of the 19th International XML encoding and labeling method for query
Conference on Data Engineering, March 5-8, IEEE processing and updating on dynamic XML data. J.
Computer Society, Bangalore, India, pp: 705-707. Syst. Software, 82: 503-515. DOI:
DOI: 10.1109/ICDE.2003.1260842 10.1016/}.jss.2008.08.014

Bray, T., J. Paoli, C.M. Sperberg-McQueen, E. MalerO’Neil, P., E. O'Neil, S. Pal, I. Cseri, G. Schallend
and F. Yergeatet al, 2006. Extensible markup N. Westbury, 2004. ORDPATHSs: insert-friendly
language (XML) 1.1. W3C. XML node labels. Proceeding of the 2004 ACM
http://www.w3.org/TR/xmI11/ SIGMOD International Conference on

Ko, H.K. and S.K. Lee, 2006. An efficient scheme to Management of Data, June 13-18, ACM Press,
completely avoid re-labeling in XML updates. Paris, France, pp: 903-908.
Lecture Notes Comput. Sci., 4255: 259-264. DOI: http://portal.acm.org/citation.cfm?id=1007568.10866
10.1007/11912873_27 Wu, X., M.L. Lee and W. Hsu, 2004. A prime number

Ko, H.K. and S.K. Lee, 2010. A binary string apprioa labeling scheme for dynamic ordered XML Trees.
for updates in dynamic ordered XML data. |IEEE Proceeding of the 20th International Conference on
Trans. Knowl. Data Eng., 22: 602-607. DOI: Data Engineering, Mar. 30-Apr. 2, IEEE Computer
10.1109/TKDE.2009.87 Society, Boston, USA., pp: 66-78. DOI:

Li, C. and T.W. Ling, 2005. QED: A novel quaternary 10.1109/ICDE.2004.1319985
encoding to completely avoid Re-labeling in XML Yun, J.H. and C.W. Chung, 2008. Dynamic interval-
updates. Proceeding of the 14th ACM International ~ based labeling scheme for efficient XML query and
Conference on Information and Knowledge update processing. J. Syst. Software, 81: 56-70.
Management, Oct. 31-Nov. 5, ACM Press, DOI: 10.1016/}.jss.2007.05.034
Bremen, Germany, pp: 501-508.
http://portal.acm.org/citation.cfm?id=1099554.10926

REFERENCES

1540

