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Approximation of Experimental Curve of Nonlinear Defor mation of Duralumin
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Abstract: Problem statement: The experimental curves for physically nonlineafod®ation of
aluminum alloy D-1& have been approximated in a temperature fiéldproach: An analytical
approximation variant of plasticity and physicahtinearity functions was presented and a numerical
processing technique of experimental data was ibestrResults: The corresponding analytical
formulas of plasticity functions and nonlinear gregere proposed with mathematically substantiated
parametersConclusion: The theoretical and experimental results obtaineceweompared.
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INTRODUCTION T = Inhomogeneous and non-stationary
) temperature field counted from some
To solve the boundary problems of mechanics of a initial temperaturd,

rigid body numerically, it is desirable to.empldyet G(T), K(T) = Shear and volume strain module
mechanical or close to them characteristics of real

materials. For this purpose, necessary parameters f To describe the dependence of elasticity module on

aluminum alloy D-1& (duralumin), have been obtained temperature we use the known Bell (1973) formula

using known experimental data given below. Besidessuggested by him as a result of processing expatahe

an analytical approximation variant of plasticitpda data for over five hundred pure metals and alloys:

physical nonlinearity functions is presented and a

numerical processing technique of experimental gata {G(T).K(T),E(T} ={G(0),K(0).E(Q)o (T),

described. < < 2
¢(T):{1, 0<T/T,<0,0€ 2)

1,03(1- T/ (2T, )).0,06 T/T< 05
MATERIALSAND METHODS

Approximation of experimental results Duralumin ~ Where: ~ _ _ _
displays both plastic and viscous properties wherl m —_Meltmg point of the material
subjected to deformation in the temperature fighle ~ G(0). K(0), E(0) = Module at so-called zeroth stres

physical equations of state correspond to a thermo- i i
visco-elasto-plastic material and are acceptedhi t They can be determined experimentally based on
form: known G at a certain temperatui® (e.g., at room

temperature 2@) in the form;

G,
6(To)

S = 2G(T{ fE€.Th —jR(t—T)fz (&, T (T)dT].

0 =3K(T)(e-aT)

(1) G(0)=

Poisson’s ratio is anticipated to be independént o

Here: ) ) temperature. At higher (homologous) temperatures

Sj» 9j» 0, € = The deviator and spherical parts of stressr/T, >0.57 a slight deviation of the material behavior
oj and strairg; tensors ~ from the linear law (2) is possible.

fi(ew T) = lwai(e, T), llyushin (1948) plasticity The analytical variant of plasticity function anse
func_t|on constant temperatufg is accepted:

gy = Strain rate

fi(eyy T) = Universal function of nonlinear creep 0 e <g

R(t) = Relaxation kernel T e

a = Averaged factor of linear temperature W To) = A1(1—@)“1,su 2¢ ®)

€

expansion u
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Here: 4 ”

&y0 = &(To) is strain rate corresponding to yield point at /
TO! Al 3

a; = Material constants to be determined from known
experimental data

™

2
To determine experimental values of the plasticity /
function we use the experimental data on alternate ]
torsion of a circular in profile rod beyond the stleity
limits under the conditions of room temperature

presented in Fig. 1a and derived by Gusenkov and 0 2 4 6 89
Moskvitin (1973). The dependence of relative strain g
on torque M at instant deformation (curve 1-direct CY
loading, 2-back loading) is shown:
0.8 ]
— MlZ - 0-].2 - 812 —
M—My —Gy,s—sy,oy—ZGosy (4) T

]
0.6 ' / e
At an instant torsion the integral summand should ) / A
be equated to zero in relations (1). Out of aksdrand

wl(zu,Ty)

strain tensor components osly = 61, ands» = g1, Will 02 A/
be nonzero. As a result, the following dependenite w /
be true for the experimental curves considered:
0 2 4 6 ——giﬁufﬁ.\-n

0, =2G£,,(1- w,) (5) (b)

Let us divide the left and right-hand sides of Bg. Fig. 1. Experimental points and theoretical valwds
by o,. Then, using the values introduced in (4), we get: plasticity function
M=gl-w),w :1—% (6) After averaging we accept thay = 0.96;

a; = 2.34. We may judge about the approximation
Based on (6), we find the values of plasticity @ccuracy by curves 1 in Fig. 1a and b. Dark poanes
function in experimental pointe;, Fig. 1b. In these ~the experiment; the solid line is calculations.

points, the condition of approximation should be:me Plastic properties of metals increase with
temperature growth, therefore the diagram for fiomct
£, )" o4(ey, T) is supposed to be shifted along the abscissa
Wy, =A1(1‘y] axis relative to graplwy(e, To) by valuegygg, (strain

ratee, corresponds to elasticity limit at temperature T).
Valuese, are calculated by the relation of elasticity

By dwviding similar relations forn and k limit o, versugemperature (Gorshkoat al., 2002):

experimental points we obtain:

&) - 1.1 _o(M
o ) B L B @
Wy (1_ Syo]ul
STK To determine constanksof the material by (8) we
use:
Where from:
e/l
€ K=In—- ———
1-¥0 O,/ \T Ty
alzln& In z“” A, = ©in o (7
e 1-2% [1_%J Its values calculated on the base of Rabotnov
Euk €un (1979)experimental data are given in Table 1.
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The analytical variant of the function of
nonlinearity at sign-variable loading (s, , T) is (9):

Table 1: Approximation parameters of duralumin 1.6
Parameter Value Parameter Value /
E(0), MPa 0.829@C° ) 2.270 4 /./
G(0), MPa 0.307810° &y (%) 1.485 1.2 —
K(0), MPa 0.921410° A, 1.000 , 3
Eo, MPa 0720010° 0.700 ef 10 B
Go, MPa 0.267010° Euo, (%) 0.270 08 / /f;/
Ko, MPa 0.800010° A, 1.000 2
0o, 1/K 24.300010° oz 0.600
To, K 293.0000 £u0, (%) 0.535 04 A 1t
Tm, K 933.0000 A% 2.92010* '
v 0.3500 B,s* 1.390107
Ay 0.9600 a 0.250
oy 2.3400 oy, MPa 530.000 0 10 20 30 50
£y0, (%) 0.7350 Po, kg n® 2700.000 .
Oy, MPa 340.0000 Co. Jkg* (K 880.000 Time (h)
K, 1/K 301.0000 kJmisK  177.000 @)
A 0.9240 5 5.600
Thus, by generalizing (3), the plasticity functian 32 L —]

a loading by thermal force from the natural state i /
accepted as: / 3

2.4

0, g, <€, &b 10 / 5y —
W, T)= € B 9) 1.6
’ A, 1-—° €, €,
€, +€,€, I’/1____‘
0.8 V’

« * 0 10 20 30
0, €, <€, o
v o Time (h)
(e, )= £ :
u)l ’ A;. 1- * *yO * !S*u >§y (b)
€, T€, €,

Fig. 2: The creep curves of D-LGalloy at direct 4)
and inverse torsion (b) of the thin-walled tubes

The corresponding constants,, a;, &0 are ) _
Y
are works without elastic components

calculated from experimental data according to abov
stated procedure described in Table 1. Vaiyeis

calculated by (8). The approximation accuracy is 10 calculate temperature constaiitwe used a
evident from curves 2 in Fig. 1a and b. Dark poares  creep curve for tension: é-= 156.8 MPa, T = 473 K

the experiment; the solid line is the calculation. (Rabotnov, 1979). At back loading the temperature
The universal function of nonlinear creep is dependence of the process was taken as previougdly a
assumed as follows: functionw, (¢, ) was accepted similar to (10):
T 3
e, =00 2. 0, ey
w;(g*u) =1 N o
0: g, < €0 (10) Az(l_sslioj &y >suO

w,(g,) = e
A, 1——8“0 &4 > €
€

u

From the experimental data in study by Gusenkov
The creep curves of D-T6alloy at direct Fig. 2 and Moskvitin (1973) follows that deformation in the

and inverse torsion Fig. 2b of the thin-walled miage  Plastic area at loading from the natural state érsdhe

taken from Namestnikov (1960) study without elasticmaterial sincef, = 2.02 €, = fz,). However,

components. Curve 1 in Fig. 2a corresponds to sstre@iccording to Namestnikov (196@)follows that D-16

61,=113. 26, = 127.36;, = 144 MPa. Respective alloy weakens as related to creep. As a*resullhef t

curves in Fig. 2b express double stresses= 2615, Ioaging §ign change the creep runs fasfer:= 1.98

T =423K. (8o = B2 €uo)-
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RESULTSAND DISCUSSION

Kernel constants along with densityspecific heat
capacity C, specific heat conductivity knd ultimate

After processing of the experimental data usingstrengtho,, at normal temperature are given in Table 1.

above-described method, we have derived constgnts
O € A2, 0z, €y included in the approximation
formulas for the nonlinear creep functions at dirud
back loading Table 1. Figure 2 and 3 (curve 1-direc
loading, 2-back loading) reflect the conformity of
theoretical curves to experimental points.

Rheonomic characteristics of D-l6alloy are
described by Rzhanitsyn (1968) kernel of relaxation
R()=Ae™t"*(B>0,0<a < ] (11)
This choice is conditioned by simplicity of the

kernel, which nevertheless accounts fully enough fo
the weakly singular properties of materials. The

technique of determination of nucleus parameters'?e”-
corresponding diagrams and tables are given in

Koltunov (1976) monograph. Received with their help
and according to (11) results are shown on Fighdrey
the design curve of the function of the pliability
represented on which we can consider the precision
approximation.

0.8
0.6 / P
T 04 /
0.2
0 / /
0.2 04 0.6 1.0
£y, (%)

Fig. 3: Conformity between approximation curves of

nonlinear creep functions and their
experimental points
0.03
/J'—-d—.—'-‘
0.02
0.01 /
0 10 20 30 50
Time (h)
Fig. 4: Conformity of approximation curve of

compliance function to its experimental points
816

We should note that all thermo mechanical
characteristics of D-T6alloy were received in the field
of moderate temperaturéb543K).

CONCLUSION

The methods proposed in the study for
experimental curve fitting may be used for other
structural materials as well. The approximatiorulss
can be employed for numerical solution of the peois
in the mechanics of solid bodies.
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