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Abstract: Problem statement: A Real-Time System (RTS) is one which controls aninment by
receiving data, processing it, and returning tteulte quickly enough to affect the functioning bét
environment at that tim@he main objective of this research was to devaloprchitectural model for
the simulation of real time tasks to implement istributed environment through web, and to make
comparison between various scheduling algorithiibe proposed model can be used for
preprogrammed scheduling policies for uniprocessmtems. This model provided user friendly
Graphical User Interface (GUIApproach: Though a lot of scheduling algorithms have been
developed, just a few of them are available tony@émented in real-time applications. In orderge,u
test and evaluate a scheduling policy it must Hegirated into an operating system, which is a
complex task. Simulation is another alternativevaluate a scheduling policy. Unfortunately, just a
few real-time scheduling simulators have been dgpea to date and most of them require the use of a
specific simulation languag®esults: Task ID, deadline, priority, period, computatioméi and phase
are the input task attributes to the scheduler Isitmuand chronograph imitating the real-time exiecu

of the input task set and computational statisiicthe schedule are the outpGonclusion: The Web-
enabled framework proposed in this study gave gweldper to evaluate the schedulability of the real
time application. Numerous benefits were quotedsipport of the Web-based deployment. The
proposed framework can be used as an invaluabdditeatool. Further, the GUI of the framework
will allow for easy comparison of the frameworkefisting scheduling policies and also simulate the
behavior and verify the suitability of custom defihschedulers for real-time applications.
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INTRODUCTION Scheduling: From real-time design perspective: The

A reali . be defined gurpose of task scheduling is to organize the fttss
\ real-time computing system can be defined as eady for execution by the processor system so that
real-time application which is expected to respomd

e o erformance objectives are met (Korousic-Seljak,
stimuli within some small upper bound on respons

. . 994). The order of these tasks is called a ‘sdeédu
time and any late result is as bad as a wrong Dimas For real-time embedded systems, the primary olecti
correctness of a real-time system could be statesl t Y ' P y

with logical perfection in the computational resatid is to ensure that al! tasks m_eet.thelr d_eadlmes. A
its timeliness. A soft real-time system is a systéat schedule can be fea3|ble or optimal: & fegsmled;.n:lle

has timing requirements, but occasionally missing t ord_ers tasks makujg them to_ meet all their deasl_j|ae
task deadlines have negligible effects. A hard-tigs¢  ©Ptimal schedule is one which ensures that failtoes
should meet the timing requirements of system,meet ta_sk deadlines _are_m|mm|zed. Th_e scheduler is
computations must always be met or the system wilfesponsible for coordinating the execution of sak/er_
fail. Determinism, guaranteed worst-case interrupt@sks on a processor. The scheduler may be preempti
latency and guaranteed worst-case context switoh ti OF non-preemptive. The scheduler for hard real-time
characterize real-time operating systems (Krishna a Systems must coordinate resources to meet thegimin
Shin, 1997). Given these characteristics and tlaive ~ constraints of the physical system which implieat th
priorities of tasks and interrupts in the systemijsi the scheduler must be able to predict the execution
possible to analyze the worst-case performancéef t behavior of all tasks within the system (Stehal.,
software and the real-time characteristics of fstesn.  2001; Cooling and Tweedale, 1997). So the basic
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requirement of real-time systems is predictability.time embedded application (Krishna and Shin, 1997).
Unless the behavior of a real-time system is ptetlle, They also stand as teaching tool helping learnérs o
the scheduler cannot guarantee that the computatioial-time system grasp the core ideas related dtesy
deadlines of the system will be met. modeling quickly.

The requirement of predictability differentiates There have been various simulator frameworks
real-time systems from conventional computingcreated for this purpose, too (Diegt al., 2007;

environments and makes the scheduling solutions foBlumenthalet al., 2002; Singhoffet al., 2004). The
conventional systems inappropriate for real-timeperformance analyses of the above mentioned sioulat

systems. frameworks were carried out and the need for
The scheduling theory provides numerousdeveloping a new Web-based simulator framework was
schedulability tests for each scheduling policiesl a discovered.
locking protocols used in real-time systems (Binda The study of existing frameworks of simulation
Buttazzo, 2004; Shet al., 1990; 2004). clearly reveals that each tool is better in its omany.
These offer a way for programmers to predict, inThus an appreciable combination of values of edch o
advance, whether a multi-tasking design will mést i the tools is chosen and an earnest attempt has been
deadlines or not. Early work was limited to ‘rate made to make the proposed framework to be more
monotonic’ task priorities with deadlines equal toflexible for the future users for trying differenther
periods and used a notion of ‘processor utilizdatton ~combinations of evaluation criteria that may be of
assess schedulability. More recent works have detn interest for different real-time resource capasitiéhe
schedulability analysis to apply to any fixed-pitipr ~€xperimentation results obtained from the analyzed
scheduling policy and to support arbitrary deadline simulators were compared to form the reference data
These works test for schedulability by calculatthg ~ for functional verification of the tool under
worst-case response time for each task. development.

Need for schedule simulator: From design Real-time schedulers: Unlike the conventional
perspective, real-time systems can be approached fr schedulers of the modern operating systems, which
different views. As an example, engineers prefatagal  provide fairness to all the tasks/processes, thktirae
with hardware control while computer scientistsfgre schedulers are partial and work primarily on
to deal with the system modeling. The system madeli priorities/deadlines of the tasks. In such reaktim
will explain how to model task interactions and htmv ~ Systems, most of the timelines of the tasks ameadly
allocate processor time for each task. The syster§nown or the arrival of the tasks to the systeraeisy
modeling is burdensome because there are maryuch predictable (Blumenthel al. 2002). Hence most
different scheduling policies and scheduling prabie  Of the real-time systems implement static schedulin
known as a strongly complex one. As a consequehce @lgorithms and are simple. But in some complex
complexity, most learners feel that the schedulingenvironments, dynamic scheduling is often required.
theory is only a collection of rules that have te b Foundational description of various scheduling gies
memorized (Kumat al., 2001). Therefore, much of employed in uniprocessor real-time systems is
the attention is not paid to the fact that the mospresented here.

important concept is not the exact description ofila

but what kind of conditions and problems are betteiStudy of scheduling algorithms:

suited for each rule. The foresaid misunderstandarg ~ First-come-first-served: The FCFS policy is the
be solved, assigning jobs that require not only thesimplest scheduling strategy to be found, as isdug
resolution of a schedule but the experimentatiothwi invoke any task constraints. Ready-to-run tasks are

the problem. Although this can be done by hantlag ~ organized in a list, that at the top being execiest
limitations due to the exponential growth in the (Korousic-Seljak, 1994). When a task becomes reiady,

resolution time with the problem size. The use ofis added to the end of the ready list. Thus tagkse
simulation technique would thus help circumvensthi in the order in which they are readied - first coffist
issue. served. It is non- preemptive, each task beingnaltb
to run to completion.

Study of simulators and scheduling algorithms:
A study of existing simulator: Real-time simulation  Simple round-robin: The RR policy is the pre-emptive
tools speed up the decision making processes dtfiéng version of the FCFS technique. Tasks are stillreyed
selection of suitable scheduling algorithm for @alve in the ready list in the order in which they become
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ready-to-run, but when they are set running theyEarliest Deadline First: EDF is a dynamic priority
execute within a fixed time slice (Ramamritham andscheduling algorithm that assigns highest priotiy
Stankovic, 1994). If a task is still running at tied of  whatever task has the nearest deadline. Formaibsla
its time slice, it is forcibly removed from the pessor.  t’s priority at time t is given by:

Its replacement is the task which was at the héaldeo

ready queue and the preempted task is sent tmthefe Pi=d()-t

the ready queue. As the task set is executedadtugidly
works its way to the top of the queue. When onceemo
installed on the processor it resumes executiom fitee
point of interruption.

where, ¢t) is the next deadline af (at or after t). For
task sets where task’s period is identical to éadline
span, EDF will produce a valid schedule if and aifily
the processor utilization of the task set is onéess. If
a task set has utilization over one, the task astrio

Shortest-job-first: The SJF policy is a static priority- valid schedule

based alternative to the FCFS scheduling stratigy.

uses a single criterion in defining priority, task Deadline monotonic: DM scheduling is a static

execution time. Within the ready list, the taskhnihe priority scheduling algorithm for periodic tasksMD

shortest (worst-case) computation time is allocabed yses the deadline span of each task for its pyiorit

highest scheduling priority. As a result it is @dcat  Thus, tasks with the smallest deadline span willeha

the front of the ready queue, waiting for servigetite  highest priority and tasks with the largest deadipan

processor. will have the lowest priority. The intuition behiriasM
However, the policy is non-preemptive and thejs that the task with the smallest deadline spast (n

current executing task is always allowed to congplet  necessarily the one with the smallest period) shbel

the task considered most urgent and thereforeasie t

Least-Laxity-First (LLF): The LLF (or Earliest with the highest priority.

Deadline as Late as possible, EDL) scheduling fpiec

uses the criterion of task ‘laxity’ (i.e., sparmé). EDL MATERIALSAND METHODS

assigns highest priority to the task having leasity. : : R
For EDL, once a task is readied, time to deadlineDeﬂgn of the proposed web- enabled smulator: This

: .study describes the development of the proposed
:jeec:il;(i:r?gs thaesla:!i@eof Zl?apsslfis.is.The general eXloress@'it'muIator framework in LabVIEW. The AURTSS (AU

Real-Time Scheduler Simulator) is being developed t
T N T be used for teaching real-time scheduling as wseloa
laxity(i,t) = max(To(i)-T(i)-t, 0.000) test and evaluate real-time scheduling policies use
embedded real-time applications.
Laboratory Virtual Instruments Engineering
Workbench (LabVIEW) was originally intended as an

;FC(') il_lt_shcomputa;tmn “t’.“e th d funct environment for the development and execution of
= The current run-time (the second max func '0Nsoftware analogs for conventional Ilaboratory

parameter is fixed to 0.000 because a laxityjnstryments  for the non-programmer  scientist.
value must never be negative) Accordingly a graphical approach was taken both for
_ ] o _ ) user 1/O to allow the computer to visually resemibie
It is obvious that laxity is a dynamic attributBus  jmitated instrument and for programming to facttta
making LLF a dynamic scheduling policy. novice program development. LabVIEW provides two
graphical environments: the front panel and theclblo
Rate Monotonic (RM): Rate monotonic scheduling is diagram (National Instruments Corporation, 2005).
a static-priority scheduling algorithm for periodiasks. A framework for evaluation of a scheduling
In RM, priorities are equal to the periods of thealgorithm must satisfy characteristics such as
associated tasks. Hence, the task with the shortesimplicity, compatibility with the PC platform arttie
period has the highest priority and the task whb t used operating system, usage of the standard omgrat
longest period has the lowest priority. Intuitivethis  system functions, accuracy of results and easesef u
prioritization makes sense, since the task thatthas Majority of these requests are aimed for use in the
shortest period will be the first one to be re-asksd. visual user interface that looks as shown in thgiFi
Hence, it should be the first one to complete. BMot  The proposed Web-enabled scheduler simulator could
optimal when each task’s deadline is not concurrenbe operated through a Web browser through a set of
with the task’s next release (period). click-on and data input windows.
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Fig. 1: Task elements in the simulator

Real-time scheduler simulator: Scheduling algorithm Elements of the smulator: Task Attributes are part of
evaluation and analysis tool performs the taskhe simulator will allow the user to add Task (tet
definition, task sets generation, execution of cteld  existing task set) with parameters like:

algorithms, execution analysis of the execution and

results displaying. The performance evaluationt&f t « Task ID

real-time scheduling algorithms is carried out llase  «  priority

the results obtained through computational analysis  phase

Various stages of evaluation procedure are: «  execution time
« Identification of the tasks *  period
+ deadline

«  Selection of algorithms
¢ Simulation Timing diagram

. . . Among these parameters, Task ID should be unigue f
¢ Simulation execution 9 b o

each input task. All other parameters are nume#ddls.

Th ¢ ful scheduli lqorithm for th the parameters are required to save a new taskhateka
_'he most successiul scheduling aigorithm for eset, modify the parameters of a task from the dedla
periodic tasks scheduling is the one that has nahim

; - . . sk set. delete task(s) from the input task dgurg 1
response times, minimal number of tasks with misse hows the elements of simulator
deadlines and maximal resource utilization in the '

workload and with other parameters. Resource usage: Add a resource to specific task(s) for

The complete task model is too complex fori(,[as execution (critical section) with:

implementation and some of the task parameters ar
hence ignored. In real-time systems two charadiesis

- . . ¢ Resource ID
of tasks are considered to be of primary interest; Task ID
Criticality or importance; and timing. Task imparte Start time

is frequently a subjective issue, whereas timing is o
objective. The essential timing attributes of taske °* EXecutiontime
deadline (B), worst-case computation time (Jjcand . . .
period (T), Figure 2 shows the adding and deleting of tasks.
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Fig. 2: Adding and deleting task in the simulator

Simulator controls: The simulator controls part of the (Sporadic, or non-periodic, tasks, arrive at irdagu
simulator is the main part of the simulator whichintervals but with a known minimum separation. For

provides the following functionalities to the user: each task the programmer specifies a deadlinebyp

which each of its invocations must finish, measure
+  Selection of scheduling policy relative to the arrival time of the invocation. To
. selection of task synchronization protocol support analysis, the programmer also postulatesrst-

«  choice of preemptive or non-preemptive scheduling®@S€ computation time,;,Gor each invocation of _tasl_< i.
«  run Feasibility Test to find whether the declared!t IS assumed that;dncludes the context switching

task set is feasibly schedulable with the desiredverheads associated with scheduling the task
scheduling scheme invocation the run-time scheduler thus appears to

operate instantaneously in the model.The worst-case

A run-time scheduler allocates processing time todlfference between task i's arrival and finishiirgds is

the tasks in discrete quanta. Each task has @ s@s its response time, ;REach task normally starts to
priority, although at ruﬁ—time that task may perform invocations from time 0, but this can be

temporarily acquire a higher active priority. Atnru delayed by assuming an initial offset, O

time, each task requires an infinite number ofgignificance of web-based deployment: There are
invocations. The time at which a task invocationyital reasons behind the implementation of the
becomes ready to execute is its arrival time. Timet simulator as a Web-enabled framework and Web-based
at which a task invocation actually begins exequt® deployment as listed out here. They are ease in
its starting time. This may be significantly latdrat  deployment and enhancement of functionality.
the arrival time if, for instance, a higher prigritask  Anytime, anywhere access to users-any computer with
was already running when the invocation arrivede Th Web connectivity can be used for learning and
time at which a task invocation completes execuison teaching. Easy access to users over the Intemes sio

its finishing time. Invocations of a task | are ady  extra hardware or software is required to access th

assumed to arrive regularly with a fixed period, T application.
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Fig. 3: Output timing diagram

RESULTS perspective and run simulation to view the chroaogr
(timing diagram) and understand the way the tasks a
Figure 3 shows the output of the simulator. Taskscheduled in real-time using the selected scheglulin
ID, deadline, priority, period, computation timedan policy.
phase are the input task attributes to the schedule

simulator and chronograph imitating the real-time CONCLUSION
execution of the input task set and computational
statistics of the schedule are the output. The guegp This study discussed the various existing reagtim

framework for the scheduler simulator is mainly scheduling algorithms at the beginning. Various
developed to be used as a teaching tool. Evaluation exjsting Real-Time Scheduling Simulation frameworks
the performance of real-time schedulers can be dsne 544 their features were studied. The Web-enabled
well. Evaluation criteria are based on the mearygmework proposed in this study gives the develope

response time, number of deadline misses, processgfy hossipility to evaluate the schedulability bé treal

util_itze;tion,Thnu%bel;rbof dp(;ee:nptionst ?rt]ﬁ (‘Tontleizttime application. Numerous benefits were quoted in
switches. 1he Web-based deployment o eSIrnuao§upport of the Web-based deployment technique

enables the user a platform-, machine- and software C
. o . employed. The framework which is proposed can be
independent utilization of the technical resource.

used as an invaluable teaching tool. Further, tbé @
DISCUSSION the framework W|_II gllow for easy comparison of the
framework of existing scheduling policies and also

Advantages of proposed simulator: Platform simulate the behavior and verify the suitability of
independent access and use of the simulator tgrustom defined schedulers for real-time application
learning, user-friendly interface that requires imial Future work includes implementation of
training/re-training, users will be able to accesly the ~ Multiprocessor and aperiodic real-time scheduletbe
latest implementation of the simulator with no simulator for exploring the full spectrum of reahé
ambiguity of versions of the application, ease ofscheduling theory and development of co-processor
maintenance from a programming/maintenance grougrchitecture to complete the teaching tool.
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