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Abstract: Problem statement: The speed stability if Induction Generators (IG) can be defined as its 
ability to remain connected to the electric network, operating at a mechanical speed close to the speed 
associated to the actual system frequency, after being subjected to a perturbation. This IG behavior is 
normally studied using dynamical methods that are determined through time-consuming simulations 
and are difficult to implement in simpler computational devices, such as microcontrollers, that are the 
basic component of electronic protection relays. In this way, the possibility to assess the speed stability 
of IGs through a simpler method becomes very desirable. Approach: This paper proposes a simple 
analytical method for assessing the speed stability of induction generators connected to distribution 
systems that can be easily implemented in microcontrollers, based on the determination of its critical 
speed and critical time. The formulation of the proposed method is founded on the electrical-
mechanical equilibrium equations associated to the steady-state operation condition in the classical 
induction machine model. Results: The developed method has four simple steps, based on 
mathematical equations obtained from the classical IG model and presented a mean difference less 
than 5% when compared with results obtained by dynamical simulations, tested in the context of a 
distribution electrical network that considers generator parameters, line parameters and capacitor bank 
variation. Conclusions/Recommendations: This analytical approach can be used as a guide to 
significantly reduce the simulation efforts, required to assess the induction generators stability in 
distribution networks and permits its implementation in less complex computational contexts, like 
microcontrollers. The reliability of the method has been attested by extensive simulation results. 
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INTRODUCTION 

 
 Nowadays, the penetration of distributed 
generation in electric power networks is encouraged by 
different causes, including changes in the regulatory 
scenario, minimization of environmental impacts, 
economical issues and the need for more flexible 
electric networks (Willis and Scott, 2000; Mota and 
Mota, 2009). In this context, a crescent number of 
Induction Generators (IGs) have been connected to 
distribution systems, commonly through small 
generation plants using hydro, thermal, solar or wind 
energy sources (Jenkins et al., 2000; Akhmatov et al., 
2003; Parsons, 1984; Barbi, 2008; Lubis et al., 2009; 
Santos et al. 2010). The analysis of the impacts of the 
installation of these induction generators in the 

distribution network and also of their operational 
characteristics under normal and fault conditions, 
becomes crucial for the network operation, as described 
in (Akhmatov, 2003). In this context, an important 
phenomenon related to the IG operation that deserves 
special attention is its speed stability. According to 
Samuelsson and Lindahl (2005), the speed stability can 
be defined as the ability of an IG to remain connected 
to the electric network, operating at a mechanical speed 
close to the speed associated to the actual system 
frequency, after being subjected to a perturbation.  
 This IG behavior is normally studied using 
dynamical simulation methods. These methods are easy 
to apply and offer flexible models and usually a large 
number of simulations, that can be extremely time-
consuming, must be performed in order to achieve 
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satisfactory results. Although simulations may not be a 
significant problem in electric power systems analysis, 
they do not provide insight in the physical relations 
among electrical parameters of the network 
components, since the models are encapsulated in the 
software and the user is blind to their interaction. In 
other hand, the simplicity of the algorithm permits its 
implementation in less complex computational 
contexts, like microcontrollers, where the usage of 
simulation methods is unfeasible. 

 
MATERIALS AND METHODS 

 
General outline of the approach: The central idea of 
this work is to develop an analytical method for 
assessing the speed stability of IGs connected to 
distribution systems, yet still yielding accurate results. 
Figure 1 illustrates the equivalent circuit that represents 
the connection of an IG to a generic distribution 
network. In this figure, the bus “IB” corresponds to the 
infinite bus-a bus with a constant voltage level that does 
not depend on the network configuration and operation 
condition-that, considering the generator’s connection 
to distribution level, can satisfactorily represent the 
electric power network.  
 The analysis of the IG speed stability is based on 
the critical speed concept, firstly described in 
(Akhmatov, 2003). The critical speed can be defined as 
the maximum speed associated to the shaft that will not 
imply in an unstable behavior of the generator. 
Consequently, this is the fundamental parameter that 
determines the stability of induction machines during 
fault conditions. So, the methodology adopted to 
estimate this speed and to assess the IG stability is 
summarized as follows: 

 
• Determination of a generic equivalent model for 

the IG and its electrical interconnection (shown in 
Fig. 1) 

• Determination of the rotor current I. 
• Determination of equilibrium equations under 

steady-state conditions, involving electrical and 
mechanical torques 

• Definition of fault conditions 
• Determination of the critical speed 
• Development of the analytical method for assessing 

the stability of an induction generator under fault 
conditions (determination of the critical time 

  
Fig. 1:  Equivalent circuit of the IG connection to the 

distribution network 
 

 
 

Fig. 2:  One-phase equivalent circuit of the IG 
 
Classic model: The IG can be analyzed according to its 
classical model, illustrated in Fig. 2, that represents the 
one-phase equivalent circuit of the machine (Kundur, 
1994; Barbi, 2008). 
 In this figure, stability assessment Vs is the 
terminal stator voltage, Xs is the stator reactance, Rs is 
the stator resistance, Is corresponds to the stator current, 
Xm is the magnetizing reactance, Im corresponds to the 
magnetizing current, Xr is the rotor reactance, Rr is the 
rotor resistance, “S” is the rotor slip and Iy is the rotor 
current. These variables are all expressed in per unit 
quantities and referred to the stator side of the machine:  
Determination of Iy. 
 It is worth mentioning that the magnitude of the 
rotor current is of great importance when describing the 
equations related to the electrical-mechanical 
equilibrium condition, as will be seen in the next 
Subsection. Thus, in order to determine Iy, the 
equivalent circuit depicted in Fig. 2 can be 
mathematically described by:  
 

( )

( )

s s m m
ss

r
m r m r

R j X X jX ˆˆ IV
.Rˆ ˆjX j X X I0
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 Solving the set of Eq. (1), one can determine rÎ as 
described by: 
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−
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 In this equation, K1, K2 and K3 are constants 
defined using the electrical parameters of the IG and 
can be written as follows: 
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Fig. 3: Alternative form of the one-phase IG 

equivalent circuit 
 

  
Fig. 4:  Electrical and mechanical torque curves 
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So, the magnitude of Iy is: 
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where, Vs  is the magnitude of the voltage phasor Vs.  
 Electrical-mechanical Equilibrium Equations. 
 The mechanical power (Pm) transferred to the shaft 
is: 
 

m shaft m mP .T (1 s).T= ω = −  (5) 
 
Where: 
ωshaft = Shaft speed 
Tm = Mechanical torque 
 
 The power received by the rotor (Pe) is equal to the 
power associated to the rotor resistance, referred to the 
stator side and discounting the rotor power losses, as 
described in (6): 

2 2 2
r r

e r r r r
R Rˆ ˆ ˆP . I R . I (1 s). . I
s s

= − = −  (6) 

 
 This equation leads to the well-known 
alternative form of the IG one-phase equivalent 
circuit, as shown in Fig. 3. 
 At electrical-mechanical equilibrium conditions, 
the net power associated to the shaft is zero. This means 
that all power provided by the primary source is equal 
to the power generated in the rotor and required to 
attend the electrical load, as in (7). 
 

m eP P=  (7) 
  
From (5-7), one can write:  
 

2
r

m r
R ˆT . I
s
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 Substituting (4) in (8) and considering electrical-
mechanical equilibrium conditions, the electrical torque 
Te associated to the shaft can be defined as in Eq. 9: 
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 Defining the constant K4 as: 
 

m
4 2

s
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V

=  (10) 

 
 One can rewrite (9) as: 
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Or: 
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 As expected, this last equation shows that the 
solution of the electrical-mechanical equilibrium 
equation is a function of the slip s. If the IG parameters 
and the voltage magnitude VS are known, Eq. 12 can be 
used to determine slip values corresponding to two 
possible equilibrium points. Figure 4 illustrates the 
curves of the electrical torque Te and the mechanical 
torque Tm as functions of the IG slip (or speed). In this 
Figure it is assumed that the terminal voltage VS after 
the fault elimination is equal to the one before the fault 
occurrence (characterizing a condition where the 
generator is connected to an infinite bus). As 
mentioned, two electrical-mechanical equilibrium 
points related to the IG operation can be determined, 
considering a constant mechanical torque. In Fig. 4, 
they correspond to the crossings of the mechanical and 
electrical torque curves, marked as point EP1 (stable) 
and point EP2 (unstable).  
 Solving (9), one can determine the slips (s1 and s2) 
associated to these equilibrium points. They correspond 
to the roots of (12) and can be calculated by (13): 
 

1
bs

2.a
− + Δ

=  and 2
bs

2.a
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Where: 
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And: 
 

2
b 4.a.cΔ = −  (15) 

  
 By performing a signal analysis, one can verify that 
the absolute value of root s2 is larger than s1. 
Consequently, s1 characterizes the steady-state stable 
operation point and s2 is the slip value related to the 
unstable operation point EP2, as shown in Fig. 5.  
 So, the critical speed is the shaft speed related to 
the point EP2 and to the slip s2. It can be obtained using 
(16): 
 

( )crit sync 2
b. 1 s 1

2.a
− − Δ

ω = ω − = −  (16) 

 
Where: 
ωsync = Synchronous speed 

Fault-condition analysis and critical time 
determination: Assuming that the shaft speed (ωshaft) 
in the moment of the fault (tf) is the shaft speed 
associated to the stable steady-state point (ω0), one can 
write: 
 

( ) ( )shaft f 0 sync 1
bt . 1 s 1

2.a
− + Δ

ω = ω = ω − = −  (17) 

 
 During a fault, the balance between the electrical 
and the  mechanical  power is compromised. The 
fault  is  assumed  here  as  a  three-phase short 
circuit and, consequently, the steady-state terminal 
voltage VS during the fault is null. In this case, the 
electrical output power can also be considered null. 
So, based on Eq. (9), Te = 0 and the shaft accelerates 
due to the mechanical torque Tm only. The shaft 
angular acceleration in this condition can be 
expressed by: 
 

( ) ( ) ( ) ( )
net e m mT T T T

J J J
− −

α ω = = =
ω ω ω

 (18) 

  
where, J(ω) is the generator inertial moment, that is 
dependant on the shaft speed (and, consequently, on the 
slip). Considering that the fault is cleared at the instant 
tc, the shaft speed ωshaft will be ruled by the following 
equation: 
 

tc

shaft o
tf

. tω = ω + α ∂∫  (19) 

 
 Also considering that the inertial moment is 
constant along the process and is equal to the one 
encountered at the synchronous speed ωsync (ωsync = 1 
p.u.), it can be defined as a function of the IG 
synchronous inertial constant H, i.e., ( )syncJ 2.Hω = . 
Thus, (18) can be rewritten as: 
 

( )
net net m

sync
sync

T T T
2.H 2.HJ

α = = = −
ω

 (20) 

  
where, αynce is the shaft constant angular acceleration 
based on J(ωsync). From (19), the shaft speed 
becomes: 
 

( )shaft o sync c f. t tω = ω + α −  (21) 
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Fig. 5:  Equilibrium points and critical speed 
 

 
 
Fig. 6: IG torque-slip behavior for clearance shaft speed 

lesser than the critical speed (ωshaft < ωcrit) 
 

 
 
Fig. 7: IG torque-slip behavior for clearance shaft speed 

greater than the critical speed (ωshaft > ωcrit) 
 

 
 
Fig. 8:  Electric network equivalent circuit 
 

 
 
Fig. 9: Reduced electric network equivalent circuit 

 If the shaft speed at the instant of the fault 
clearance is smaller than the critical speed (ωshaft < 
ωcrit), the generator, when reconnected, will present an 
electrical torque higher than the mechanical torque, as 
shown in Fig. 6. At the instant of the fault clearance, the 
net torque imposed to the shaft, Tnet = Te - Te, will be 
negative. Thus, the acceleration associated to the shaft 
will also be negative and the shaft speed will decrease 
until the steady-state operation speed ω0. So, in this 
case, the generator will present a stable behavior. 
 On the other hand, if the shaft speed at the instant 
of fault clearance is greater than the critical speed (ωshaft 
> ωcrit), the generator, when reconnected, will have an 
electrical torque smaller than the mechanical torque. 
Consequently, the acceleration associated to the shaft 
will be positive and the speed will increase further, 
leading to disconnection by protection tripping. Figure 
7 illustrates this situation. 
 From these results, the IG critical time can be 
defined as the time required by the shaft to accelerate 
from ω0 = f(s1) to ωcrit = f(s2) during a fault condition. If 
the fault lasts for a time higher than the critical time, the 
generator accelerates further than the critical speed and 
loses its stability. So, this critical time (tcrit) determines 
the maximum allowable clearance fault time that 
guarantees stable operational conditions.  
 This value can be obtained by the time difference 
between the fault occurrence and its clearance for the 
most critical situation: when the generator shaft speed is 
equal to the critical speed in the reconnection instant. In 
this case, Eq. 21 can be rewritten as: 
 

( )shaft crit o crit. tω = ω = ω +α  (22) 
 
 Assuming null electrical torque during the fault (3-
phase fault), this expression becomes: 
 

( )crit ocrit o
crit

m

2.H.
t

T
ω −ωω −ω

= = −
α

 (23) 

 
Line parameters consideration: In the previous 
equations, the terminal voltage VS was assumed as 
known and constant, conserving the same value before 
the fault occurrence and after its elimination. However, 
in actual networks, the voltage drop across the line 
cannot be ignored. This electrical variable has a 
significant impact on the critical time determination. 
So, in order to consider a more generic fault situation, a 
different IG equivalent circuit must be adopted. 
Initially, lets consider that the electric distribution 
network, previously presented in Fig. 1, can be reduced 
to its equivalent circuit, as shown in Fig. 8. 
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Fig. 10:  Equivalent generator circuit-line parameters 

plus induction machine 
 
 In this circuit, the line reactance and resistance are 
aggregated with the reactance and resistance of the 
transformer, resulting in the equivalent parameters XL and 
RL. The point T corresponds to the machine terminals and 
XC is the reactance of the capacitor bank. Considering pre-
fault conditions, the network can be reduced (using the 
Thevenin’s equivalent) as shown in Fig. 9. 
 In this case, the equivalent parameters are 
expressed by: 
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where, VIB  is voltage phasor at the infinite bus.  
 
Thus: 
 

( )
C

Th IB2 2
L L C

Xˆ ˆV . V
R X X

=
+ −

 (27) 

 
 Now, it is possible to define: 
 

s Th sR R R′ = +  (28) 
 

s Th sX X X′ = +  (29) 
  

s ThV V′ =  (30) 
 
 Furthermore, using these equivalent parameters, 
the line and the induction machine can be aggregated in 
a circuit that corresponds to an equivalent generator, as 
shown in Fig. 10. This equivalent generator can be used 
to solve the electrical-mechanical equilibrium equations 
and to assess the critical time for different values of line 
parameters, using the same equations defined before. 
 It is important to note that any transient electrical 
power output that can arise during the fault, due to the 

energy stored in the machine electromagnetic fields or 
in the capacitor, will imply in a non-null terminal 
voltage VS and in an electrical torque Te different from 
zero during a short period of time after the beginning of 
the fault. Consequently, the shaft will be subjected to an 
accelerating torque smaller than Tm during the initial 
instants of the fault.  
 Hence, the hypothesis that Te = 0 during the fault, 
assumed in the development of Eq. 18-23, corresponds 
to the most critical case that can occur in a fault 
situation in terms of stability. So, the results obtained 
from the analytical approach are expected to be 
conservative and, during the fault, it can be considered 
that VS is zero without deterioration of the reliability of 
the method. 
 
Analytical method for stability assessment: The 
stability assessment of IGs can then be reduced to the 
following problem: the determination of the critical 
time, given the generator parameters, the mechanical 
torque at the shaft, the line parameters and the fault 
occurrence instant. Considering this, the methodology 
proposed in this work can be summarized by the 
following procedure: 
 
Step 1: Determine the parameters of the equivalent 

induction generator (R X and V) using Eq. 24 
through (30).  

Step 2: Determine the constants K1, K2, K3 and K4. 
This can be done using (3) and (10). Then, 
determine the parameters a, b and c, as 
described in (14). 

Step 3: Verify if the problem data correspond to a 
stable condition using Eq. 15. In this case, 
during the determination of Δ, one of the 
following situations can occur:  

 
• Δ>0: Eq. (12) possesses two real roots and, 

consequently, one stable solution. Thus, the critical 
time can be determined 

• Δ = 0: Eq. (12) possesses one real root, e.g., an 
unstable solution and the critical time is null  

• Δ < 0: Eq. (12) does not possess a real root. There 
is no possible equilibrium between the electrical 
and the mechanical torques and so the concept of 
critical time cannot be applied 

 
Step 4: If there is a stable solution, e.g., Δ ≤ 0, 

determine the slips s1 and s2 and the speeds ωo 
and ωcrit, using (13), (16) and (17). Then, 
determine the critical time, using (23). 

 
RESULTS 

 
Test system: In order to validate the proposed method, 
the developed formulation is compared with 
computational simulations, using the 
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SymPowerSystems package for MATLAB/SIMULINK 
(TransEnergie Technologies Inc., 2004). Figure 11 
illustrates the one-line diagram of the adopted test 
system. This system consists of a 132 kV, 60 Hz 
subtransmission system that feeds a 33-kV distribution 
network through a 132/33-KV Δ-Y transformer. The 
generator is a 10 MVA, 2400 V induction machine 
connected to the network through a 33/2,4-KV Y-Δ 
transformer. The distribution line has a length of 10 miles.  
 The equivalent circuit parameters and power 
injections associated to Fig. 8 are shown in Table 1. 
The parameters adopted to represent the generator, 
using its classical one-phase model, previously shown 
in Fig. 2, are described in Table 2. All of these 
parameters are referred to the induction machine base 
values (2400 V and 10 MVA). 
 As can be seen in Table 1, the loads associated to 
buses 2 and 3 were nullified. This hypothesis was 
adopted in order to guarantee the worse stability 
condition. If the system has no loads, there is no 
possibility of power drain to attend them during and 
after the fault, i.e., none contribution for electrical 
output power at the machine terminals is made by the 
loads. Any transient electrical torque at the rotor is, 
then, minimized during the fault.  
 
Critical speed determination: The objective of the 
first test was to verify the behavior of the IG rotor 
speed determined by the developed equations and the  

simulations. The simulations yielded a set of curves, as 
shown in Fig. 12. The first curve was obtained for a 
fault elimination time te equals to 410 ms. In the 
subsequent curves, the fault time was progressively 
incremented by 5 ms. As expected, the generator 
behavior changes from stable to unstable as the fault 
time increases. The edge of stability occurs for a fault 
elimination time te between 435 and 440 ms. 
 The analytical critical speed in this case, 
obtained through Eq. 23, is equal to 1,154 p.u. This 
value can be compared with the simulations, as 
shown in Fig. 13, by “zooming” the fault elimination 
region of Fig. 12. The dashed line in Fig. 13 
represents the analytical critical speed.  
 In Fig. 13, the paths followed by the unstable 
curves are all located above the analytical speed line, 
while the ones followed by the stable curves are located 
below it. This means that none simulated curve 
disagrees with the analytical result. 
 

 
 
Fig. 11: One-line diagram of the test system 

 

  
 

Fig. 12: Shaft speed behavior for different fault times 
 

 
 

Fig. 13: Comparison between analytical critical speed and simulations 



J. Computer Sci., 7 (6): 823-831, 2011 
 

830 

Table 1: Equivalent line parameters and bus power injections 
Parameter Value (p.u) Parameter Value (p.u) 
RL  0.1 XL 0.10 

P2  0.0 Q2 0.00 
P3  0.0 Q3 0.00 
VIB  1.0 QC 0.20 

  
Table 2: Equivalent parameters of the induction generator 
Parameter Value (p.u) 
Xs 0.100 

Rs 0.010 

Xr 0.098 
Rr 0.014 
Xm 3.500 
H 1.500 
Tm -1.000 

 
Table 3: Results for ig parameters variation 
 Analytical Simulated   
Parameter (p.u.) value (ms) value (ms) Error (%) 
Rr = 0.0105 317 332 4.5 
Rr = 0.0140 423 437 3.2 
Rr = 0.0210 634 659 3.8 
Xr = 0.0490 616 646 4.6 
Xr = 0.1470 296 301 1.7 
Xr = 0.2940 93 103 9.7 
Rs = 0.0050 424 444 4.5 
Rs = 0.0150 422 437 3.4 
Rs = 0.0200 420 440 4.5 
Xs = 0.0500 613 643 4.2 
Xs = 0.1500 296 301 1.7 
Xs = 0.3000 77 82 6.1 
Xm = 1.7500 393 403 2.5 
Xm = 5.2500 433 453 4.4 
Xm = 7.0000 438 458 4.4 

 
Table 4: Results for capacitor bank variation 
Capacitor bank Analytical Simulated  
(MVAr) value (ms) value (ms) Error (%) 
0.0  404 418 3.3 
0.7  411 425 3.3 
1.3  417 431 3.2 
2.0  423 438 3.4 
4.0  442 462 4.3 

  
Variation of generator parameters: The objective of 
this test was to compare analytical and simulated 
critical times, for different values of generator 
parameters, previously described in Table 2. These 
results, shown in Table 2, were obtained changing only 
one specified parameter at a time, while the others 
remain constant. In each case, the analytical critical 
time was obtained by applying the proposed method, 
while sequential dynamic simulations yielded the 
simulated critical time.  
 The results obtained by the analytical approach are 
all conservative and a good match (all errors are less 
than 10%) can be observed between them and the 
results obtained by simulation. 

Impacts of capacitor bank variation: As in the 
previous case, the objective of this test was to make a 
comparison between the analytical and the simulated 
critical times, but now for different values of the 
capacitor bank. For this test, QC was considered 
ranging from 0 through 4 MVAr. Table 4  illustrates the 
comparison between the analytical and the simulated 
critical times in this case. 
 These data indicate that the capacitor bank has a 
positive influence on the critical time, for greater values 
of QC results on greater critical times. This can be 
observed both in the analytical and the simulated results. 
 

DISCUSSION 
 
 Table 3 presents the percentual mean absolute error 
calculated between the analytical results and the 
simulated ones. 
 The low mean errors (less than 5%) obtained in all 
cases attest the reliability of the analytical calculations. 
It must be emphasized that all these error margins are 
conservative, i.e., the analytical critical times are 
always smaller than the simulated ones. This fact 
naturally suggests that the analytical approach can be 
successfully used to determine an initial solution for the 
dynamic simulations. 

 
CONCLUSION 

 
 This work proposed a simple analytical method for 
assessing the speed stability of induction generators 
connected to distribution systems. This method is based 
on equations related to the electrical-mechanical 
equilibrium found at normal operation conditions, that 
is violated when the generator is under a fault situation. 
The simplicity of the steps that compose the assessment 
method permits its implementation in computational 
devices with less complexity, as microcontrollers. 
 Also, the proposed analytical approach promotes 
the physical understanding of the IG speed stability 
phenomenon, showing that the calculation of the critical 
time is a simple and useful method to assess the speed 
stability of induction generators. Furthermore, the 
comparison between the analytical and simulation 
results shows that the developed methodology can 
adequately determine the critical speed and critical time 
of the IG and, consequently, reliable assess its speed 
stability when subjected to disturbances. Finally, the 
validation results demonstrate that the proposed method 
is sufficiently accurate and can be used as a start point 
to reduce the number of simulations required when the 
speed stability of IGs installed in distribution networks 
must be determined. 
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