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Abstract: Problem statement: Digital images play an important role both in gdife applications as
well as in areas of research and technology. Duéhéoincreasing traffic caused by multimedia
information and digitized form of representation iofiages; image compression has become a
necessityApproach: Wavelet transform has demonstrated excellent incaggression performance.
New algorithms based on Lifting style implementatif wavelet transforms have been presented in
this study. Adaptively is introduced in lifting lyhoosing the prediction operator based on the local
properties of the image. The prediction filters ehn@sen based on the edge detection and the eelativ
local variance. In regions where the image is lgcainooth, we use higher order predictors and near
edges we reduce the order and thus the lengthegirigdictor Results: We have applied the adaptive
prediction algorithms to test images. The origimaage is transformed using adaptive lifting based
wavelet transform and it is compressed using SettiBaing In Hierarchical Tree algorithm (SPIHT)
and the performance is compared with the popul@rv@velet transform. The performance metric
Peak Signal to Noise Ratio (PSNR) for the recowstdi image is computedConclusion: The
proposed adaptive algorithms give better performath@an 9/7 wavelet, the most popular wavelet
transforms. Lifting allows us to incorporate adeityi and nonlinear operators into the transforme Th
proposed methods efficiently represent the edgdsagpear promising for image compression. The
proposed adaptive methods reduce edge artifactsriagohg and give improved PSNR for edge
dominated images.

Key words: Adaptive lifting, prediction filters, edge detamti nonlinear wavelet transform, relative
local variance, Cohen-Daubechies-Feauveau (CDFglets/

INTRODUCTION (1992) developed the idea of biorthogonal wavelets
where the analysis basis and the synthesis basis ar
An efficient way to implement Discrete Wavelet different (Cohenet al., 1992). The advantage of this
Transform (DWT) using filters was developed by approach is increased flexibility in wavelet desigor

(Mallat 1989). This very practical filtering algthim, example, it is possible to design the associatier fi
which is based on the theory of multiresolution bank with linear filters.
analysis, yields a fast discrete wavelet transfortis Sweldens (1996) demonstrated a simple lifting

original work focused on orthonormal systems where scheme which provided a common framework for the
one set of basic functions was used for both aisalys design of biorthogonal filter banks (Daubechies and
and synthesis. Due to its many advantages, such aSweldens, 1996; Sweldens, 1996). The lifting scheme
multiresolution representation, good energy is a way of generating a new set of biorthogoriadrf
compaction and decorrelation, the DWT has becomefrom a known biorthogonal set. In addition to théra

one of the most important techniques for image andflexibitiy offered by biorthogonal wavelets, it
video compression in the last decade and been ediopt transpires that all biorthogonal filters can be eyated

by Joint Photographic Experts Group (JPEG2000)using lifting schemes. Cohen-Daubechies-Feauveau
standard (Taubman and Marcellin, 200Bhe wavelet = wavelets are the historically first family of
based JPEG2000 not only presents superior codindiorthogonal wavelets, which was made popular by
performance over the DCT (Discrete Cosine Ingrid Daubechies. These are not the same as the
Transform) based JPEG but also provides scal&siliti orthogonal Daubechies wavelets and also not very
in rate, quality and resolution (Pennebaker andsimilar in shape and properties. However their
Mitchell, 1993; Ghrareet al., 2009). Cohenet al. construction idea is the same.

Corresponding Author: R. Satyabama, Department of Electronics, Governfelfege of Technology, Coimbatore, 641 013, India
1704




J. Computer i, 7 (11): 1704-1710, 2011

The JPEG 2000 compression standard uses thep(x)[n]=> p,x[n+i] (3)

biorthogonal CDF 5/3 wavelet (also called the LdGal 1

5/3 wavelet) for lossless compression and a CDF 9/7

wavelet for |053y Compression (Col‘ﬂmh 1992) where, P is the prediction filter coefficient which is a
Conventiona”y' two dimensional DWT (2-D hlgh pass filter. This leads to the detail CoeﬂmtlEq 4:

DWT) is carried out as a separable transform by

cascading two one Dimensional (1-D) transformsan t  d[n] = x,[n] —p(x,)[n] 4)
horizontal and vertical direction. The wavelet
transform can be efficiently implemented by thérg If the signal is locally smooth, the prediction

scheme where the Finite Impulse Response (FIR)residual d[n] will be small. Given the even subsft]

wavelet filter can be factored into several liftis@ges  ang the prediction residual d[n], the odd subsgin]x
(Daubechies and Sweldens, 1996; Sweldens, 1996). .31 pbe recovered by noting that Eq. 5:

A lifting stage is comprised of the four steps
namely Split, Predict, Update and Normalize. The _
lifting scheme proposed by Sweldens (Daubechies ang M =dn +p(xin] )
Sweldens, 1993; Sweldens, 1996) is an efficient too
for constructing second generation wavelets and had/Pdate: The Update step transforms the even subset
advantages such as faster implementation, fully in-XeNl into a low-pass filtered version of x[n]. This
place calculation, perfect reconstruction with low COarse approximation is obtained by updating with a
memory and low computational complexity linear combination of the prediction residual dfiien
(Daubechies and Sweldens, 1993). It can also bethe approximation coefficients c[ate Eq. 6:
considered as an alternate implementation of tfs fi
generation classical wavelet transform. c[n] =x[n] +U(d)[n] (6)

In many applications it is desirable to have tefil
bank that somehow determines how to shape itselivhere, U(.) is a linear combination of neighboritig
according to the data that it analyzes. This can beyajyes given by Eq. 7:
achieved by allowing lifting scheme to adapt itslaie
a_nd prediction filters to the _I(_)cal_pr(_)perties tile t u)in]= Y u,din+ @)
signal. In this study adaptivity is introduced by T
choosing the prediction operator based on the local

properties of the image. where, uis the low pass filter coefficient. The lifting

construction guarantees perfect reconstructionafor
MATERIALSAND METHODS Predict and Update filters. Given d[n] and c[n], we

have Eq. 8:

Lifting scheme: Each 1-D wavelet transform can be

factored in to one or more lifting stages (Asamwiar  X[n] =c[n] -U(d)[n] (8)

al., 2010). A typical lifting stage is comprised @fuf

steps: Split, Predict, Update and Normalize. Normalize: The outputs of the lifting are weighted by

ke and k. These values serve to normalize the energy
Split: The signal x[n] is first split into even subsgink of the underlying scaling and wavelet functions,

and the odd subsefy[Rr], where Eq. 1 and 2: respectively. The normalization factar &nd k arev2
and 142 respectively (Daubechies and Sweldens,
x.[n]=x[2n] 1) 1993). For 2D signals, upon the completion of th2 1
lifting based horizontal transform, the 1-D liftilbg.sed
and: vertical transform is performed in the same waye Th
Forward and Inverse lifting is carried out as shdwn
Xo[n] =x[2n +1] (2) Fig. 1. The four steps in Inverse lifting are:

Predict: Then the odd subset[r] is predicted from * Undo Normalize
the neighboring even subsefn]. The Predictor P(.)is * Undo Update
a linear combination of the neighboring even subsets  Undo Predict
Eq. 3:  Merge
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Fig. 1: The Lifting Scheme. (a) Forward Transfo(tm
Inverse Transform

The lifting framework allows us to incorporate
non-linearities while retaining control over the
properties of the wavelet transform. The nonlirtgari
comes from adaptively choosing from a set of linear
predictors. Such nonlinear wavelet transforms tevi
added flexibility for image representations.

Adaptivity in wavelet transforms. Wavelet bases
typically employed for image compression utilize
smooth scaling and wavelet functions. Such bases ca
be easily constructed with the predict-then-updaite

of lifting as described above. Larger predictoi tten
exactly predict polynomials of higher degree
correspond to smoother basis functions; thesendifti
predictors work well when the underlying signal is
smooth. However, most of the images consist of

regions of smoothness and texture separated byG,

discontinuities (edges). These discontinuities oale
well-represented by smooth basis functions. Since
smooth basis functions correspond to lifting preme
with wide support, these predictors work poorly mea
edges, when the discontinuity is within the dat tre
used for prediction.

We introduce a mechanism that allows us to
choose the prediction operator based on the loca

properties of the image. This makes the P operatorg = grcta

data-dependent and thus the transform is nonlinear
However, lifting guarantees that the transform riea
reversible. In regions where the image is locally
smooth, we use higher order predictors. Near edges
reduce the order and thus the length of the predict

: 1704-1710, 2011

Such an adaptation would allow us to exploit the
spatial structure that exists in edges. In thigdgtu
prediction filters are chosen based on the edge
detection and the Relative Local Variance.

Adaptive prediction based on edge detection
(Methodl): An edge detection algorithm analyzes the
data in the 2-D prediction window to determine the
location and the orientation of the edge. Whendgee
pixel is detected then we use a lower order predict

In this study an edge detection algorithm usingebo
operator is considered (Gonzalez al., 2004). The
Sobel operator performs a 2-D spatial gradient
measurement on an image. Typically it is usednd fi
the approximate gradient magnitude at each poiahin
input grayscale image. The classical operator agh
Sobel, which uses first derivative has very simple
calculation to detect the edges and their oriemtati It

is easy to implement than the other operators. ISobe
operator effectively highlights noise found in real
world pictures as edges though the detected edges
could be thick. Hence, Sobel operator is highly
recommended in massive data communication found in
image data transfer (Hafet al., 2011).

The Sobel edge detector uses a pair of 3x3
convolution masks, one estimating the gradienthm t
x-direction and the other estimating the gradienthe
y-direction A convolution mask is usually much
smaller than the actual image. As a result, theknmas
slid over the image, manipulating a square of gixtla
time. The actual Sobel masks are shown Eq. 9 and 10

-1 0 1
G.=|-2 0 2 (9)
-1 0 1
1 2 1
=lo 0 O (10)
-1 -2 -1

At each point in the image the resulting gradient
approximations can be combined to give the gradient

magnitude using G=,/G;+G. and using this
information we can also calculate the gradientative:
et &

I
G
&)
Thus we define a point in an image as an edge

point if its two dimensional first order derivativie
greater than the specified threshold.

X
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Xefal K, We_ choose N={1,3,5} point predictior.L The
y D% c[n] prediction filters are represented as Eq. 10-13:
i st El% P(1)=[0, 0, 1, 0, O] for order N = 1 (11)
- <5 Eﬁ il p(2)=10,-1,8, 1, 0)/8 for order N = 3 (12)
’ P(3) =[-3, 22, 128,-22, 3] for order N =5 (13)

Fig. 2 Update First Lifting Scheme
and the update filter is Eq. 14:

3 5 5 :5
%0 X0 X5 X0 XO X0 U =[1,1)/2 (14)
\ The low pass coefficients are first computed using
a Haar filter (one point update filter), where B§:
X0 XO X0 XO X %)
5 5 5 3 C(n):x(n)+ x(2n+ 1) (15)

2

Fig. 3: Predictor Selection Near Edges. Number

indicates the order of the predictor used First order Haar prediction leading to(1,1) wavele

gives Eq. 16:

In lossy compression the decoder has only the
guantized even coefficients rather than the orlgina
coefficients. If we use locally adapted filters,emh ) _ )
quantization errors in coarse scales could cascade The third order predictor leading to(1,3) wavelet
across scale and cause a series of incorrect filte@ives Eq. 17:
choices leading to serious reconstruction errotse T
simple modification that solves this problem is to
reverse the order of the predict and update lifstaps
in the wavelet transform as shown in Fig. 2 (Claypo
et al., 2003). We first update the even samples based
on the odd samples vyielding the lowpass coeffisient
c[n]. We then reuse these lowpass coefficients to
predict the odd samples, which gives the highpass

d(n)=x(2n+ 1)- ¢(n) (16)

+ c(ny

d(n)= x(2n+ 1)—[_0(2_ Y

c(n+ 1)}

The Fifth order predictor leading to(1,5) wavelet
gives Eq. 18:

coefficients d(n). When updating first, the preitiat -3c(n-2) 22¢c(n- 1)

operator is outside the loop. The coarse coeffisiean d(n)= x(2n+ 1) 128 128 (18)
be iterated to the lowest scale, quantized and o(n)- 22(n+1)_ 3c(m+ 2)
reconstructed prior to the predictions. We usenaal 128 128

update filter and let only the choice of prediaiepend

on the data.

) . Figure 3 shows the predictor selection.
When we do update first, the transform is only

iterated on low pass coefficients and all c(n) cepen . .. .
data and are not affected by nonlinear predictitere Adaptive prediction based on Relative Local

we considered CDF(L,N) wavelets (Cohen- Variance (Method 2): The smoothness of the image
Daubechies-Feauveau) for adaptive liting can also be determined by measuring the Relative
(Uytterhoeveret al., 1997). The low pass coefficients Local Variance (RLV). The Relative Local Variande o
are first computed using a Haar filter (one poiptiate ~ @n image | is given by Eq. 19 and 20:
filter). We choose higher order predictors where the
image is locally smooth, resulting in many negligib ZW ZJ” (I(k, 1) - u“)
detail coefficients and near edges, lower order RLV[I](i.j) ==X
predictors are activated, resulting in large litidetail
coefficients for better image representation. Thased
on the gradient the prediction filters are chosen. With:

1707

var(l)



J. Computer i, 7 (11): 1704-1710, 2011

=N o I(kD) RESULTS
Mo = Zk:i—T Zi:j-T (2T +1) (20)

] ) ) ) ) We have applied the adaptive prediction
For the window size we take T=5, since with this

choice all | (k, I) used for the prediction of I, (i glgorlthms tto 25;6x252 8 k.m |maé;est.. The o(r;g|tr_1al
contribute to the RLV for (i, j). var(l) is the vance of 'mage IS transformed using - acaptive - prediction
the image I. For all pixels (i, j) to be predicte first algorl_thms qnd it is compressed using _Set Partitgpn

compute RLV[I] (i, j). Then quantizing the value§ o In Hierarchical Trees (SPIHT) algorithm and the
the Relative Local Variance yields a decision map performance is compared with the performance of
indicating which prediction filters should be usatl  popular 9/7 transform (Said and Pearlman, 1996 Th
different positions. The Relative Local Variance &l performance metric PSNR for NxN image (Peak Signal

subsequent pixels (i, j) to be predicted is compated 1, Ngjse Ratio) at different bit rates in bits gexel
suitable predictors are chosen. Two thresholds are(bpp) is computed as Eq. 21

chosen preliminarily according to practical sitoas.
Quantization levels can be taken as multiples ef th ,
mean () of the rlv. Test results have shown th@t) _ 255
1.5u(rlv) 2p(rlv)] are the quantization levels that yield PSNR= 1O|O%{MSE} at (21)
a good performance. The RLV value above the bigger

threshold indicates that a lower order predictanely

P, should be selected. When RLV value is below the
smaller threshold, a higher order predictor, nanigly
should be activated. Otherwise B activated. Here 1l NN BN
also, we first update the even samples based oodihe MSE_WZi Zj (X() = Y@-D)
samples. Then we reuse the low pass coefficients to

predict odd samples which gives the high pass
coefficients d(n). c(n) does not get affected ahed t

where, MSE is the mean square error given by Eqg. 22

(22)

taking X as the original image and Y as the

choice of the predictor depends only on the data. reconstructed image.

Table 1: PSNR in db for the test images at diffebénrates

Images Bit rate in bpp 9/7 Wavelet APM1 APM2”
0.1 23.59 24.01 22.56
0.2 26.01 26.80 26.02
0.4 30.01 32.21 30.96

Circle 0.6 33.83 36.79 34.02
0.8 36.69 39.23 39.26
1.0 38.02 42.69 41.86
0.1 23.32 23.56 23.47
0.2 26.01 26.02 25.83
0.4 29.02 29.35 28.75

Cameraman 0.6 31.02 31.54 30.57
0.8 32.83 32.86 32.43
1.0 34.60 34.96 33.83
0.1 24.02 18.60 19.05
0.2 25.02 21.02 22.36
0.4 26.38 22.34 23.89

Lena 0.6 28.78 25.74 25.87
0.8 33.58 28.29 29.65
1.0 35.07 30.56 30.88
0.1 21.32 22.72 24.14
0.2 22.69 23.61 25.21
0.4 24.68 25.81 27.89

Baboon 0.6 26.41 27.91 29.96
0.8 28.32 30.67 32.81
1.0 29.11 31.98 34.21
0.1 27.09 26.77 25.87
0.2 28.60 27.77 26.76
0.4 29.80 28.17 27.98

Goldhill 0.6 31.82 29.37 29.04
0.8 33.20 31.77 31.09
1.0 34.89 33.77 32.89

APM1": Adaptive Prediction method; PM2Adaptive Prediction method
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DISCUSSION The PSNR values and the visual quality of the
cameraman image using the proposed algorithms are
Table 1 gives the PSNR at different bitrates forcomparable with that of 9/7 wavelet transforms as
images of different frequency distributions. The shown in Fig. 8. Since Lena image is a smooth image
performance is compared for the test images circle9/7 wavelet transform gives better PSNR and visual
Lena and cameraman in Fig. 4-6 respectively. Fer thquality than the adaptive prediction methods asvsho
edge dominated circle image, we observe that tldgém in Fig. 9. The proposed adaptive algorithms givetseln
transformed with the adaptive lifting has sharpesdgs performance than 9/7 wavelet for the Baboon image

shown in Fig. 7. which contains a narrow range of luminance leveld a
a large number of details. The performance of the
45 proposed algorithm is comparable with 9/7 wavebet f
4 the Goldhill image.
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