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Abstract: Problem statement: The experimental curves for physically nonlinear deformation of 
aluminum alloy D-16Т have been approximated in a temperature field. Approach: An analytical 
approximation variant of plasticity and physical nonlinearity functions was presented and a numerical 
processing technique of experimental data was described. Results: The corresponding analytical 
formulas of plasticity functions and nonlinear creep were proposed with mathematically substantiated 
parameters. Conclusion: The theoretical and experimental results obtained were compared.  
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INTRODUCTION 

 
 To solve the boundary problems of mechanics of a 
rigid body numerically, it is desirable to employ the 
mechanical or close to them characteristics of real 
materials. For this purpose, necessary parameters for 
aluminum alloy D-16Т (duralumin), have been obtained 
using known experimental data given below. Besides, 
an analytical approximation variant of plasticity and 
physical nonlinearity functions is presented and a 
numerical processing technique of experimental data is 
described.  
 

MATERIALS AND METHODS 
  
Approximation of experimental results: Duralumin 
displays both plastic and viscous properties when 
subjected to deformation in the temperature field. The 
physical equations of state correspond to a thermo-
visco-elasto-plastic material and are accepted in the 
form: 
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Here: 
sij, эij, σ, ε = The deviator and spherical parts of stress 

σij and strain εij tensors 
f1(εu, T) = 1-ω1(εu, T), Ilyushin (1948) plasticity 

function 
εu = Strain rate 
f2(εu, T) = Universal function of nonlinear creep 
R(t) = Relaxation kernel 
α = Averaged factor of linear temperature 

expansion 

T = Inhomogeneous and non-stationary 
temperature field counted from some 
initial temperature T0 

G(T), K(T) = Shear and volume strain module  
 
 To describe the dependence of elasticity module on 
temperature we use the known Bell (1973) formula 
suggested by him as a result of processing experimental 
data for over five hundred pure metals and alloys: 
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Where: 
Tm = Melting point of the material 
G(0), K(0), E(0) = Module at so-called zeroth stress  
 
 They can be determined experimentally based on 
known G0 at a certain temperature T0 (e.g., at room 
temperature 20°С) in the form: 
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 Poisson’s ratio is anticipated to be independent of 
temperature. At higher (homologous) temperatures 
T/Tm>0.57 a slight deviation of the material behavior 
from the linear law (2) is possible. 
 The analytical variant of plasticity function at some 
constant temperature T0 is accepted: 
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Here: 
εy0 = εy(T0) is strain rate corresponding to yield point at 

T0, A1 

α1 = Material constants to be determined from known 
experimental data 

 
 To determine experimental values of the plasticity 
function we use the experimental data on alternate 
torsion of a circular in profile rod beyond the elasticity 
limits under the conditions of room temperature 
presented in Fig. 1a and derived by Gusenkov and 
Moskvitin (1973). The dependence of relative strain ε 
on torque M at instant deformation (curve 1-direct 
loading, 2-back loading) is shown: 
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  (4) 

 
 At an instant torsion the integral summand should 
be equated to zero in relations (1). Out of all stress and 
strain tensor components only s12 = σ12 and э12 = ε12 will 
be nonzero. As a result, the following dependence will 
be true for the experimental curves considered: 
 

12 0 12 12G (1 )σ = ε − ω   (5) 
 
 Let us divide the left and right-hand sides of Eq. 5 
by σy. Then, using the values introduced in (4), we get:  
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  (6) 

 
 Based on (6), we find the values of plasticity 
function in experimental points ω1n Fig. 1b. In these 
points, the condition of approximation should be met: 
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 By dividing similar relations for n and k 
experimental points we obtain: 
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Where from: 
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Fig. 1: Experimental points and theoretical values of 
plasticity function 

 
 After    averaging   we   accept   that   A1  =  0.96; 
α1 = 2.34. We may judge about the approximation 
accuracy by curves 1 in Fig. 1a and b. Dark points are 
the experiment; the solid line is calculations. 
  Plastic properties of metals increase with 
temperature growth, therefore the diagram for function 

ω1(εu, T) is supposed to be shifted along the abscissa 
axis relative to graph ω1(εu, T0) by value εy0-εy (strain 
rate εy corresponds to elasticity limit at temperature T). 
Values εy are calculated by the relation of elasticity 
limit  σy versus temperature (Gorshkov et al., 2002): 
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 To determine constants κ of the material by (8) we 
use: 
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 Its values calculated on the base of Rabotnov 
(1979) experimental data are given in Table 1. 
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Table 1: Approximation parameters of duralumin 
Parameter   Value Parameter Value 
E(0), MPa 0.8290 ⋅105 α1

* 2.270 
G(0), MPa 0.3075 ⋅105 εy0

*, (%) 1.485 
K(0), MPa 0.9214 ⋅105 A2 1.000 
E0, MPa 0.7200 ⋅105 α2 0.700 
G0, MPa 0.2670 ⋅105 εu0, (%) 0.270 
K0, MPa 0.8000 ⋅105 A2

* 1.000 
α0, 1/K 24.3000 ⋅10-6 α2

* 0.600 
T0, K 293.0000 εu0

*, (%) 0.535 
Tm, K 933.0000 A, s-α 2.92 ⋅10–4 
ν 0.3500 β, s–1 1.39 ⋅10–7 
A1 0.9600 α 0.250 
α1 2.3400 σy0, MPa 530.000 
εy0, (%) 0.7350 ρ0, kg m−3 2700.000 
σyo, MPa 340.0000 С0, J kg−1 ⋅ K 880.000 
κ, 1/K 301.0000 k0, J m−1⋅ s ⋅ K 177.000 
A1

*  0.9240 δ 5.600 
 
 Thus, by generalizing (3), the plasticity function at 
a loading by thermal force from the natural state is 
accepted as: 
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 The analytical variant of the function of 
nonlinearity at sign-variable loading ω1

*(εu
*, T) is (9): 
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 The corresponding constants A1

*, α1
*, εy0

*  are 
calculated from experimental data according to above-
stated procedure described in Table 1. Value εy

* is 
calculated by (8). The approximation accuracy is 
evident from curves 2 in Fig. 1a and b. Dark points are 
the experiment; the solid line is the calculation. 
 The universal function of nonlinear creep is 
assumed as follows: 
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 The creep curves of D-16Т alloy at direct Fig. 2а 
and inverse torsion Fig. 2b of the thin-walled tubes are 
taken from Namestnikov (1960) study without elastic 
components. Curve 1 in Fig. 2a corresponds to stress 
σ12 = 113. 2-σ12 = 127.3-σ12 = 144 MPa. Respective 
curves in  Fig. 2b  express double stresses σ12

*  =  2σ12, 
T = 423 K.  

 
(a) 
 

 
(b) 
 

Fig. 2: The creep curves of D-16Т alloy at direct (а) 
and inverse torsion (b) of the thin-walled tubes 
are works without elastic components  

 
 To calculate temperature constant δ, we used a 
creep curve for tension: 4-σ1 = 156.8 MPa, T = 473 K 
(Rabotnov, 1979). At back loading the temperature 
dependence of the process was taken as previously and 
function ω2

*(εu
*) was accepted similar to (10): 
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 From the experimental data in study by Gusenkov 
and Moskvitin (1973) follows that deformation in the 
plastic area at loading from the natural state hardens the 
material since β2 = 2.02 (εy

* = β2εy). However, 
according to Namestnikov (1960) it follows that D-16Т 
alloy weakens as related to creep. As a result of the 
loading sign change the creep runs faster: β2

* = 1.98 
(εu0

* = β2
*
εu0). 
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RESULTS AND DISCUSSION 
 
 After processing of the experimental data using 
above-described method, we have derived constants A2, 
α2, εu0, A2

*, α2
*, εu0

* included in the approximation 
formulas for the nonlinear creep functions at direct and 
back loading Table 1. Figure 2 and 3 (curve 1-direct 
loading, 2-back loading) reflect the conformity of 
theoretical curves to experimental points. 
 Rheonomic characteristics of D-16Т alloy are 
described by Rzhanitsyn (1968) kernel of relaxation: 
 

( )βt 1R(t) Ae t 0,0 1− α−= β > < α <   (11) 

 
 This choice is conditioned by simplicity of the 
kernel, which nevertheless accounts fully enough for 
the weakly singular properties of materials. The 
technique of determination of nucleus parameters, 
corresponding diagrams and tables are given in 
Koltunov (1976) monograph. Received with their help 
and according to (11) results are shown on Fig. 4 where 
the design curve of the function of the pliability is 
represented on which we can consider the precision of 
approximation.  
 

 
 
Fig. 3: Conformity between approximation curves of 

nonlinear creep functions and their 
experimental points 

 

 
 

Fig. 4: Conformity of approximation curve of 
compliance function to its experimental points 

 Kernel constants along with density ρ, specific heat 
capacity C, specific heat conductivity k0 and ultimate 
strength σu0 at normal temperature are given in Table 1. 
We should note that all thermo mechanical 
characteristics of D-16Т alloy were received in the field 
of moderate temperatures (Т≤543 К).  
 

CONCLUSION 
 
 The methods proposed in the study for 
experimental curve fitting may be used for other 
structural materials as well. The approximation results 
can be employed for numerical solution of the problems 
in the mechanics of solid bodies.  
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