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Abstract: Problem statement: The purpose of this study was to describe categories of hybrid genetic 
algorithm and validate that the hybrid genetic algorithm converges to the optimal solution rather than a 
near optimal solution so that Hybrid Genetic algorithms can be used to solve real world problems and 
receive significant interest. Approach: We implemented the input allocation problem for a 
manufacturing unit firstly with pure genetic algorithm using Matlab’s GA tool and then compared the 
results with hybrid genetic algorithm. Results: We observed that the results from applying only pure 
genetic algorithm to the problem were near optimal whereas when solved using hybrid genetic 
algorithm the results were significantly better and were optimal. Conclusion: The results presented by 
pure genetic algorithm and hybrid genetic algorithm are significant and validate that the hybrid genetic 
algorithm converges to the optimal solution rather than a near optimal solution.  
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INTRODUCTION 

 
 Genetic Algorithms (GAs) are search algorithms 
that are conceptually based on the methods that living 
organisms adapt to their environment. These methods, 
known as natural selection or evolution, combine the 
concept of survival of the fittest with a structured yet 
randomized information exchange to form a search 
algorithm with some of the innovative flair of human 
search. In each generation, a new set of string structures 
is created from the fittest strings from the previous 
generation and occasionally a randomly altered new 
part. This process of exploiting historical data allows 
the GA to speculate on new search points and 
producing better solutions. Genetic algorithms were 
initially developed by John H. Holland, a professor of 
psychology and computer science at the University of 
Michigan. His research focused on what he called 
complex adaptive systems. Since their development, 
Genetic Algorithms have been used as optimization tools 
for complex problems that involve numerous variables or 
involve combinations of linear and, non-linear 
equations. As an optimization tool, the Genetic 
Algorithm attempts to improve performance leading to 
an optimal solution. In this process, there are two distinct 
steps (1) the process of improvement and (2) reaching 
the optimum itself. Of these two steps, the most 
important is the process of improvement (Goldberg, 

1989). The genetic algorithm can be visualized as 
follows: 
 
1. Produce an initial generation of Genomes using a 

random number generator.  
2. Determine the fitness of all of the Genomes.  
3. Determine which Genomes are allowed to 

reproduce.  
4. Crossover the Genome pairs in the allowable 

population.  
5. Pick the 2 fittest Genomes of the 2 parents and 2 

children resulting from the crossover and add 
them to the next generation.  

6. Produce random mutations through the next 
generation population.  

7. Calculate the next generation’s fitness, if achieved 
move to 8 else back to step 2. 

8. Finish. 
 
 Genetic algorithm promises convergence but not 
optimally, although there is no guarantee of optimality, 
exponential convergence is assured. If Genetic 
Algorithm is run several times, it will converge each 
time possibly at different optimal chromosomes. 
Typically, Genetic Algorithm is coupled with a local 
search mechanism to find the optimal chromosome in 
the region. So if a hybrid genetic algorithm is used, it 
becomes easy to reach to the optimal solution. Hybrid 
genetic algorithm is discussed below in detail.  
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Hybrid genetic algorithm: Hybrid Genetic Algorithm 
(HGA) is a novel genetic algorithm on some additional 
heuristics which improves the convergence rate of the 
algorithm as well as finds better solution. Genetic 
Algorithms are not good at identifying the optimal 
value of a chromosome for a problem but do very well 
in identifying the regions where those optima lie. 
Therefore a hybrid Genetic Algorithm is used-every ten 
generations, the user anneals the best 10% of the 
population. This has the effect of moving the top 
chromosomes in that generation to the local maximum 
in their region. Including a local search can also help 
combat with the genetic (Asoh and Muhlenbeinm, 
1994) Drift problem. Although a genetic algorithm can 
rapidly locate the region in which the global optimum 
exists, they take a relatively long time to locate the 
exact local optimum in the region of convergence. 
Therefore a combination of a genetic algorithm and a 
local search method can speed up the search to locate 
the global optimum.  
 
Categories of hybrid genetic algorithm: When a local 
search method is added within a genetic algorithm, the 
performance of the Genetic Algorithm increases. There 
are several issues which should be taken care of when 
designing a hybrid genetic algorithm. The way by 
which information through local search is utilized 
within a hybrid genetic algorithm has a great impact on 
the performance of the search process. Two basic 
approaches based on biological learning models have 
been adopted to utilize local information: (a) The 
Lamarckian approach (Ei-Mihoub et al., 2006) (b) The 
Baldwinian Approach. There in an opportunity in 
hybrid optimization to achieve to capture the best of 
both schemes (Lobo and Goldberg, 1997). Both of these 
schemes are described below. 
 
Lamarckian learning: The Lamarckian approach is 
based on the inheritance of acquired characteristics 
obtained through learning. This approach forces the 
genetic structure to reflect the result of local search. 
The genetic structure of an individual and its fitness are 
changed to match the solution found by a local search 
method. In the Lamarckian approach, the local search 
method is used as a refinement operator that modifies 
the genetic structure of an individual and places it back. 
Lamarckian evolution can accelerate the search process 
of genetic algorithm (Whiteley et al., 1994), on the 
other hands can disrupt the schema processing which 
can badly affect the exploring abilities of genetic 
algorithm, which may lead to premature convergence. 
Most of the hybrid genetic algorithms that repair 
chromosomes to satisfy constraints are Lamarckian and 

the technique has been particularly effective in solving 
Travelling Salesman Problem (Julstrom, 2005). 
 
Baldwinian learning: The Baldwinian learning allows 
an individual fitness to be improved by applying a local 
search, without changing the genotype. In this way it 
propagates its structure to next generation and thus 
follows the normal process of evolution. The 
Baldwinian approach in contrast to the Lamarckian 
approach does not allow parents to pass their acquired 
characteristics but only the fitness is retained. A local 
search method in the Baldwinian approach is usually 
used as a part of individual’s evaluation process. The 
local search uses local knowledge to produce a new 
fitness score that can be used by global genetic 
algorithm to improve the results. The Baldwinian effect 
consists of the following two steps (a) Learning gives 
individuals the chance to change their phenotypes to 
improve the performance. (b) The second step is called 
genetic assimilation i.e., learning can accelerate the 
genetic acquisition of learned traits. Hinton and Nolan 
(1987) illustrated how the Baldwin effect can transform 
the fitness landscape of a difficult optimization problem 
into a less difficult one and how genetic search is 
benefited. 
 The selection of any form of learning in a hybrid 
genetic algorithm has a great impact on its 
performance. Various researchers have already worked 
on this and showed how it affects the performance on 
an optimization problem. Gruau and Whitley (1993) 
compared Lamarckian, Baldwininan and pure genetic 
algorithm in evolving the architecture that learn 
Boolean functions. They also concluded that any form 
of learning is better than pure genetic algorithm. 
 

MATERIALS AND METHODS 
 
 We used Matlab’s Genetic Algorithm and Direct 
Search Toolbox both for implementing Genetic 
Algorithm and Hybrid Genetic Algorithm on Input 
Allocation problem. The fitness function was 
customized to this specific optimization problem. This 
fitness function will vary from one research problem to 
another. Results were achieved with different 
parameters such as objective function, display plots, 
Local search techniques, one may find about these 
parameters in Matlab GA toolbox documentation. 

 
RESULTS 

 
 Let us consider an input-Allocation Problem of a 
manufacturing concern which produces a product 
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consisting of two raw materials say A1 and A2. The 
production function is estimated as:  
 

Z = f(x1,x2) = 3.6x1-0.4x1^2+1.6x2-0.2x2^2 
 
Where: 
Z = The quantity (in tons) of the product 

produced 
x1 and x2 = Designate the input amounts of raw 

materials A1 and A2 
 
 The company has RS 50,000 to spend on these two 
raw materials. The unit price of A1 is Rs. 10,000 and of 
A2 is Rs 5000. Determine how much input amounts of 
A1 and A2 be decided so as to maximize the production 
outputs (Taha, 1996). 
 
Solution: We have used Genetic Algorithm and Direct 
Search Toolbox of Matlab. We need to create a fitness 
function which is given below: 
 
• Fitness Function for the above Maximization 

problem: 
 

function y = simple_fitness(x) 
y = 0.4*x(1)*x(1)+0.2*x(2)*x(2)-3.6*x(1)-
1.6*x(2) 
 

• Constraint Function for the Input Allocation 
Problem: This problem has certain constraints 
which also has to be specified which is given 
below: 

 
function [c, ceq] = simple_constraint(x) 
 c =2*x(1)+x(2)-10; 
 ceq = [] 

 
 To execute this problem on Genetic Algorithm and 
Direct Search Toolbox, we need to create the function 
handler for the fitness function and constraint function 
which is created as follows on the command line: 
 

ObjectiveFunction=@simple_fitness 
 

ConstraintFunction=@simple_constraint 
 
 There are parameters which needs to be set e.g., 
Nvars = 2, which is the number of variables which is 2 
(A1 and A2) for our problem. Set crossover as one 
point crossover. Set selection as Tournament Selection. 
In the stopping criterion fix number of population as 
500. Set stall limit as infinity. Set plot interval to be 
best fitness so that it can plot only best fitted individual. 
After setting all these parameters for genetic algorithm, 
the results are shown in Fig. 1. 

 
 
Fig. 1: Result with genetic algorithm 
 

 
 
Fig. 2: Results with hybrid genetic algorithm 
 
 The solution we got from this toolbox is: x1 = 
3.551 and x2 = 2.89. The function value at these points 
came out to be 10.54 tons. Thus the solution was close 
to optimal solution. 
 As we know that we are able to converge better 
and faster if we use hybrid genetic algorithm. So with 
these same parameters we incorporated the function for 
hybrid genetic algorithm with the name as fminunc. 
This function would automatically be activated where 
genetic algorithm terminates. The results are shown in 
Fig. 2. 
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 For this problem the maximum function value 
evaluated is 10.7 tons which is the expected value. The 
value for variables were x1 = 3.5 and x2 = 3.0 which 
was the exact solution for the problem (Goldberg, 
1998). 

 
DISCUSSION 

 
 As per problem statement in experimental study 
section, the material required for the manufacturing 
company with Pure Genetic Algorithm came to be A1 = 
3.551 and A2 = 2.89. The profit calculated was 10.4 
tons which was not the optimal value as from the source 
of problem statement. The result for the same 
manufacturing unit for hybrid Genetic Algorithm was 
A1 as 3.5 and A2 as 3.0, profit come out to be 10.7 tons 
which was the exact solution expected. The above 
results demonstrates that Genetic Algorithm are able to 
reach to near optimal solution while if it mixed with 
any local search i.e., if it is made hybrid genetic 
algorithm, it converges to the optimal result.  
 

CONCLUSION 
 
 In this study, we have implemented hybrid genetic 
algorithm and try to explain how it can improve the 
efficiency of the given problem and produce an optimal 
instead of near optimal solution. This study focuses on 
the use of a local search algorithm with genetic 
algorithm to improve results. The ability of genetic-
local hybrid to solve hard problems quickly depends on 
the way of utilizing local search information and on the 
balance between local and genetic algorithm. The 
approaches in the study (Goldberg, 1998) shows that 
hybridizing is one possible way to solve hard problems 
quickly, reliably and accurately without any human 
intervention. The basic success lies in choosing of how 
we merge a Local algorithm with the genetic algorithm.  
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