
Journal of Computer Science 8 (5): 681-693, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Thamilselvan, R., Department of Computer Science and Engineering,
 Kongu Engineering College, Perundurai, Erode 638 052, Tamilnadu, India

681

Integration of Genetic Algorithm with Tabu Search for

Job Shop Scheduling with Unordered Subsequence Exchange Crossover

Thamilselvan, R. and P. Balasubramanie
Department of Computer Science and Engineering,

Kongu Engineering College, Perundurai, Erode 638 052, Tamilnadu, India

Abstract: Problem statement: The problem of scheduling n jobs on m machines with each job having
specific machine route has been researched over the decade. The Job Shop Scheduling (JSS) is one of
the hardest combinatorial optimization problems. Each resource can process at most one job at a time.
Approach: This study proposes a new approach to solve a Job Shop Scheduling problem with the help
of integrating Genetic Algorithm (GA) and Tabu Search (TS). After an initial schedule is obtained the
GA, the result is given as an input to TS to improve the status of the initial schedule. The objective of
this study is to minimize the makespan, process time and the number of iterations. This approach
achieves a better result with the help of efficient chromosome representation, powerful crossover
strategies and neighborhood strategies. Results: This research resolves the allocation of operation to
different machine and the sequence of operation based on machine sequence. Job Scheduling is the
process of completing jobs over a time with allocation of shared resources. It is mainly used in
manufacturing environment, in which the jobs are allocated to various machines. Jobs are the activities
and a machine represents the resources. It is also used in transportation, services and grid scheduling.
Conclusion/Recommendations: The result and performance of the proposed work is compared with
the other conventional algorithm and it is also testing using standard benchmark problems.

Key words: Job Shop Scheduling (JSS), Genetic Algorithm (GA), Tabu Search (TS), Simulated

Annealing (SA), Tabu List (TL), Aspiration Criteria (AC)

INTRODUCTION

 Meta-heuristics is used to solve with the
computationally hard optimization problems. Meta-
heuristics consist of a high level algorithm that guides
the search using other particular methods. Meta-
heuristics are used as a standalone approach for solving
hard combinatorial optimization problems. But now the
standalone approach is drastically changed and
attention of researchers has shifted to consider another
type of high level algorithms, namely hybrid
algorithms. There are at least two issues has to be
considered while combining the more than one meta-
heuristics: (a) how to choose the meta-heuristic
methods to combine and (b) how to combine the chosen
heuristic methods into new hybrid approaches.
Unfortunately, there are no theoretical foundations for
these issues. For the former, different classes of search
algorithms can be considered for the purposes of
hybridization, such as exact methods, simple heuristic
methods and meta-heuristics. Moreover, meta-heuristics
themselves are classified into local search based
methods, population based methods and other classes of

nature inspired meta-heuristics. Therefore, in principle,
one could combine any methods from the same class or
methods from different classes. Our hybrid approach
combines Genetic Algorithms (GAs) and Tabu Search
(TS) methods. Roughly, our hybrid algorithm runs the
GA as the main algorithm and calls TS procedure to
improve individuals of the population. The rest of the
study is organized as follows.We briefly present the
problem description and formulation. Followed by we
have discussed about the literature review. In fourth
part, GA and TS methodologies are given for job shop
scheduling. Finally implementation of the HGATS to
the JSSP is given with the algorithm using the proposed
method and the experimental results and a discussion of
the proposed method are given and a conclusion and
future enhancement is also given.

Problem description and formulation: The nxm Job
Shop Scheduling problem labeled by the symbol n, m,
J, O, G and Cmax. It can be described by the finite set of
n jobs J = {j0, j1, j2, j3,…..jn, jn+1} (the operation 0 and
n+1 has duration and represents the initial an final
operations), each job consist of a chain of operations O

J. Computer Sci., 8 (5): 681-693, 2012

682

= {o1,o2,o3,….om}, Each operation has processing time
{ʎi1, ʎi2, ʎi3,…. ʎim}, finite set of m machines M = {m1,
m2, m3….mm}, G is the matrix that represents the
processing order of job in different machines and Cmax
is the makespan that represents the completion time of
the last operation in job shop. On O define A, a binary
relation representing precedence between operations. If
then u has to be performed before v. A schedule is a
function that for each operation u defines a start time S
(u). A schedule S is feasible if it satisfy the condition in
Eq. 1-4:

u 0 :S(u) 0∀ ∈ ≥ (1)

u,v 0,(u,v) A :S(u) (u) S(v)∀ ∈ ∈ + λ ≤ (2)

u,v 0,u v,M(u) M(v) :

(u) S(v)orS(v) (v) S(u)

∀ ∈ ≠ = +
λ ≤ + λ ≤

 (3)

v 0Thelength of ascheduleSis len(S) max (S(u) (u))∈= + λ (4)

 The goal is to find an optimal schedule, a feasible
schedule of minimum length, min (len (S)).
 An instance of the JSS problem can be represented
by means of a disjunctive graph G = (O, A, E).The
vertices in O represent the operations, the conjunctive
arcs in A represent the given precedence between the
operations and the edge in E = {(u, v)| u, v∈ 0,u ≠ v, M
(u) = M(v)}represent the machine capacity constraints.
Each vertex u has a weight, equal to the processing time
ʎ (u). Let us consider the bench mark problem of the
JSSP with four jobs, each has three different operations
and there are three different machines. Operation
sequence, machine assignment and processing time are
given in Table 1.
 Based on the above bench mark problem, we create
a matrix G, in which rows represent the processing
order of operation and the column represents the
processing order of jobs. Also we create a matrix P, in
which row i represents the processing time of Ji for
different operations:

31 2

3 2 1

32 1

31 2

MM M 32 4
M M M 4 4 1G P

MM M 32 2
MM M 3 3 1

   
   
   = =
   
   
    

 The processing time of operation i on machine j am
represented by Oij. Let ʎij be the processing time of Oij
in the relation. Cij represents the completion of the
operation Oij. So that the value Cij = Cik + ʎij represents
the completion time of Oij. The main objective is to
minimize of Cmax. It can be calculated as Eq. 5:

max all ij ijC max 0 0(C)= ∈ (5)

 The distinctive graph of the above bench mark job
scheduling problem is shown in Fig. 1, in which
vertices are represents, the operation. Precedence
among the operation of the same job is represented by
Conjunctive arc, which are doted directed lines.
Precedence among the operation of different job is
represented by Disjunctive arc, which undirected solid
lines. Two additional vertices S and E represented the
start and end of the schedule.
 The gantt chart of the above bench mark job
scheduling problem is shown in Fig. 2. Gantt chart is
the simple graphical representation technique for job
scheduling. It simply represents a graphical chart for
display schedule; evaluate makespan, idle time, waiting
time and machine utilization.

Literature review: Number of researchers has adopted
GA and TS technique for solving the job shop
scheduling problem. They include algorithms such as
Simulated Annealing (SA), Genetic Algorithms (GA)
(Yamada and Nakano, 1996; Gholami and Zandieh,
2009), Tabu Search (TS) (Glover, 1989; Amico and
Trubian, 1993; Nowicki and Smutnicki, 1996;
Thomsen, 1997; Pezzella and Merelli, 2000), ant
optimisation and Genetic Local Search (GLS) (Yamada
and Nakano, 1996; Zhou et al., 2009), Scatter Search
and Path Relinking (SS PR). The majority of GA and
GLS approaches appear to give poor results due to the
difficulties they have with crossover operators Tabu
search was first presented by (Glover, 1986) and
improved in the following years. The effectiveness of
the technique in the job shop problem was examined by
Taillard (1994); Laarhoven et al. (1992); Barnes and
Chambers (1995); Amico and Trubian (1993) and
finally Nowicki and Smutnicki (1996). All algorithms
demonstrated outstanding results comparing to
simulated annealing and shifting bottleneck. Calderia et
al. (2004) presented Tabu-Hybrid using one of the
representation for the JSSP called Permutation With
Repetition (PWR) in which the order of operations
within the permutation is interpreted as a sequence for
building a schedule solution. Yu and Liang (2001)
integrate GA with neural network for JSSP. Weckman
et al. (2008) given solution for JSSP using neural
network. Eswaramurthy and Tamilarasi (2009)
presented Hybridization of Ant Colony Optimization
Strategies in Tabu Search for Solving Job Shop
Scheduling Problem.

J. Computer Sci., 8 (5): 681-693, 2012

683

Table 1: Processing Time and Sequence for 4×3 problem Instance
 Operation number and Machine Processing
Job processing sequence assigned Time
Start operation 0 -- 0
(dummy)
J1 O11 M1 2
 O12 M2 3
 O13 M3 4
J2 O21 M3 4
 O22 M2 4
 O23 M1 1
J3 O31 M2 2
 O32 M3 2
 O33 M1 3
J4 O41 M1 3
 O42 M3 3
 O43 M2 1
End operation (dummy) 0 -- 0

Fig. 1: Illustration of disjunctive graph

Fig. 2: A Schedule of Gantt Chart for 4X3 problem

Instance

 Gonzalez et al. (2009) presented a hybrid GA and
TS system as in the case of Meeran and Morshed
(2011), however (Gonzalez et al., 2009)”s proposed
method is for the job shop scheduling problem with set-
up times. Although they have obtained some very good
results, their proposed system is for different set of
bench mark problems and also they have reported
results of a limited number of established benchmark
problems, namely 6instances of LA and three instances
of ABZ. Most other systems (Chiu et al., 2007; Zhang
and Wu, 2008) shown a good progress in solving a
specific set of benchmark problems albeit in some cases
the benchmark problems used are not from the hard
instances of established benchmark problems such as
LA, ABZ, ORB and FT. Furthermore, it could not be

established from the publications that most of these
systems work well with real life practical problems in
addition to solving standard JSSP benchmark problems.
The system being presented here is tested on a
substantial number of bench mark problems including
hard instances from FT, LA, ABZ and ORB, attaining
optimum solutions for 48 out of 51 of them. Details of
the results attained are available. As mentioned earlier,
here we are presenting in this study another aspect of
the system with regard to its application to real life
practical cases from real life manufacturing companies.

MATERIALS AND METHODS

Genetic algorithm: Genetic algorithms are
probabilistic Meta heuristic technique, which may be
used to solve optimization problems. They are based on
the genetic process of chromosome. Over many
generations, natural populations evolve according to the
principles of natural selection, i.e., survival of the
fittest, first clearly stated by Charles Darwin in The
Origin of Species. It starts with the initial solution
called Population and it is filled with chromosome.
Each element in chromosome is called gene. Job is
represented by each gene in chromosome and the job
sequence in a schedule based on the position of the gene.
GA uses Crossover and Mutation operation to generate a
new population. By crossover operation, GA generates the
neighborhood to explore new feasible solution.
 A typical genetic algorithm is illustrated in Fig. 3.
It first creates an initial population consisting of
randomly generated solutions. After applying genetic
operators, namely selection, crossover and mutation,
one after the other, new offspring are generated. Then
the evaluation of the fitness of each individual in the
population is conducted. The fittest individuals are
selected to be carried over next generation. The
above steps are repeated until the termination
condition is satisfied. A GA is terminated after a
certain number of iterations or if a certain level of
fitness value has been reached.
 The construction of a genetic algorithm for the
scheduling problem can be divided into four parts: The
choice of representation of individual in the population;
the determination of the fitness function; the design of
genetic operators; the determination of probabilities
controlling the genetic operators.
 Algorithm: GA_Procedure:

Step 1: /*Initialization*/
 Initialize 0 to MAX
 Get the value for NUM

J. Computer Sci., 8 (5): 681-693, 2012

684

Fig. 3: A standard genetic algorithm

Fig. 4: A standard Tabu Search algorithm

Step 2: /*Generate initial population*/
 Generate initial population using
Current_Population ()
Step 3: /*Evaluate the chromosomes*/
 Evaluate the fitness value of current
chromosomes using Evaluate_Current ()
Step 4: Repeat
 For i=0 to NUM do
 For j=0 to 4 do
 pop_next[j]=pop_current[j]
 End for
 Sorting the given set of pop_current
chromosomes.
Step 5: /*Reproduction strategies*/
Apply any one Crossover strategies to get child
chromosomes.
Step 6: /*Mutation strategies*/
 Apply Mutation () to mutate with low
probability
Step 7: /*Copy the chromosomes of pop_next to
pop_current*/
 For j=0 to 4 do
 pop_current[j] = pop_next[j]
 End for
 Increment MAX by 1
Step 8: /*Termination criteria*/

 If MAX<NUM then
 Go to Step 4
 Else
 Go to Step 8
Step 9: /*Output the solution*/
Stop.

Tabu search: A typical tabu search algorithm is
illustrated in Fig. 4. Tabu Search (TS) is a meta-
heuristic approach used to solve combinatorial
optimization problems. TS algorithm starting from
initial solution and iteratively generate a new solution
through its neighborhood. In TS acceptance of moving
to new solution in neighborhood is deterministic. It is
one of the most efficient local search algorithms for job
scheduling problems. It consists of the tabu list,
aspiration criteria, neighborhood structures, the move
attributes and stopping rules. Tabu list the list of
records that move.
 Tabu List (TL) is controlled by the trial solutions in
the order in which they are made. Each time a new
element is added to the 'bottom' of a list, the oldest
element on the list is dropped from the 'top'.
Empirically, TL sizes which provide good results often
grow with the size of the problem and stronger
restrictions are generally coupled with smaller size.

J. Computer Sci., 8 (5): 681-693, 2012

685

Best sizes of TL lie in an intermediate range between
these extremes. The length of the tabu list is initially
assigned according to the size of the problem and it
will be decreased and increased during the
construction of the solution so as to achieve better
exploration of the search space.

Aspiration Criteria (AC): Is another important
element of TS arises when the move under
consideration has been found to the associated with
each entry in the TL. The simplest and most commonly
used aspiration criterion consists of allowing a move,
even if it is in tabu and results in a solution with an
objective value better than that of the current best-
known solution. Many more complicated criteria have
been implemented by different researchers and
successfully implemented.

Stopping Criteria (SC): The most commonly used
stopping criterion in TS are either (i) a fixed number of
iterations or ii) after some number of iterations without
an improvement in the objective function value or (iii)
when the objective function reaches a pre-specified
threshold value.

Proposed algorithm: The objective of the proposed
system is to minimize the make span (Cmax) criterion,
processing time and the number of iteration while
satisfying all constraints. Genetic algorithm is capable
of doing a parallel search to discover the global search
space. Through the parallel search mechanism GA
retains useful information about what has been learned
from previous generations. GA searches the solution
from a population of points instead of a single point.
The algorithm is computationally simple and powerful.
Tabu Search (TS) works on the individual string, which
are points on the solution space. TS guides (Glover,
1989; Barnes and Chambers, 1995) the iterations from
one neighborhood point to another by locally improving
the solution”s quality and has the ability to avoid poor
local minima. Integration of GA and TS using their own
strengths has a good chance of providing a reasonable
solution to global combinatorial optimization problems
such as JSSP. During the hybrid search process, GA starts
with a set of initial solution and generates a set of new
solutions. On each set of new solution, TS performs a local
search to improve them. Then GA uses the improved
solution of TS to continue with parallel evolution.

Hybrid Genetic Algorithm and Tabu Search
(HGATS) methodology:

Proposed Hybrid Algorithm Approach:
 Algorithm: HGATS_Procedure
Step 1: /*Initialization*/
 Initialize 0 to MAX

 Get the value for NUM
Step 2: /*Generate initial population*/
 Generate initial population using
Current_Population()
Step 3: /*Evaluate the chromosomes*/
 Evaluate the fitness value of current
chromosomes using Evaluate_Current()
Step 4: Repeat
 For i=0 to NUM do
 For j=0 to 4 do
 pop_next [j] = pop_current [j]
 End for
 Sorting the given set of pop_current
chromosomes.
Step 5: /*use tabu search to generate new members*/
 Using tabu search algorithm, generate
new members in the new poplation
Step 6: /*Reproduction strategies*/
 Apply USXX Crossover strategies to get
child chromosomes.
Step 7: /*Mutation strategies*/
 Apply Mutation() to mutate with low
probability
Step 8: /*improve status*/
 Improve the status of new population by
DynamicTabu() algorithm
Step 9: /*Copy the chromosomes of pop_next to
pop_current*/
 For j=0 to 4 do
 pop_current[j] = pop_next[j]
 End for
 Increment MAX by 1
Step 10: /*Termination criteria*/
 If MAX<NUM then
 Go to Step 4
 Else
 Go to Step 8
Step 11: /*Output the solution*/
 Stop

Procedure Current_Population is used to generate the
new population and the new population is stored in
pop_current variable.

Procedure: Current_population ()

 Inputs: RANDOM – is a random number
generated by random () function
 Output: Fitness value for pop_current
 Begin
 Assign VALUE and RANDOM
 /*Calculate fitness function*/
 For i=0 to 4 do
 For j=0 to 6 do
 Create random value for RANDOM
 RANDOM=RANDOM%2

J. Computer Sci., 8 (5): 681-693, 2012

686

 pop_current[i].bit[j] = RANDOM
 End for
 VALUE=Evaluate_Current (pop_current [i])
 /*get the value of chromosome as integer*/
 pop_current [i].fit=Calculate_Fitness(VALUE)
 /*calculate the fitness value*/
 End for
 Stop

Procedure Evaluate_current ():
 Input: pop_current[i] – for i=0 to 4
 Output: value of chromosomes as integer
 Begin
 z=pop_current.bit[0]*1 +
pop_current.bit[1]*2 + pop_current.bit[2]*4 +
pop_current.bit[3]*8 + pop_current.bit[4]*16
If pop_current.bit[5]==1 Then
 z=z*(-1)
 End if
 End

Procedure Calcuate_Fitness ():
 Inputs: VALUE ie value of chromosome as
integer
 Output: objective function of chromosome
 Begin
 y= -(VALUE*VALUE)+5
 End

 The crossover operator involves the swapping of
genetic material (bit-values) between the two parent
strings. Two parents produce two offspring. There is a
chance that the chromosomes of the two parents are copied
unmodified as offspring. There is a chance that the
chromosomes of the two parents are randomly recombined
(crossover) to form offspring. Generally the chance of
crossover is between 0.6 and 1.0 (Man et al., 1999).

Representation: GA requires an appropriate
chromosome (ie., a collection of operations) to find a
solution (Cheng et al., 1996). All the chromosomes
must be generated during the evolutionary process for
feasible solution. In a traditional JSSP consist of J jobs
and M machines starting that JxM operation. The
chromosome [g1, g2, g3, g4, gJxM] can represent a
schedule of JxM operations. The chromosome could be
generated based on sequence of operations.
 Once the basic schedule is generated, we need GA”s
crossover and mutation to generate a further schedule.
The fundamental crossover of GA operates on two
parent chromosome and generates two child
chromosomes. This operation needs to present the job
sequence characteristics.

 The representation of chromosome for JSSP is
based on Cheng et al. (1996). The chromosome is an
ordered sequence of job/operations where each gene
represents a one operation. Order of the operations
represented in chromosome is the order of schedule. Let
us consider an example of 4X3 job shop problem. Each
job shop problem has constraints for scheduling the
operation to the machine with processing time is shown
in Table 1. For example J1 is processed in the order
M1, M2 and M3 and J2 is processed in the order M3,
M2 and M1 respectively and so on. The objective of the
algorithm is to complete all the operations of a
particulate job with minimum possible time. Also the
processing of operations on machines taking into
account of the precedence and processing time of
operations.
 The main idea is how to represent the jobs in terms
of sequence. In the relationship between the job
scheduling and the chromosomes to represent the
schedule. So that we can use the GA to find better job
scheduling. For the above 4×3 job shop scheduling the
chromosome such as [3 4 1 2 1 4 3 4 1 2 3 2] may be
formed and then change the order for the better
schedule. In the given chromosome the genes „1”
stands for J1, „2” stands for J2 and so on. The order of
the operation corresponds to the relative position of the
gene. For example the first gene “3” stands for first
operation of J3, seventh gene “3” stands for the second
operation of J3, second gene “4” stands for first
operation of J4 and so on. The above scheduling
chromosome is also represented as [O31, O41, O11, O21,
O12, O42, O32, O43, O13, O22, O33, O23]. Oij stands for the
jth operation of the job Ji. For example O31 stands for
the first operation of J3.

Reproduction strategies: The crossover operator
involves the swapping of genetic material (bit-values)
between the two parent strings. Two parents produce
two offspring. There is a chance that the chromosomes
of the two parents are copied unmodified as offspring.
There is a chance that the chromosomes of the two
parents are randomly recombined (crossover) to form
offspring. Generally the chance of crossover is between
0.6 and 1.0 (Zhang and Wu, 2008). The following
sections propose the new crossover algorithms for job
shop scheduling.
 The second genetic operator, mutation, can help
GA to get a better solution in a faster time. In this
model, relocation is used as a key mechanism for
mutation. Operations of a particular job that is chosen
randomly are shifted to the left or to the right of the
string. Hence the mutation can introduce diversity
without disturbing the sequence of a job”s operations.

J. Computer Sci., 8 (5): 681-693, 2012

687

Fig. 5: Unordered Subsequence Exchange Crossover

(USXX)

When applying mutation one has to be aware that if the
diversity of the population is not sufficiently
maintained, early convergence could occur and the
crossover cannot work well.

Unordered Subsequence Exchange Crossover
(USXX): We introduce one more cross over strategy
named as Unordered Subsequence Exchange Crossover
(USXX) that children inherit subsequences on each
machine as far as possible from parents. Unordered
Subsequence exchange crossover creates new children”s
even the subsequence of parent1 is not in the same order in
parent2. The algorithm for USXX is as follows.

Step 1: Generate two random parent individual namely

P1 and P2 with a sequence of all operations
Step 2: Generate two child individual namely C1 and

C2
Step 3: Select random subset of operations (genes) from

P1 and copy it into C1
Step 4: Starting from the first crossover point from P1,

look for elements in P2 that have been copied as
in the same order

Step 5: The remaining operations of P2 that are not in
the subset can be filled in C1 so as to maintain
their relative ordering

Step 6: If C1 is created then goto Step 3 to generate C2
analogously

 For example in Fig. 5 parent chromosome of M1
is [3, 4, 1, 2, 1, 4, 3, 4, 1, 2, 3, 2]. The selected
sequence is [1, 2, 1]. It is the first operation of J1,
first operation of J2 and the second operation of J1
respectively. Select the same operation from P2 even
it is in different order.
 In a given sample first operation of J1 is in first
gene, first operation of J2 is in fourth gene and the

second operation of J1 is in eighth gene respectively.
Copy the remaining operation of P2 in to C2 so as to
maintain their relative ordering.
The tabu length is changed during the solution
construction phase to increase the exploration of the
search space and this strategy called “dynamic tabu
length strategy” is applied in the proposed algorithm.
The proposed algorithm to find the tabu length
dynamically according to the iteration number is given
below. Where the inputs are the current iteration
number N, m, n, δ, α, β, p and q and the output is Tabu
Length (TL).

Algorithm for DynamicTabu ():
 Start
 If N < δ Then
 TL = m + n, Return TL
 Else
 While q < n)
 If N >= (p*δ) and N < (p*δ + q*α) Then
 TL = (m + n) + (q*β), Return TL
 Else
 q = q + 1
 EndIf
 EndWhile
 EndIf
 End

 The range, α and β are calculated as given in the
Eq. 6-8 respectively. The integer parts of these
variables are used for processing. p and q are the
control variables used to find the position of the current
iteration within the range interval:

TOTN / (2* m)δ = (6)

/ (m n)α = δ + (7)

(2 * m) / (m n)β = α + + (8)

 The number of jobs n and the number of machines
m are also given as inputs. The value of the Tabu
Length (TL) is m + n for the first range of iterations.
For the even and odd range intervals, TL value is
increased and decreased respectively by the value of β
with subsequent interval value of α. This strategy
improves the performance of the tabu search during the
construction of the solution. TOTN represents the total
number of iterations. TOTT represents the maximum
number of times for which the improvement is not made
during the construction of the solution. The length of the
tabu list is dynamically changed by using the procedure

J. Computer Sci., 8 (5): 681-693, 2012

688

DynamicTabu () according to the current iteration
number. If the selected neighbor si (0<i< k) is not in the
tabu or the aspiration criterion is met, the neighbor si is
added to the tabu. The aspiration criterion is used to
check the condition f(S) < f (S∗). f (S) is the makespan of
the neighborhood solution S produced by the application
of the neighbor si which is already in the tabu and f (S∗)
is the current best known solution. If the neighbor cannot
be added to the tabu, the tabu list is cleared and the tabu
restrictions are removed. This process is repeated until a
termination criterion is met. The termination criterion is
either reaching the maximum iterations or no
improvements of the constructed solution for the TOTT
number of iterations.

RESULTS AND DISCUSSION

 To measure the effectiveness of the proposed
algorithm, we consider the standard JSP test instances
of Fischer and Thomson (1963) instances FT06, FT10,
FT20, instances from LA01 to LA40, instances
SWV01-SWV20 and Yamada and Nakano (1996)
instances YN1-YN4. The proposed algorithm is
compared with Tabu Search (Nowicki and Smutnicki,
1996), Genetic Algorithm (Gonçalves and Beirao). The
proposed algorithm is implemented using C++
programming language on windows platform with Intel
Pentium E5800, 3.2 GHz and 2GB RAM. The
performance of the proposed algorithm ids based on the
Relative Percentage Deviation (RPD) which is
computed as.
 Where Algosol is the solution obtained by different
existing and proposed algorithms and Optsol is the
optimal or best known solution.
 Here the computational results are given for well-
known bench mark problems with Tabu search, Genetic
Algorithm and HGATS.

Fig. 6: Average Makespan values by Different

Crossover Strategies for FT06, FT10 and FT20

Table 2 shows comparison of makespan value produced
from different algorithms for problem instances FT06,
FT10 and FT20 (Fisher and Thompson, 1963) Column 1
specifies the problem instances, Column 2 specifies the
number of jobs, Column 3 shows the number of machines,
Column 4 specify the optimal value for each problem.
Column 5-7 specify results from TS, HGATS and GA
respectively. It shows that HGATS with USXX
strategy has succeeded in getting the optimal
solutions for all the problems.
 Figure 6 shows average makespan value generated
by TS, HGATS and GA for different problem instances.
It also shows that TS produce the worst result compare
to other two algorithms and the HGATS algorithm is
better than the other two algorithms. Figure 7 shows the
comparison of Average Relative Error for all the three
methods. It clearly shows that the Average Relative
Error for HGATS is zero.
 Table 3 shows comparison of makespan value
produced from different algorithms for problem
instances LA01-LA20 Column 1 specifies the problem
instances, Column 2 specifies the number of jobs,
Column 3 shows the number of machines, Column 4
specify the optimal value for each problem. Column 5,
6 and 7 specify results from TS, HGATS and GA
respectively. It shows that HGATS with USXX strategy
has succeeded in getting the optimal solutions for all
the problems.

Fig. 7: Average relative error values by different
crossover strategies for FT06, FT10 and FT20

Table 2: Results for instances
 Problem size
 ---------------------- Makespan time Relative error (%)
Problem Jobs Machines ---------------------------------- -----------------------------
name (n) (m) Optimal TS HGATS GA TS HGATS GA
FT06 6 6 55 55 55 55 0.00 0.00 0.00
FT10 10 10 930 932 930 930 0.22 0.00 0.00
FT20 20 5 1165 1175 1165 1170 0.86 0.00 0.43
Average 717 721 717 718 0.36 0.00 0.14

J. Computer Sci., 8 (5): 681-693, 2012

689

Fig. 8: Average Makespan values by different

crossover strategies for LA01-LA20

Fig. 9: Average Relative Error values by Different

Crossover Strategies LA01-LA20

 Figure 8 shows average makespan value generated
by TS, HGATS and GA for different problem instances.
It also shows that TS produce the worst result compare to
other two algorithms and the HGATS algorithm is better
than the other two algorithms. Figure 9 shows the
comparison of Average Relative Error for all the three
methods. It clearly shows that the Average Relative Error
for HGATS is 0.05.
 Typical runs of problem instances LA04, LA12 &
LA16 are illustrated in Fig. 10-12 respectively by the
GA, TS and proposed HGATS. In all cases HGATS
reach the optimal solution faster than other two
methods. For LA04, GA never produces the optimal
solution. But GA and HGATA both are produced the
optimal solution, whereas GA reached the optimal
solution at 5500th iteration and HGATS reached the
optimal solution at 4000th iteration. Similarly for LA12,
TS reached the optimal value at 1600th iteration; GA
reached the optimal value at 1500th iteration whereas
HGATS reached at 1000th iteration.

Fig. 10: The time evolutions of makespans for the

LA04 (10 jobs and 5 machines)

Fig. 11: The time evolutions of makespans for the

LA12 (20 jobs and 5 machines)

Table 3: Results for instances Lawrence, 1984
 Problem size
 ---------------------- Makespan time Relative error (%)
Problem Jobs Machines -------------------- -----------------------------
name (n) (m) Optimal TS HGATS GA TS HGATS GA
LA01 10 5 666.00 666.00 666.00 666.00 0.00 0.00 0.00
LA02 10 5 655.00 664.00 655.00 658.00 1.37 0.00 0.46
LA03 10 5 597.00 608.00 597.00 600.00 1.84 0.00 0.50
LA04 10 5 590.00 600.00 590.00 590.00 1.69 0.00 0.00
LA05 10 5 593.00 598.00 593.00 593.00 0.84 0.00 0.00
LA06 15 5 926.00 926.00 926.00 926.00 0.00 0.00 0.00
LA07 15 5 890.00 895.00 890.00 890.00 0.56 0.00 0.00
LA08 15 5 863.00 892.00 863.00 880.00 3.36 0.00 1.97
LA09 15 5 951.00 951.00 951.00 951.00 0.00 0.00 0.00
LA10 15 5 958.00 958.00 958.00 958.00 0.00 0.00 0.00
LA11 20 5 1222.00 1222.00 1222.00 1222.00 0.00 0.00 0.00
LA12 20 5 1039.00 1039.00 103.00 1039.00 0.00 0.00 0.00
LA13 20 5 1150.00 1257.00 1150.00 1163.00 9.30 0.00 1.13
LA14 20 5 1292.00 1298.00 1292.00 1292.00 0.46 0.00 0.00
LA15 20 5 1207.00 1230.00 1207.00 1210.00 1.91 0.00 0.25
LA16 10 10 945.00 950.00 945.00 952.00 0.53 0.00 0.74
LA17 10 10 784.00 792.00 784.00 785.00 1.02 0.00 0.13
LA18 10 10 848.00 860.00 852.00 858.00 1.42 0.47 1.18
LA19 10 10 842.00 862.00 842.00 842.00 2.38 0.00 0.00
LA20 10 10 907.00 907.00 907.00 907.00 0.00 0.00 0.00
 Average 896.25 908.75 896.45 899.10 1.33 0.02 0.32

Table 4: Results for instances

 Problem size
 ----------------------- Makespan time Relative error (%)
Problem Jobs Machines ----------------- ------------------------
Name (n) (m) Optimal TS HGATS GA TS HGATS GA

ABZ5 10 10 1234.00 1260.0 1234.0 1257.0 2.11 0.00 1.86
ABZ6 10 10 943.00 960.0 943.0 943.0 1.80 0.00 0.00
ABZ7 20 15 656.00 700.0 656.0 662.0 6.71 0.00 0.91
ABZ8 20 15 665.00 670.0 665.0 665.0 0.75 0.00 0.00
ABZ9 20 15 679.00 725.0 679.0 683.0 6.77 0.00 0.59
Average 835.40 863.0 835.4 842.0 3.63 0.00 0.67

J. Computer Sci., 8 (5): 681-693, 2012

690

Fig. 12: The time evolutions of makespans for the

LA16 (10 jobs and 10 machines)

Fig. 13: Average Makespan values by different

crossover strategies for ABZ5-ABZ9

Table 5: Results for instances

 Problem size
 -------------------- Makespan time Relative error (%)
Problem Jobs Machines --------------------- --------------------------------
Name (n) (m) Optimal TS HGATS GA TS HGATS GA

ORB1 10 10 1059.00 1093.00 1059.00 1059.00 3.21 0.00 0.00
ORB2 10 10 888.00 903.00 888.00 888.00 1.69 0.00 0.00
ORB3 10 10 1005.00 1025.00 1005.00 1013.00 1.99 0.00 0.80
ORB4 10 10 1005.00 1012.00 1005.00 1005.00 0.70 0.00 0.00
ORB5 10 10 887.00 892.00 887.00 887.00 0.56 0.00 0.00
ORB6 10 10 1010.00 1037.00 1022.00 1025.00 2.67 1.19 1.49
ORB7 10 10 397.00 421.00 397.00 415.00 6.05 0.00 4.53
ORB8 10 10 899.00 95.00 899.00 899.00 6.23 0.00 0.00
ORB9 10 10 934.00 942.00 934.00 934.00 0.86 0.00 0.00
ORB10 10 10 944.00 952.00 944.00 962.00 0.85 0.00 1.91
 Average 902.80 923.20 904.00 908.70 2.48 0.12 0.87

Table 4-7 shows comparison of makespan value
produced from different algorithms for problem
instances Yamada and Nakano (1996) respectively.
In all Table Column 1 specifies the problem
instances, Column 2 specifies the number of jobs,
Column 3 shows the number of machines, Column 4
specify the optimal value for each problem. Column
5-7 specify results from TS, HGATS and GA
respectively. It values in the table shows that HGATS
with USXX strategy has succeeded in getting the
optimal solutions for all the problems.

Fig. 14: Average relative error values by different

crossover strategies for ABZ5-ABZ9

Fig. 15: Average Makespan values by different

crossover strategies for ORB01-ORB10

Fig. 16: Average relative error values by different

crossover strategies for ORB01-ORB10

Figure 13-19 shows average makespan value generated
by TS, HGATS and GA for different problem instances
of Yamada and Nakano (1996) respectively. It also
shows that TS produce the worst result compare to other
two algorithms and the HGATS algorithm is better than
the other two algorithms. Figure 14-22 shows the
comparison of Average Relative Error for all the three
methods. It clearly shows that the Average Relative Error
for HGATS is lower than the other algorithms.

J. Computer Sci., 8 (5): 681-693, 2012

691

Table 6: Results for instances by Storer et al. 1992
 Problem size Optimal Makespan T time Relative error (%)
 --------------------------------------- --------------------------- ------------------------------------- -----------------------------
Problem name Jobs (n) Machines (m) UB LB TS HGATS GA TS HGATS GA

SWV11 50 10 2991.0 2983 3504.0 3012.00 3200.0 17.15 0.70 6.99
SWV12 50 10 3003.0 2972 3442.0 3120.00 3250.0 14.62 3.90 8.23
SWV13 50 10 3104.0 3876.0 3250.00 3754.0 24.87 4.70 20.94
SWV14 50 10 2968.0 4006.0 3212.00 3487.0 34.97 8.22 17.49
SWV15 50 10 2904.0 2885 4357.0 3589.00 4235.0 50.03 23.59 45.83
SWV16 50 10 2924.0 3986.0 3326.00 3547.0 36.32 13.75 21.31
SWV17 50 10 2794.0 3459.0 3005.00 3269.0 23.80 7.55 17.00
SWV18 50 10 2852.0 3295.0 2950.00 31156.0 15.53 3.44 992.43
SWV19 50 10 2843.0 3293.0 2934.00 3169.0 15.83 3.20 11.47
SWV20 50 10 2823.0 3329.0 2978.00 3231.0 17.92 5.49 14.45
 Average 2244.2 1957.1 2661.8 2375.45 3935.7 15.78 5.21 60.14

Fig. 17: Average makespan values by different

crossover strategies for SWV11- SWV20

Fig. 18: Average relative error values by different

crossover strategies for SWV11-SWV20

Fig. 19: Average Makespan values by different

crossover strategies for YN01-YN04

Fig. 20: Average relative error values by different
crossover strategies for YN01-YN04

Fig. 21: Processing time for LT06, LA03 and LA09

Fig. 22: Processing time for LA17, SWV01 and SWV10

J. Computer Sci., 8 (5): 681-693, 2012

692

Table 7: Results for instances by Yamada and Nakano (1996)
 Problem Size Optimal Makespan time
 ----------------------------- -------------------- ---
Problem name Jobs (n) Machines (m) UB LB TS HGATS GA TS HGATS GA
YN01 20 20 888.0 826.0 895.0 888.00 890.0 7.77 0.00 7.21
YN02 20 20 909.0 861.0 925.0 909.00 910.0 7.04 0.00 5.39
YN03 20 20 893.0 827.0 1056.0 893.00 924.0 25.64 0.00 10.86
YN04 20 20 968.0 918.0 1112.0 987.00 1098.0 20.04 7.13 18.60
 Average 914.5 858.0 997.0 907.50 955.5 919.25 1.78 10.51

Table 8: Comparison of CPU Time and Number of Iterations to Reach Optimal makespan using TS, GA and HGATS
 Problem size
 -------------------------- TS GA HGATS
Problem Jobs Machines CPU ------------------------ CPU ------------------------ CPU ---------------------------------
Name (n) (m) Optimal Time Iterations Makespan time Iterations Makespan Time Iterations Makespan
FT06 6 6 55 2 27 55 1 12 55 1 8 55
FT10 10 10 930 3 78 932 2 56 930 2 12 930
LA01 10 5 666 32 576 666 25 552 666 10 426 666
LA03 10 5 597 4 5952 608 4 4856 600 5 3823 597
LA04 10 5 590 12 6784 600 12 5435 590 7 4023 590
LA06 15 5 926 62 756 926 60 608 926 19 528 926
LA07 15 5 890 83 873 895 75 756 890 22 784 890
LA09 15 5 951 86 349 951 64 256 960 33 145 951
LA10 15 5 958 84 489 958 65 178 958 31 78 958
LA12 20 5 1039 206 1568 1039 150 1347 1039 62 958 1039
LA14 20 5 1292 228 256 1298 124 156 1292 67 98 1292
LA16 10 10 945 1655 2879 950 1576 1736 952 850 1238 945
LA17 10 10 784 1250 1583 792 1233 1375 785 732 967 785
LA20 10 10 907 1088 12846 907 1154 10237 907 836 8493 907
ABZ5 10 10 1234 1453 13287 1260 1322 12889 1257 1002 9457 1235
ABZ6 10 10 943 1255 10832 960 1010 9349 943 950 7584 943
ABZ7 20 15 656 1678 12359 700 NG 9484 662 1107 7345 656
ABZ8 20 15 665 NG** NF* 670 1756 NF* 665 1298 5346 665
SWV01 20 10 1407 NG** NF* 1430 2269 12985 1430 1657 7584 1420
SWV03 20 10 1398 NG** NF* 1445 2567 8734 1420 1970 6483 1425
SWV07 20 15 1620 NG** NF* 1650 NG** NF* 1645 4378 8679 1625
SWV10 20 15 1767 NG** NF* 1871 NG** NF* 1855 5289 9363 1800

*: The solution could not be found; **: This information is not given

 Table 8 shows the comparisons of CPU time and
number of iteration to reach optimal makespan among
TS, GA and HGATS for the problem instances. Column
1 provides problem instances to be used for testing
whereas number of jobs and number of machines are
specified in column 2 and 3 respectively. In column 4,
optimal makespan value for each problem is given. Time
required to reach optimal value for TS, GA and HGATS
are specified in column 5-11 respectively and
corresponding number of iterations are given in column 6-
12 respectively. Among three methods specified in Table
3, HGATS performs well. For all problems, values of
makespan are reached in HGATS with lesser time
compare to TS and GA methods.

CONCLUSION

 Even though many integration techniques
developed for solving JSSP. Integration of TS with GA
produces a better result compare to other methods. The
system presented here is one such system. In this
system TS is directly used in solution string exploration
(of GA) making the input format common to both GA
and TS. The proposed model has been used on different
types of real-life practical problems. The system
described here is able to find the optimal solutions or at

least near optimal solutions for all well-known bench
mark problems. In almost all cases the proposed system
performed better. On all the job shop cases on which
this framework has been tested improved results have
been achieved. In future this algorithm may be applied
with the real time application to optimize the
scheduling in production. Moreover, when this system
was tested on 52 benchmark problems that exist in the
literature it found optimum solutions for 39 of these
problems and achieved an average ARE of 1.56%.

REFERENCES

Amico, D and M.M. Trubian, 1993. Applying tabu

search to the job-shop scheduling problem. Annals
Oper. Res., 41: 231-252. DOI:
10.1007/BF02023076

Barnes, J.W. and J.B. Chambers, 1995. Solving the job
shop scheduling problem using tabu search. IIE
Transactions, 27, 257-263.

Calderia, J.P., F. Melicio and A. Rosa, 2004. Using a
hybrid evolutionary-taboo algorithm to solve job
shop problem. Proceedings of the ACM
Symposium Applied Computing, Mar. 14-17,
ACM, Nicosia, Cyprus, pp: 1446-1451. DOI:
10.1145/967900.968189

J. Computer Sci., 8 (5): 681-693, 2012

693

Cheng, R., M. Gen and Y. Tsujimura, 1996. A tutorial
survey of job-shop scheduling problems using
genetic algorithms—I. representation. Comput.
Industrial Eng., 30: 983-997. DOI: 10.1016/0360-
8352(96)00047-2

Chiu, H.P., K.L. Hsieh, Y.T. Tang and C.Y. Wang,
2007. A tabu genetic algorithm with search area
adaptation for the job-shop scheduling problem.
Proceedings of the 6th WSEAS International
Conference on Artificial Intelligence, Knowledge
Engineering and Data Bases, (AIKED'07), ACM,
Greece, pp: 16-19.

Eswaramurthy, V.P and A. Tamilarasi, 2009.
Hybridization of ant colony optimization strategies
in tabu search for solving job shop scheduling
problems. Int. J. Inform. Manage. Sci., 20: 173-
189.

Fischer, H. and G.L. Thompson 1963. Probabilistic
Learning Combinations of Local Job-Shop Rules.
In: Industrial Scheduling, Muth J.F. and G.L.
Thompson, (Eds.). Prentice-Hall, Englewood
Cliffs, NJ., pp: 225-251.

Gholami, M and M. Zandieh, 2009. Integrating
simulation and genetic algorithm to schedule a
dynamic flexible job shop. J. Intell. Manufact., 20:
481-498. DOI: 10.1007/s10845-008-0150-0

Glover, F., 1986. Future paths for integer programming
and links to artificial intelligence. Comp. Operat.
Res., 13: 533-549. DOI: 10.1016/0305-
0548(86)90048-1

Glover, F., 1989. Tabu Search-Part I. INFORMS J.
Comput., 1: 190-206. DOI: 10.1287/ijoc.1.3.190

Gonzalez, M.A., C.R. Vela and R. Varela, 2009.
Genetic algorithm combined with tabu search for
the job shop scheduling problem with setup times.
Proceedings of the 3rd International Work-
Conference on The Interplay Between Natural and
Artificial Computation: Part I: Methods and
Models in Artificial and Natural Computation,
(IWINAC '09), Springer-Verlag Berlin,
Heidelberg, pp: 265-274.

Laarhoven, V.P.J.M., E.H.L. Aarts and J.K. Lenstra,
1992. Job shop scheduling by simulated annealing.
Operat. Res., 40: 113-125. DOI:
10.1287/opre.40.1.113

Man, K.F., K.S. Tan and S. Kwong, 1999. Genetic
Algorithms: Concepts and Designs. 2nd Edn.,
Springer, London, ISBN: 1852330724, pp: 344.

Meeran, S. and M.S. Morshed, 2011. A hybrid genetic
tabu search algorithm for solving job shop
scheduling problems: A case study. J. Intell.
Manuf. DOI: 10.1007/s10845-011-0520-x

Nowicki, E and C. Smutnicki, 1996. A fast taboo search
algorithm for the job-shop problem. Manage. Sci.,
42: 797-813. DOI: 10.1287/mnsc.42.6.797

Pezzella, F and Merelli, E. 2000. A tabu search method
guided by shifting bottleneck for the job shop
scheduling problem. European Journal of
Operation Research, 120, 297–310. DOI:
10.1016/S0377-2217(99)00158-7

Taillard, E.D., 1994. Parallel taboo search techniques
for the job shop scheduling problem. ORSA J.
Comput., 6: 108-117.

Thomsen, S., 1997. Meta-heuristics combined with
branch and bound. Technical Report. Copenhagen
Business School, Copenhagen, Denmark

Weckman, G.R., C.V. Ganduri and D.A. Koonce, 2008.
A neural network job-shop scheduler. J. Intel.
Manufac., 19: 191-201. DOI: 10.1007/s10845-008-
0073-9

Yamada, T. and R. Nakano, 1996. Scheduling by
genetic local search with multi-step crossover.
Proceeding of the 4th International Conference on
Parallel Problem Solving from Nature, Sept. 22-26,
Berlin, Germany, pp: 960-969.

Yu, H. and W. Liang, 2001. Neural network and genetic
algorithm-based hybrid approach to expanded job
shop scheduling. Comput. Ind. Eng., 39: 337-356.
DOI: 10.1016/S0360-8352(01)00010-9

Zhang, R. and C. Wu, 2008. A hybrid approach to
large-scale job shop scheduling. Applied Intell., 32:
47-59. DOI: 10.1007/s10489-008-0134-y

Zhou, R., A.Y.C. Nee and H.P. Lee, 2009. Performance
of an ant colony job shop scheduling problems. Int.
J. Produc. Res., 47: 2903-2920. DOI:
10.1080/00207540701644219

