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Abstract: Problem statement: The aim of data classification is to establistesuior the classification

of some observations assuming that we have a dagatdich includes of at least two classes. There
is a training set for each class. Those problenesiroin a wide range of human activity. One of the
most promising ways to data classification is based methods of mathematical optimization.
Approach: The problem of data classification was studiecagwoblem of global, nonsmooth and
nonconvex optimization; this approach consistsexatibing clusters for the given training sets. The
data vectors are assigned to the closest clustbéicanmespondingly to the set, which contains this
cluster and an algorithm based on a derivative-fineéhod is applied to the solution of this problem.
Results: Proposed method had been tested on real-worldetataResults of numerical experiments
had been presented which demonstrate the effeesgeaf the proposed algorithi@onclusion: In

this study we had studied a derivative-free optation approach to the classification. For
optimization generalized pattern search methodbbas applied. The results of numerical experiments
allowed us to say the proposed algorithms are &ffedor solving classification problems at least f
databases considered in this study.
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INTRODUCTION certain function. The outer approach is currentig t
most popular, for example by Mangasarian (1997) and
The aim of data classification is to establistesul Bradley and Mangasarian (2000), where problems of
for the classification of some observations assgmin quadratic and bilinear programming are applied for
that the classes of data are known. To find thelesra  classification and then linear programming techagju
researcher can use known training subsets of thare used for the solution of these problems. Thers®
specified classes. The construction of a clasgifina (inner) approach consists of describing clustersttie
procedure may also be a pattern recognition praeedu given training sets. The data vectors are alloctigte
a discrimination procedure or supervised learningclosest cluster and correspondingly to the setchwvhi
procedure. Those problems occur in a wide range ahcludes this cluster. The conceptual descriptibthis
human activity. approach can be found in Bagirast al. (2001).
Many methods exist for data classification, whichNumerical experiments show that for supervised
are based on quite different approaches (neurallassification of databases of a small to mediure,si
networks, statistics, and methods of informationthe inner approach presents a more precise deeaript
theory). Michie et al. (1994) explains an excellent of databases than the outer approach. We apply the
review of these methods, including their computaio inner approacin this study. For the execution of this
investigation and comparison. approach one needs to solve a complex problemrof no
One of the most promising ways to dataconvex and non-smooth unconstrained optimization.
classification is based on methods of mathematicaGlobal methods provide more precise descriptions of
optimization. For supervised classification we have clusters. A powerful method for solving nonsmooth
database, which includes of at least two classkerel  optimization problems (the generalized pattern cear
is a training set for each class and there are twmethod GPS) has been developed (Torczon, 1997,
different ways for the application of optimizatiohhe = Audet and Dennis, 2003). Too, the numerical
first, which we shall call outer, is based on theexperiments is presented in this study which shuat t
separation of the given training sets by means of ¢he inner approach to the supervised classification
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problem based on optimization techniques givesliesu Some problems happen when the proposed
close to the best known method. procedure is applied. Note that the number of em
in the global optimization problem (1) is>m. If the
MATERIALSAND METHODS number p of clusters and the number m of attribates

large, then we have a large-scale global optinompati

The global optimization algorithm to  problem. On the other hand it is difficult to defjna
classfication: At the first we introduce a formulation priori how many clusters represent the set B under
to the classification problem in terms of global consideration. Therefore we need to consider differ
optimization. numbers of clusters, starting from a certain small

Consider the dataset which contains k classes, thaumber p. If the solution of the corresponding
is, k nonempty finite subsets;Bj=1..,k of m-  optimization problem (1) is not satisfactory, weedéo
dimensional spaceR Assume that the set Bonsists ~consider the problem (1) with p + 1 clusters anaso
of d points (j=1,...,k). The task of classification is to Thus we need to solve repeatedly the arising global
establish means where by we can categorize a ne@pPtimization problem (1) with different p. _
observation into one of the existing classes. Toeze Therefore assuming that the set B consists of only
in order to solve this problem we suggest findingone c_Iuster we can calcula_te its center by solvhey
clusters for each set;B=1,...k and identifying these following convex programming problem:

sets with the centers of the corresponding clusiéesy p
observations are allocated to the class with leasMinimize: f,(x) =ZHX —b‘H
distance between its centers and these observations =

First, we will find the clusters of a finite séany . i "
approaches exist for solving this problem. We sagge Subject to:xOR @)
method based on global optimization ways mentioned Removing all misclassified points and solving
in (Bagirovet al., 2001). Numerical experiments verify problem (2) again we create this center more peecis
that this method outperforms known ones for manyye il indicate this center by'xIn order to find a

real-world databases. _ _ center of the second cluster we solve the following
Consider a set B which consists of d M- problem of global optimization:

dimensional vector®' =1, ...,8,,i =1,...,d. Assume that

this set can be presented as the union of p chuster IR T .

Suppose also, that each cluster can be presented byMiniMize: f;(x) -;mm{Hx - x- 6]}

point, which can be considered as the center & thi

cluster. For finding a cluster we should find ienter. Subject to:x R™ 3)

Thus we would like to find p points which are ceate
of clusters. Thus the cluster analysis problem loan

shown by the following problem of mathematical
programming:

Suppose that we have already calculated the center
x"* of (t —1)-th cluster, then the centérof t-th cluster
is described as a solution to the following prohlem

Minimize: f(x,...,x")

. o[- -8] ] x-
_ Minimize: f,(x) =) min _

Subject to:(x%,...,xP )0 R™P = |x bl

Where: Subject to:x OR™ )
d

f(xt., X)=> [ninJ\f— bl (1) Then the number of variables in (4), which is &, i
= significantly less than that in (1).

Recall thatx| :(i‘x!‘Q)llq']_S q< +o0 Remark 1: It is possible that the number of clusters
T S calculated step-by-step is greater than the nurolber

clusters, which can be found directly by solving. (1
Note if p>1, then the objective function f in the However, even in such a case the solution of (Efdse
problem (1) is nonsmooth and nonconvex. We cdieft much more time than the solution of the series of
cluster function. problems (4).
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The algorithm for classification: In continue we give  Minimize: ZHXz‘biH (8)
a description of the algorithm for the solution of i,
classification problems.
We consider a database which contains 2 classeSubject to:x' OR™,j=1,2
B, and B. Let:

Allow x°* and X? be the solutions of the problems
R ={1..|8} (7) and (8), respectively. Set, = x* and x,, = x%.
P ={|BJ+1..|g+|B]}
Step 5: Determine the next cluster. Solve the following

Lete>0 be a tolerance. optimization problems:

Algorithm 1: Classification algorithm: Minimize: > {|x* = b'] %, = B ,...| %, - bf} 9)
Step 1: Initialization. Determine centers of clusters, by e

assuming that sets;Bnd B contain a unique cluster.

Compute the centers of clusters solving the foltgi Minimize: Y {[x* b [, - B]...| %, - b]} (10)
problems of convex optimization: e

Minimize: Y"[x* - b| (5)  Subjectto:x'0OR™,j=1,2

iR,
Step 6: Allow x™ and X* be the solutions ang ., and
Minimize: x> - b| (6)  f,., be the values of the problems (9) and (10),
" respectively. Sek; ., =x"* andx,,,, =x?.
Subject to:x'OR™,j=1,2
Step 7: Checking the stopping criterion.
Set r = 1. Letxj, and x, be the solutions to the If:
problems (5) and (6) and allo%y and f,, be the values i .

of these problems, respectively. max{fl-rﬂ_ i , 2re1” 2'}@
11 21

Step 2: Compute the sets:
then the algorithm ends. Otherwise set k = k +d gm
P, ={i0R : min] %, - b < min] .- 1]} to Step 2.

“t=1,.,0 =1,

P;,={iDP2 : min| %, - b| < min| %, - d‘} Remark 2: In order to apply this algorithm to the

o o investigation of concrete datasets we need to sthiee
minimization problem (4), since both (9) and (1ayé&
the form (4).

For find the sets of points “misclassified” by the
current clusters.

M ethod for a global optimization In this part of paper
we will discuss an algorithm for solving problen® (
and (10) in the classification algorithm. Since sthe

Step 3: Compute the following sets:

Ky ={i OP,\P, o[ %, - B < min %, - bH} functions are nonsmooth and evaluation of subgraslie
. o . is difficult, direct search methods of optimizatiseem
K, ={' 0P, VP, | X~ b S . min X = bH} to be the best option for solving problems.

The main attraction of direct search methods is
Step 4: |mprove the center of the C|uster by Solving thetheir ab|||ty to f|nd Optlmal Solutions W|th0ut thﬂEed

following convex programming problems: for computing derivatives, in contrast to the more
familiar gradient-based methods. Among such methods
Minimize: szl_biH (7)  the Generalized Patterns Search (GPS) methods which
i, are well suited for the nonsmooth optimization.
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The original pattern search methods are designe8l: Seta,,,=a,> f(a,+A,d, 2 f(g, ) for alld,0D; do
by Hooke and Jeeves (1961) for unconstrained npot ypdate the iterate
optimization. Owing to their simplicity and practic 1
use, pattern search methods have been still wigsgyl. ~ 9: SetA,.,=-A, > contract the step length control
Recently, many researchers paid attention to patter
search methods for unconstrained optimization ddd d
a lot of work on them, including Dennis and Torzon ,
(1991), Generalized Pattern Search method (GPS) df GPS algorithm has converged
Torczon (1997), Audet and Dennis (2003) and Coopé?: end if
and Price (2001). An interesting characteristicttuef 3: endif
pattern search method is that it is simple and e¢asy 14 end for
implement and it only needs the ability to evalutie
function at a point.

parameter

if A, <A, then

tol

Steps of the GPS algorithm can be generalized
further; for instance, in step 1 the lengths of\tketors
in the generating set can take on any values betwee
specified lower and upper bounds; also, a finitsber
of additional search directions (other than the sone
Minimize: f(a) already included in the generating set), may be
increased using physics based approach or any
where, aOR",f:R" -~ R(R' shows the n-dimensional heuristics that seems suitable; for example, Latin
real search space). hypercube search, random search, or a few genesatio
We describe a generating set (positive spannin@f @ genetic algorithm. This adds an optional dearc
set) D as a set of vectors whose non-negative rlinesstep in the each iteration of the GPS algorithme Th
combinations span"RFor example, a positive spanning search through the directions of the generatingisset

set D for R could be{e..e,..e5 g5 £ .= . @ is commonly referred to as a local poll step. In stefhe
function value may require a large decrease. Binall

various scale factors may be used to update tie ste
é?ngth control parametdy;,; therefore it is not always 1

in step 6 and 1/2 in step 9. These generalizatdlos/
great freedom in using the GPS method and can dxave
Wimportant influence on the efficiency of the algonn.

GPS method: Consider the following problem:

the i-th unit Cartesian vector in"RWe mention that
this set must contain at least-nl vectors to guarantee
non-negative linear combinations and hence need n
be unique. This method will take steps through
comparing function values at each of the pointéneef
by one of the search directions and step lengths.

will suppose, be the step length control parameter RESULTS
and let A, be the tolerance used to test for
convergence.

. . o In this study we present results of the numerical
Suppose that the algorithm starts with an initialg,eriments. The proposed algorithms have beeedest
guess @that has a finite function value and an |n|j[|al on real-world datasets. The diabetes dataset,ithe |
step Iengtmo. Then the GPS method can be describedjisorder dataset and the heart disease datasebbane
as follows: used in numerical experiments. The explanation of
these datasets can be found in Murphy and Aha {1991
Algorithm 2: Generalized pattern search:
. Remark 3: The number of iterations evaluated by the
1. Select generating set D(for example, letGPS method in Algorithm 1 is restricted. The cugftin

D={e.e...6v 85 8.5 f) angle method evaluates at most 88 iterations faaaks.
2. Choosd, Stopping criteriong = 10'_2 is used.for Step 7 of
3 forh=1,2 ..do Algorithm 1. In numerical experiments we use

4: if there existsd, 1D such thatf(a, +4,d,)< f(a,) AIgor?thm 1_ with the global opt_im_izat_ion in Step 5.
Algorithm 2 is used for global optimization and grms

. then . with g = 1 and g = 2. For the comparison of thelltsof
5. Seta,,=3g+4,d, > update the iterate numerical experiments we choose the algorithm of
6: Setp,,,=A, > nochange to the step length control classification from Bradley and Mangasarian (1998)
parameter obtained by support vector machines SVM algoritimah a
7. elseif results of numerical experiments using tHgporthm.
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Table 1: Results for real-world database

q=1 g=2 SVM
Data set m f c etr ets n etr ets n etr ets
Heart 297 13 2 0.132 0.203 8 0.121 0.192 9 0.153 0.241
Liver 345 6 2 0.292 0.382 14 0.350 0.352 15 0.398 0.390
Diabetes 768 8 2 0.263 0.210 8 0.241 0.21 8 0.240 0.250

The code has been written in Matlab and the nuralkeric Bagirov, A.M., A.M. Rubinov and J. Yearwood, 2001.
experiments have been carried out on a PC Intel(R) Using global optimization to improve classification
Pentium(R) Dual with CPU 997 MHz. The results of for medical diagnosis and prognosis. Top. Health

numerical experiments are presented in Table 1. Inform. Manage., 22: 65-74. PMID: 11680278
Bagirov, A.M., A.M. Rubinov and J. Yearwood, 2002.
DISCUSSION A global optimization approach to classification.

Optimiz. Eng., 3: 129-155. DOI:

For first database, “heart database come from the 10.1023/A:1020911318981

Cleveland Clinic Foundation and it is part of the .
collection of databases at the University of Califa. Bradley, PS gnd O.L. Mang"?‘s"?‘r'af" 1998. Feature
The liver-disorder database was donated by RicBard selection via concave minimization and support
Forsyth BUPA Medical research Ltd. The diabetes VECOr machine.

database, this database was originally given byafin http://reference.kfupm.edu.sa/content/f/e/featsee_

- : ; : lection_via_concave_minimizati_74808.pdf
Sigillito, Applied Physics Laboratory, John Hopkins - .
University, Laurel, USA and was constructed byBradIey, PS "’an O.L. Mangasarlan, 2000. Massive
constrained selection from a larger database hettid data . d|scr|mlnat_e via linear support vector
National Institute of Diabetes and Digestive andn€y machines. Optimiz. Methods Software, 13: 1-10.
Diseases (Bagiroet al., 2002)". The results presented DO: 10'1080/10556.780008805771
in Table 1 show that the accuracies of our mettud f COOPE: I'D_' and C.J. Price, 2001. On the convergenc
all of database with both norm are almost the sante Of. . g_nd-_based_ method_s : for ) unconstrameq
also they are high enough and same or better agcura minimization. Siam J. Optimiz., 11: 859-869. DOI:

10.1137/S1052623499354989
than SVM.
Dennis, J.E. and V. Torczon, 1991. Direct search
CONCLUSION methods on parallel machines. Siam J., Optimiz,

_ _ o 1: 448-474. DOI: 10.1137/0801027
In this study we have studied a global optimizatio Hooke, R. and T.A. Jeeves, 1961. Direct searcttisalu

approach to the classification. Classes in thebdee of numerical and statistical problems. J. Assoc.
mentioned earlier are considered by using cluster comput. Mach., 8: 212-2109. DOI:
centers in these classes so that for each class|ubter 10.1023/A:1013760716801

analysis problem is solved. The last problem islistl  \jangasarian, O.L., 1997. Mathematical programming
as an optimization problem with nonconvex and  n data mining. Data Min. Knowl. Discov., 1: 183-
nonsmooth objective function. Optimization is cedri 201. DOI: 10.1023/A:1009735908398

out by generalized pattern search. Numericalichie, D.D., J. Spiegelhalter and C.C. Taylor, 499
experiments using real-world databases have been Machine Learning, Neural and Statistical

carried out in order to verify the effectivenesstbé  Cjassification. Ellis Horwood Series in Artificial
proposed approach. The described method is eféectiv  |ntelligents, London.
for solving classification problems at least fotabmses http://www.amsta.leeds.ac.uk/~charles/statlog/

studied in this study. It is interesting to conside \Murphy, P.M. and D.W. Aha, 1991. UCI repository of

methods are explained in this study with databases machine learning databases. Technical report.

which contain more than two classes and a large http://archive.ics.uci.edu/ml/datasets.html

number of observations and their numerical analysigorczon, V., 1997. On the convergence of pattern

will be theme of our future studies. search algorithms. Siam J. Optimiz., 7: 1-25. DOI:
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