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Abstract: Problem statement: The problem of scheduling n jobs on m machineh @éch job having
specific machine route has been researched ogatdtade. The Job Shop Scheduling (JSS) is one of
the hardest combinatorial optimization problemsclEgesource can process at most one job at a time.
Approach: This study proposes a new approach to solve a liop Scheduling problem with the help
of integrating Genetic Algorithm (GA) and Tabu S#a(TS). After an initial schedule is obtained the
GA, the result is given as an input to TS to imgrdlve status of the initial schedule. The objectite
this study is to minimize the makespan, proces® tand the number of iterations. This approach
achieves a better result with the help of efficiehtomosome representation, powerful crossover
strategies and neighborhood strategiRasults: This research resolves the allocation of operatiion
different machine and the sequence of operatioechasm machine sequence. Job Scheduling is the
process of completing jobs over a time with all@ratof shared resources. It is mainly used in
manufacturing environment, in which the jobs atecalted to various machines. Jobs are the ac8vitie
and a machine represents the resources. It isuaksi in transportation, services and grid schegulin
Conclusion/Recommendations: The result and performance of the proposed wodompared with

the other conventional algorithm and it is alsditesusing standard benchmark problems.

Key words: Job Shop Scheduling (JSS), Genetic Algorithm (GRabu Search (TS), Simulated
Annealing (SA), Tabu LisfTL), Aspiration Criteria (AC)

INTRODUCTION nature inspired meta-heuristics. Therefore, in gipie,
o ) . one could combine any methods from the same class o
Meta-heuristics is used to solve with the methods from different classes. Our hybrid approach
computationally hard optimization problems. Meta- combines Genetic Algorithms (GAs) and Tabu Search
heuristics consist of a high level algorithm thatdgs  (TS) methods. Roughly, our hybrid algorithm rune th
the search using other particular methods. Metaga as the main algorithm and calls TS procedure to
heuristics are used as a standalone approachlfango jmprove individuals of the population. The resttoé
hard combinatorial optimization pr_oblems. But nde t study is organized as follows.We briefly preserg th
standalone approach is drastically changed ang oplem description and formulation. Followed by we
attention of researchers has shifted to considethan  have discussed about the literature review. In tfour
type of high level algorithms, namely hybrid part, GA and TS methodologies are given for jobpsho
algorithms. There are at least two issues has to bgcheduling. Finally implementation of the HGATS to
considered while combining the more than one metate JSSP is given with the algorithm using the pseql
heuristics: (a) how to choose the meta-heuristiGnethod and the experimental results and a disaussio

methods to combine and (b) how to combine the ehosethe proposed method are given and a conclusion and
heuristic methods into new hybrid approachesfytyre enhancement is also given.

Unfortunately, there are no theoretical foundatifors

these issues. For the former, different classeseafch  Problem description and formulation: The nxm Job
algorithms can be considered for the purposes oBhop Scheduling problem labeled by the symbol n, m,
hybridization, such as exact methods, simple hearis J, O, G and .. It can be described by the finite set of
methods and meta-heuristics. Moreover, meta-hésgist n jobs J = {j, j1, 2, ja:--.--Jns Jn+1} (the operation O and
themselves are classified into local search baset+l has duration and represents the initial anl fina
methods, population based methods and other clagsesoperations), each job consist of a chain of openatiO
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= {01,0,,03,....05}, Each operation has processing time C__ = max,, Q0 0G (5)

{ &1, Ligs Kizy---- &im}, finite set of m machines M = {m

M, Ms....My}, G is the matrix that represents the o )
processing order of job in different machines ang,C The distinctive graph of the above bench mark job
is the makespan that represents the completion dime scheduling problem is shown in Fig. 1, in which
the last operation in job shop. On O define A, maby  vertices are represents, the operation. Precedence
relation representing precedence between operatibns among the operation of the same job is represdnyed
then u has to be performed before v. A schedule is Conjunctive arc, which are doted directed lines.
function that for each operation u defines a dtate S precedence among the operation of different job is
(u). A schedule S is feasible if it satisfy the dion in - opresented by Disjunctive arc, which undirectelitiso

Eq. 1-4: lines. Two additional vertices S and E represeried

Oud0:S(u)2 C (1) start and end of the schedule. _
The gantt chart of the above bench mark job

Ou,vOO,(u,v)d A:S(u}A (U S(V (2) scheduling problem is shown in Fig. 2. Gantt chart

the simple graphical representation technique édr j

Ou,vO0,u# v,M(u)= M(v) :+ 3 scheduling. It simply represents a graphical clart
3) ) _ e

A(u) < S(v)orS(v)+A (vl S(u) display schedule; evaluate makespan, idle timetinggi

time and machine utilization.
Thelengthof ascheduleSislen) max (St )i(4)

The goal is to find an optimal schedule, a feasibl Literature review. Ngmber of resea.rchers ha§ adopted
schedule of minimum length, min (len (S)). GA an(_j TS technique f(_)r solving the job shop

An instance of the JSS problem can be representetfneduling problem. They include algorithms such as
by means of a disjunctive graph G = (O, A, E).TheSimulated Annealing (SA), Genetic Algorithms (GA)
vertices in O represent the operations, the cotigmc (Yamada and Nakano, 1996; Gholami and Zandieh,
arcs in A represent the given precedence between tt2009), Tabu Search (TS) (Glover, 1989; Amico and
Operations and the edge inE = {(U, V)l ueouzv, M Trubian, 1993; Nowicki and SmutniCki, 1996;
(u) = M(V)}represent the machine Capacity constmin Thomsen, 1997; Pezzella and Merelli, 2000), ant
Each vertex u has a weight, equal to the processitgg  optimisation and Genetic Local Search (GLS) (Yamada
£ (u). Let us consider the bench mark problem of theéand Nakano, 1996; Zhoet al., 2009), Scatter Search
JSSP with four jobs, each has three different djmerm =~ and Path Relinking (SS PR). The majority of GA and
and there are three different machines. Operatio®LS approaches appear to give poor results duketo t
sequence, machine assignment and processing tene afifficulties they have with crossover operators Tab
given in Table 1. search was first presented by (Glover, 1986) and

Based on the above bench mark problem, we creaigproved in the following years. The effectiveness
a matrix G, in which rows represent the processingthe technique in the job shop problem was examined
order of operation and the column represents thejjard (1994); Laarhovemt al. (1992); Barnes and
pro.cessmg.order of jobs. Also we create a matrimP  cpampers (1995); Amico and Trubian (1993) and
vv_h|ch row i represents the processing time of Ji forf. v Nowicki and Smutnicki (1996). Al algorith
different operations: inally Nowicki and Smutnicki ( ). algorithen

demonstrated outstanding results comparing to

simulated annealing and shifting bottleneck. Caddetr

My M, M, 2.3 4 al. (2004) presented Tabu-Hybrid using one of the
c=|Ms M. My 14 4 1 representation for the JSSP called Permutation With

My M, M, 2 23 Repetition (PWR) in which the order of operations

M, M; M, 3 31 within the permutation is interpreted as a sequdace

building a schedule solution. Yu and Liang (2001)
The processing time of operation i on machine j anintegrate GA with neural network for JSSP. Weckman
represented by (O Let £; be the processing time of;O et al. (2008) given solution for JSSP using neural
in the relation. ¢ represents the completion of the network. Eswaramurthy and Tamilarasi (2009)
operation @. So that the value ;G Cy + 4; represents presented Hybridization of Ant Colony Optimization
the completion time of © The main objective is to Strategies in Tabu Search for Solving Job Shop
minimize of Gyax It can be calculated as Eq. 5: Scheduling Problem.
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Table 1: Processing Time and Sequence & groblem Instance established from the publications that most of ¢hes
Operation number and ~ Machine Processing  gystems work well with real life practical problerms

- speration Processing sequence _assigned T addition to solving standard JSSP benchmark prailem

(dummy) The system being presented here is tested on a

J1 011 M1 2 substantial number of bench mark problems including
o 2 : hard instances from FT, LA, ABZ and ORB, attaining

J2 021 M3 4 optimum solutions for 48 out of 51 of them. Detaifs
855 Mi ‘1‘ the results attained are available. As mentionelieea

13 531 M2 ) here we are presenting in this study another asgfect
032 M3 2 the system with regard to its application to ra#d |

u %3;31 ’\,f'All 3:’_3 practical cases from real life manufacturing congsin
042 M3 3

A 043 M2 1 MATERIALSAND METHODS
End operation (dummy) O - 0

Genetic  algorithm:  Genetic  algorithms  are
probabilistic Meta heuristic technique, which mag b
used to solve optimization problems. They are based
the genetic process of chromosome. Over many
generations, natural populations evolve accordintte
principles of natural selection, i.e., survival tfe
fittest, first clearly stated by Charles Darwin Tine
Origin of Species. It starts with the initial sodut
called Population and it is filled with chromosome.
Each element in chromosome is called gene. Job is
represented by each gene in chromosome and the job
sequence in a schedule based on the position aofetie

GA uses Crossover and Mutation operation to gemerat
new population. By crossover operation, GA genertite

M1} On Ou e = neighborhood to explore new feasible solution.
2 : e A typical genetic algorithm is illustrated in Fig.
== 0 B It first creates an initial population consisting o
= M3 G = o EEeeE e randomly generated solutions. After applying geneti
EEEES 0 operators, namely selection, crossover and mutation
Time | 11203 [4 [5 [6]7 [8 |9 f10 [11 [12]13] 14 one after the other, new offspring are generatdenT

the evaluation of the fitness of each individuakhe

Fig.2: A Schedule of Gantt Chart for 4X3 problem population is conducted. The fittest individuals ar
Instance selected to be carried over next generation. The

above steps are repeated until the termination

Gonzalezet al. (2009) presented a hybrid GA and condition is satisfied. A GA is terminated after a
TS system as in the case of Meeran and Morshedertain number of iterations or if a certain lewdl
(2011), however (Gonzaleet al., 2009)"s proposed fitness value has been reached.
method is for the job shop scheduling problem wih The construction of a genetic algorithm for the
up times. Although they have obtained some verydgooscheduling problem can be divided into four paFise
results, their proposed system is for different Bt cphgice of representation of individual in the pepidn;
bench mark _pr_oblems and also th‘?y have reporteﬁle determination of the fithess function; the gesbf
results of a limited number of established be_ncikmargenetiC operators; the determination of probabiit
problems, namely 6instances of LA and three ingsnc . :
of ABZ. Most other systems (Chet al., 2007; Zhang controlllng the. genetic operatgrs.
and Wu, 2008) shown a good progress in solving a Algorithm: GA_Procedure:
specific set of benchmark problems albeit in soases
the benchmark problems used are not from the har8tep 1: /*Initialization*/
instances of established benchmark problems such as Initialize 0 to MAX
LA, ABZ, ORB and FT. Furthermore, it could not be Get the value for NUM
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Evaluate the fitness Select the fittest .
Start of each individual in | solutions in the Tenminated
the population population

Initialization of Generate offspring

population solutions by genetic Stop
operators
Fig. 3: A standard genetic algorithm
Tnitial solution ) . Create a candidate Evaluate
(Iin S) 4 Pl | listof solutions | | 501“i_0115
L‘pdateATabu and Stopping N Choose the best
aspiration conditions 1 admissible solution
conditions satisfied 3
No
Yes
Final solution
Fig. 4: A standard Tabu Search algorithm
Step 2: /*Generate initial population*/ If MAX<NUM then
Generate initial population using Go to Step 4
Current_Population () Else
Step 3: /*Evaluate the chromosomes*/ Go to Step 8
Evaluate the fitness value of current Step 9: /*Output the solution*/
chromosomes using Evaluate_Current () Stop.
Step 4: Repeat
For i=0 to NUM do Tabu search: A typical tabu search algorithm is
Forj=0to 4 do illustrated in Fig. 4. Tabu Search (TS) is a meta-
pop_next[j]=pop_current[j] heuristic approach used to solve combinatorial
End for optimization problems. TS algorithm starting from
Sorting the given set of pop_current initial solution and iteratively generate a newusoin
chromosomes. through its neighborhood. In TS acceptance of npvin
Step 5: /*Reproduction strategies*/ to new solution in neighborhood is deterministicis|
Apply any one Crossover strategies to get childpne of the most efficient local search algorithimisjob
chromosomes. _ scheduling problems. It consists of the tabu list,
Step 6: /*Mutation strategies*/ _ aspiration criteria, neighborhood structures, theven
_Apply Mutation () to mutate with low gattriputes and stopping rules. Tabu list the ligt o
probability records that move.
Step 7: /*Copy the chromosomes of pop_next t0  Tapy List(TL) is controlled by the trial solutions in
pop_current*/ the order in which they are made. Each time a new
For j=0 to 4 do element is added to the 'bottom' of a list, theesid
pop_current(j] = pop_next[j] element on the list is dropped from the ‘top.
End for Empirically, TL sizes which provide good resultsesf
Increment MAX by 1 grow with the size of the problem and stronger
Step 8: /*Termination criteria*/ restrictions are generally coupled with smalleresiz
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Best sizes of TL lie in an intermediate range betwe Get the value for NUM
these extremes. The length of the tabu list idalyt  Step 2: /*Generate initial population*/
assigned according to the size of the problem and i Generate initial population using

will be decreased and increased during theCurrent_Population()
construction of the solution so as to achieve betteStep 3: /*Evaluate the chromosomes*/
exploration of the search space. Evaluate the fitness value of current

o o ) chromosomes using Evaluate_Current()
Aspiration Criteria (AC): Is another important Step 4: Repeat

element of TS arises when the move under For i=0 to NUM do

consideration has been found to the associated with For j=0 to 4 do

each entry in the TL. The simplest and most comgnonl pop_next [j] = pop_current [j]

used aspiration criterion consists of allowing aveo End for

even if it is in tabu and results in a solution hwin Sorting the given set of pop_current

objective value better than that of the currentt-bes chromosomes.
known solution. Many more Complicated criteria haveStep 5: [*use tabu search to generate new members*/

been implemented by different researchers and Using tabu search algorithm, generate
successfully implemented. new members in the new poplation

Step 6: /*Reproduction strategies*/
Stopping Criteria (SC): The most commonly used Apply USXX Crossover strategies to get

stopping criterion in TS are either (i) a fixed rfaen of  child chromosomes.
iterations or ii) after some number of iterationsheut  Step 7: *Mutation strategies*/

an improvement in the objective function value i@} ( Apply Mutation() to mutate with low
when the objective function reaches a pre-specifieghrobability
threshold value. Step 8: *improve status*/

. L Improve the status of new population by
Proposed algorithm: The objective of the proposed DynamicTabu() algorithm

system is to minimize the make span (Cjnaiiterion,  step 9: /*Copy the chromosomes of pop_next to
processing time and the number of iteration whilepop currentt/

satisfying all constraints. Genetic algorithm ipable For j=0 to 4 do

of doing a parallel search to discover the glolegrsh pop_current[j] = pop_next]j]
space. Through the parallel search mechanism GA End for

retains useful information about what has beemksar Increment MAX by 1
from previous generations. GA searches the solutioStep 10: /*Termination criteria*/

from a population of points instead of a singlenpoi If MAX<NUM then

The algorithm is computationally simple and powerfu Go to Step 4

Tabu Search (TS) works on the individual stringjaluh Else

are points on the solution space. TS guides (GJover Go to Step 8

1989; Barnes and Chambers, 1995) the iteratioms fro Step 11: /*Output the solution*/

one neighborhood point to another by locally impngv Stop

the solutiori s quality and has the ability to avoid poor
local minima. Integration of GA and TS using theivn ~ Procedure Current_Population is used to generae th
strengths has a good chance of providing a reagonabneéw population and the new population is stored in
solution to global combinatorial optimization prebis ~ Pop_current variable.

such as JSSP. During the hybrid search processt&i

with a set of initial solution and generates aafehew Procedure: Current_population ()

solutions. On each set of new solution, TS perfanezal Inputs: RANDOM — is a random number

search to improve them. Then GA uses the improveﬁenerated by random () function

solution of TS to continue with parallel evolution. Output: Fitness value for pop_current

Hybrid Genetic Algorithm and Tabu Search Begigssign VALUE and RANDOM

(HGATS) methodology: [*Calculate fitness function*/

Proposed Hybrid Algorithm Approach: For i=0 to 4 do
Algorithm: HGATS_Procedure For j=0 to 6 do

Step 1: /*Initialization*/ Create random value for RANDOM
Initialize 0 to MAX RANDOM=RANDOM%2
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pop_current[i].bit[j] = RANDOM The representation of chromosome for JSSP is
End_for _ based on Chengt al. (1996). The chromosome is an
VALUE=Evaluate_Current (pop_current [i]) ordered sequence of job/operations where each gene

/*get the value of chromosome as integer*/ ; -
pop. current [l fit=Calculate_Fitness(VALUE) represents a one operation. Order of the operations

I*caleulate the fithess value/ represented in chromosome is the order of schetete.

End for us consider an example of 4X3 job shop problemhEac
Stop job shop problem has constraints for scheduling the

operation to the machine with processing time msash

in Table 1. For example J1 is processed in therorde

Procedur e Evaluate current ():
- 0 M1, M2 and M3 and J2 is processed in the order M3,

Input: pop_current|i] — for i=0 to 4

Output: value of chromosomes as integer M2 and M1 respectively and so on. The objectivéhef
Begin algorithm is to complete all the operations of a
z=pop_current.bit[0]*1 + particulate job with minimum possible time. Alsceth
pop_current.bit[1]*2 +  pop_current.bit[2]*4  + processing of operations on machines taking into
pop_current.bit[3]*8 + pop_current.bit[4]*16 account of the precedence and processing time of
If pop_current.bit[5]==1 Then operations.
z=z*(-1) The main idea is how to represent the jobs in terms
End if of sequence. In the relationship between the job
End scheduling and the chromosomes to represent the
. schedule. So that we can use the GA to find bgiter
Procedure Calcuate_Fitness(): scheduling. For the abovex3 job shop scheduling the
. Inputs: VALUE ie value of chromosome as chromosome such as[34 121434123 2] may be
Integer o . formed and then change the order for the better
Output: objective function of chromosome schedule. In the given chromosome the genes ,1”
Begin stands for J1, ,2" stands for J2 and so on. Theod
y=-(VALUE*VALUE)+5 the operation corresponds to the relative positibthe
End gene. For example the first gene “3” stands fost fir

) ) operation of J3, seventh gene “3” stands for tlwose
The crossover operator involves the swapping opperation of J3, second gene “4” stands for first
genetic material (bit-values) between the two parengperation of J4 and so on. The above scheduling
strings. Two parents produce two offspring. Theveai chromosome is also represented ag,[Os, Ou1, Oon,
chance that the chromosomes of the two parentdpied  o,, O,,, Oz, Oy3 Oy, Oz, Os3, On. O; stands for the

unmodified as offspring. There is a chance that the operation of the job;.JFor example 031 stands for
chromosomes of the two parents are randomly reswubi  the first operation of J3.

(crossover) to form offspring. Generally the chamte

crossover is between 0.6 and 1.0 (Me&al., 1999). Reproduction strategiess The crossover operator
involves the swapping of genetic material (bit-eed

Representation: GA requires an appropriate between the two parent strings. Two parents produce

chromosome (ie., a collection of operations) talfm two offspring. There is a chance that the chromasom

solution (Chenget al., 1996). All the chromosomes Of the two parents are copied unmodified as offgpri

must be generated during the evolutionary process f There is a chance that the chromosomes of the two

feasible solution. In a traditional JSSP consisf gdbs ~ Parents are randomly recombined (crossover) to form
. offspring. Generally the chance of crossover isveen

and M machines starting that JxM operation. TheO.G and 1.0 (Zhang and Wu, 2008). The following

chromosome [g @ G 9 vl Can represent @ gections propose the new crossover algorithmsdior j
schedule of JxM operations. The chromosome could bghop scheduling.

generated based on sequence of operations. The second genetic operator, mutation, can help
Once the basic schedule is generated, we need GASA to get a better solution in a faster time. listh
crossover and mutation to generate a further sédedu model, relocation is used as a key mechanism for
The fundamental crossover of GA operates on twanutation. Operations of a particular job that i®sdn
parent chromosome and generates two childandomly are shifted to the left or to the rightthé
chromosomes. This operation needs to present the jstring. Hence the mutation can introduce diversity
sequence characteristics. without disturbing the sequence of a job”s operatio
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72 second operation of J1 is in eighth gene respdygtive
e B Copy the remaining operation of P2 in to C2 soas t
Lo 3 maintain their relative ordering.
_ 51‘3 I - The tabu length is changed during the solution
e 21143 |1 [2]3 3| e construction phase to increase the explorationhef t
= e search space and this strategy called “dynamic tabu
Parenil Farents length strategy” is applied in the proposed algonit

[« ]2

HEENREE The proposed algorithm to find the tabu length

dynamically according to the iteration number igegi
below. Where the inputs are the current iteration
number N, m, n$, a, B, p and g and the output is Tabu
Length (TL).

M2
so (2 3 [« [Tjs eS|

Child1l

BED

M5 2[5 |1 [4]1]3]

Fig. 5:  Unordered Subsequence Exchange Crossov@igorithm for DynamicTabu ():

(USXX) Start
If N <& Then
When applying mutation one has to be aware thiteif TL=m + n, Return TL
diversity of the population is not sufficiently Else
maintained, early convergence could occur and the While q < n)
crossover cannot work well. If N >= (p*8) and N < (p% + g*a) Then
TL=(m+n) + (qP), Return TL

Unordered Subsequence Exchange Crossover Else
(USXX): We introduce one more cross over strategy q=q+1
named as Unordered Subsequence Exchange Crossover EndIf
(USXX) that children inherit subsequences on each EndWhile
machine as far as possible from parents. Unordered EndIf
Subsequence exchange crossover creates new children End
even the subsequence of parentl is not in the sadeein
parent2. The algorithm for USXX is as follows. The rangegp. andﬁ are calculated as given in the

o Eq. 6-8 respectively. The integer parts of these
Step 1: Generate two random parent individual ngmelyariables are used for processing. p and q are the

P1 and P2 with a sequence of all operations  control variables used to find the position of therent
Step 2: Generate two child individual namely C1 andteration within the range interval:

C2
Step 3: Select random subset of operations (gédron)

P1 and copy it into C1 0=TOTN/(2*m) 6)
Step 4: Starting from the first crossover pointnir®1,
look for elements in P2 that have been copied ast =3/ (m+n) (7)
in the same order
Step 5: The remaining operations of P2 that areimot g=(a+2*m)/(m+n) (8)
the subset can be filled in C1 so as to maintain
their relative ordering The number of jobs n and the number of machines
Step 6:1f C1 is created then goto Step 3 t0 gé@&ld@ 1 are also given as inputs. The value of the Tabu
analogously Length (TL) is m + n for the first range of itexatis.

o For the even and odd range intervals, TL value is
For example in Fig. 5 parent chromosome of Mljncreased and decreased respectively by the vdlge o
is [3,4,1,21,4,3 4,1, 2 3, 2]. The sedelct wijth subsequent interval value af This strategy
sequence is [1, 2, 1]. It is the first operationJdf  improves the performance of the tabu search dutiag
first operation of J2 and the second operation Iof J construction of the solution. TOTN represents thtalt
respectively. Select the same operation from P2 evenumber of iterations. TOTT represents the maximum
it is in different order. number of times for which the improvement is notdma
In a given sample first operation of J1 is intfirs during the construction of the solution. The lengthhe
gene, first operation of J2 is in fourth gene ahd t tabu list is dynamically changed by using the pdoce
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DynamicTabu () according to the current iterationTable 2 shows comparison of makespan value produced
number. If the selected neighbeK(@<i< k) is not in the  from different algorithms for problem instances BT0
tabu or the aspiration criterion is met, the ne@hti is  FT10 and FT20 (Fisher and Thompson, 1963) Column 1
added to the tabu. The aspiration criterion is used gpecifies the problem instances, Column 2 spedfies
check the condition f(S) < (& 1 (S) is the makespan of ;her of jobs, Column 3 shows the number of mashin
the neighborhood solution S produced by the apjsita Column 4 specify the optimal value for each problem

of the neighbor si which is already in the tabu &(8k) c .
. . ; olumn 5-7 specify results from TS, HGATS and GA
is the current best known solution. If the neightamnot respectively. It shows that HGATS with USXX

be added to the tabu, the tabu list is clearedtlzadabu . : )
restrictions are removed. This process is repaatttia strate_zgy has succeeded in getting the optimal
termination criterion is met. The termination aive is ~ Selutions for all the problems.

either reaching the maximum iterations or no Figure 6 shows average makespan value generated
improvements of the constructed solution for theTTO by TS, HGATS and GA for different problem instances

number of iterations. It also shows that TS produce the worst result aep
to other two algorithms and the HGATS algorithm is
RESULTSAND DISCUSSION better than the other two algorithms. Figure 7 shtive

comparison of Average Relative Error for all theeth

To measure the effectiveness of the proposeé“ethOds- It clearly shows that the Average Relative
algorithm, we consider the standard JSP test instan Efror for HGATS is zero.
of Fischer and Thomson (1963) instances FT06, FT10, Table 3 shows comparison of makespan value
FT20, instances from LAOl to LA40, instancesproduced from different algorithms for problem
SWV01-SWV20 and Yamada and Nakano (1996)instances LA01-LA20 Column 1 specifies the problem
instances YN1-YN4. The proposed algorithm isinstances, Column 2 specifies the number of jobs,
compared with Tabu Search (Nowicki and Smutnicki,Column 3 shows the number of machines, Column 4
1996), Genetic Algorithm (Gongalves and Beirao)e Th specify the optimal value for each problem. Coluin
proposed algorithm is implemented using C++g and 7 specify results from TS, HGATS and GA
programming language on windows platform with Intel respectively. It shows that HGATS with USXX strateg

Pentium E5800, 3.2 GHz and_ 26'.3 RAM. The has succeeded in getting the optimal solutionsafbr
performance of the proposed algorithm ids basethen the problems

Relative Percentage Deviation (RPD) which is
computed as. )
Where Algosol is the solution obtained by differen 047" 036
existing and proposed algorithms and Optsol is the
optimal or best known solution.
Here the computational results are given for well-

03+~

Relative error

known bench mark problems with Tabu search, GeneticZ 02+~ 014
Algorithm and HGATS. |
01+
722 1 er. 0L
720.67 Average makespan oL p——
) - TS HGATS GA
= 7201 Methods
[ 718.33
¢ st
< 716.67 716.67 Fig. 7: Average relative error values by different
16 1 |’| crossover strategies for FT06, FT10 and FT20
|- Table 2: Results for instances
714 1 -
, Problem size
Optimal TS HGATS GA Makespan time Relativerer (%)
Methods Problem Jobs  Machines
name (n) (m) Optimal TS HGATSGA TS HGATS GA
FT06 6 6 55 55 55 55 000 0.0 0.0
; . ; FT10 10 10 930 932 930 930 0.22 000 0.0
Fig. 6: Average MakeSPa“ values by Different FT20 20 5 1165 1175 1165 1170 0.86  0.00 430.
Crossover Strategies for FT06, FT10 and FT20average 717 721 717 718 036  0.00 0.14
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910.00 - s Average makespan 1150
A 1050
906.00 7~  F A T e TS
5 2504 -~ HGATS
s 00 2 Y I
= S §99.10 2 850\
£ A 2 » \tl o .
S 898.00 17 89523 896,45 750 S
- — 650 i S —— S
894.00 i, ¥ T
pu | - _, 550
290.00 /" ," 0 1000 2000 3000 4000 3000 6000 7000
Optimal TS HGATS GA Tterations
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Table 3: Results for instances Lawrence, 1984
. . . Problem si
Fig. 9: Average Relat|ve_ Error values by Different __f?__f_T__S_'_Zf______ Makespan time Relative err(%)
Crossover Strategies LA01-LA20 Problem Jobs  Machines
name (n) (m) Optimal TS HGATS GA TS HGATS GA
) [AOL 10 5  666.00 666.00 666.00 666.00 0.000.00  0.00
F|gure 8 shows average makespan value generateﬁ)z 10 5 655.00 664.00 655.00 658.00 1.37 .000 0.46
. . LA03 10 5  597.00 608.00 597.00 600.00 1.840.00  0.50
by TS, HGATS and GA for different problem instances (aoa 10 5 59000 600.00 590.00 590.00 1.69 .000 0.00
LAO5 10 5  593.00 598.00 593.00 593.00 0.840.00  0.00
It also shows that TS produce the worst rES.UIt @mm LAO6 15 5 92600 926.00 926.00 926.00 0.00 .000 0.00
other two algorithms and the HGATS algorithm istéset LAa07 15 5 890.00 895.00 890.00 890.00 0.56 .000 0.00
. - LAO8 15 5  863.00 892.00 863.00 880.00 3.360.00  1.97
than the other two algorithms. Figure 9 shows thgas 15 5 95100 95100 951.00 951.00 0.000.00  0.00
comparison of Average Relative Error for all theeth LA10 15 5 958.00 958.00 958.00 958.00 0.000.00 0.00
LA11 20 5 122200 1222.00 1222.00 1222.0000. 0.00  0.00
methods. It clearly shows that the Average Reldfier a1z 20 5  1039.00 1039.00 103.00 1039.00 0.000.00  0.00
; LA13 20 5  1150.00 1257.00 1150.00 1163.0809. 0.00  1.13
for HGATS is 0.05. LA14 20 5  1292.00 1298.00 1292.00 1292.0860. 0.00  0.00
Typical runs of problem instances LAO4, LA12 & LA15 20 5 1207.00 1230.00 1207.00 1210.0911. 0.00  0.25

) L . LAI6 10 10 94500 950.00 945.00 952.00 0.530.00  0.74
LA16 are illustrated in Fig. 10-12 respectively the (a7 10 10 78400 792.00 784.00 785.00 1.02 .000 0.13

GA, TS and proposed HGATS. In all cases HGATSUALS 10 10 &80 %0000 82200 000 1oy s
reach the optimal solution faster than other twoLA20 io 10 ggégg 9%70-g0759%79-2%9%30100-2033 02-80 032-00

. verage . . . . . . .
methods. For LAO4, GA never produces the optimat !

solution. But GA and HGATA both are produced thetaple 4: Results for instances

optimal solution, whereas GA reached the optimal Problem size ok ; Relatvaror (%)
. . I akespan time elativerer (%
solution at 5500th iteration and HGATS reached theroblem Jobs  Machines
. . . . L Name  (n) (m) Optimal TS HGATS GA TS HGATS GA
optimal solution at 4000th iteration. Similarly fbA12, AB7E 10 o 123400 3600 12340 12570 21000 188
1 i 1 . ABZ6 10 10 943.00 960.0 943.0 943.0 1.80 000. 0.00
TS reached theloptlmal value at 160ch |t§rat|0A G e o 0 o 0D 9000 430 30 45O 000. 099
reached the optimal value at 1500th iteration wdmere ABz8 20 15 665.00 670.0 6650 6650 0.75 000. 0.00
. . ABZ9 20 15 679.00 725.0 679.0 683.0 6.77 00.0 0.59
HGATS reached at 1000th iteration. Average 83540 863.0 8354 8420 3.63  0.000.67
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Fig. 12: The time evolutions of makespans for therig. 14: Average relative error values by different
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Fig. 15: Average Makespan values by different
Fig. 13: Average Makespan values by different crossover strategies for ORB01-ORB10
crossover strategies for ABZ5-ABZ9
- 4.00 1
Table 5: Results for instances 3501 2
Problem size 2.2 P
Makespan time Relative err(9o) 5 3.001 7 2
Problem Jobs Machines g 250 L
Name (n) (m) Optimal TS HGATS GA TS HGATS GA &
ORBI 10 10 1059.00 1093.00 1059.00 1059.0(21 3 0.00 0.00 E 2001
ORB2 10 10 888.00 903.00 888.00 888.00 1.6800 0.00 b 1.50 e L -
ORB3 10 10 1005.00 1025.00 1005.00 1013.0099 1 0.00 0.80 é ) 9,
ORB4 10 10 1005.00 1012.00 1005.00 1005.0070 O 0.00 0.00 1.007
ORB5 10 10 887.00 892.00 887.00 887.00 0.8600 0.00 050,,"/ / 0"
ORB6 10 10 1010.00 1037.00 1022.00 1025.0067 2 1.19 1.49 ) Ve P
ORB7 10 10 397.00 421.00 397.00 415.00 6.0500 453 0.00 - 4
ORB8 10 10 899.00 95.00 899.00 899.00 6.2800 0.00 TS HGATS GA
ORB9 10 10 934.00 942.00 934.00 934.00 0.8600 0.00
ORB10 10 10 944.00 952.00 944.00 962.00 0.8500 1.91 Methods
Average 902.80 923.20 904.00 908.70 2.48 20.1 0.87

Fig. 16: Average relative error values by different

Table 4-7 shows comparison of makespan value crossover strategies for ORB0O1-ORB10
produced from different algorithms for problem
instances Yamada and Nakano (1996) respectivelyrigure 13-19 shows average makespan value generated
In all Table Column 1 specifies the problem py TS, HGATS and GA for different problem instances
instances, Column 2 specifies the number of jobsof Yamada and Nakano (1996) respectively. It also
Column 3 shows the number of machines, Column 4hows that TS produce the worst result comparéhtr o
specify the optimal value for each problem. Columntwo algorithms and the HGATS algorithm is bettesirth
5-7 specify results from TS, HGATS and GA the other two algorithms. Figure 14-22 shows the
respectively. It values in the table shows that HGA comparison of Average Relative Error for all theeth
with USXX strategy has succeeded in getting themethods. It clearly shows that the Average Relditrer
optimal solutions for all the problems. for HGATS is lower than the other algorithms.
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Table 6: Results for instances by Stastesl. 1992
Problem size Optimal Makespan T time Relagirrer (%)
Problem name Jobs (n) Machines (m) uB LB TS HGA GA TS HGATS GA
SWvi11l 50 10 2991.0 2983 3504.0 3012.00 3200.0 17.15 0.70 6.99
SWv12 50 10 3003.0 2972 3442.0 3120.00 3P»50. 14.62 3.90 8.23
SWV13 50 10 3104.0 3876.0 3250.00 3754.0 824 4.70 20.94
SWV14 50 10 2968.0 4006.0 3212.00 3487.0 .9B4 8.22 17.49
SWV15 50 10 2904.0 2885 4357.0 3589.00 4235. 50.03 23.59 45.83
SWV16 50 10 2924.0 3986.0 3326.00 3547.0 .336 13.75 21.31
SWv17 50 10 2794.0 3459.0 3005.00 3269.0 8@3. 7.55 17.00
SWV18 50 10 2852.0 3295.0 2950.00 31156.0 5.53 3.44 992.43
SWV19 50 10 2843.0 3293.0 2934.00 3169.0 .835 3.20 11.47
SWV20 50 10 2823.0 3329.0 2978.00 3231.0 .97 5.49 14.45
Average 2244.2 1957.1 2661.8 2375.45 3935.7 15.78 5.21 60.14
3634.70 622980 P
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. Fig. 21: Processing time for LT06, LAO3 and LA09
crossover strategies for SWV11-SWV20 9 9
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Fig. 19: Average Makespan values by different
crossover strategies for YNO1-YNO4 Fig. 22: Processing time for LA17, SWV01 and SWV10
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Table 7: Results for instances by Yamada and Nakb9@6)

Problem Size Optimal Makespan time
Problem name Jobs (n) Machines (m) UB LB TS HGATS A G TS HGATS GA
YNO1 20 20 888.0 826.0 895.0 888.00 890.0 a77 0.00 7.21
YNO2 20 20 909.0 861.0 925.0 909.00 910.0 .047 0.00 5.39
YNO3 20 20 893.0 827.0 1056.0 893.00 924.0 25.64 0.00 10.86
YNO4 20 20 968.0 918.0 1112.0 987.00 1098.0 20.04 7.13 18.60
Average 914.5 858.0 997.0 907.50 955.5 2B 9. 1.78 10.51

Table 8: Comparison of CPU Time and Number of tters to Reach Optimal makespan using TS, GA andH&

Problem size

-------------------------- TS GA HGATS
Problem Jobs Machines CPU - — - CPU - CPU
Name (n) (m) Optimal Time Iterations Makespan timeterations Makespan Time Iterations Makespan
FT06 6 6 55 2 27 55 1 12 55 1 8 55
FT10 10 10 930 3 78 932 2 56 930 2 12 309
LAO1 10 5 666 32 576 666 25 552 666 10 26 4 666
LAO3 10 5 597 4 5952 608 4 4856 600 5 2338 597
LAO4 10 5 590 12 6784 600 12 5435 590 7 4023 590
LAO6 15 5 926 62 756 926 60 608 926 19 285 926
LAO7 15 5 890 83 873 895 75 756 890 22 847 890
LA09 15 5 951 86 349 951 64 256 960 33 451 951
LA10 15 5 958 84 489 958 65 178 958 31 8 7 958
LA12 20 5 1039 206 1568 1039 150 1347 1039 62 958 1039
LA14 20 5 1292 228 256 1298 124 156 1292 67 98 1292
LA16 10 10 945 1655 2879 950 1576 1736 952 850 1238 945
LA17 10 10 784 1250 1583 792 1233 1375 785 732 967 785
LA20 10 10 907 1088 12846 907 1154 10237 07 9 836 8493 907
ABZ5 10 10 1234 1453 13287 1260 1322 12889 1257 1002 9457 1235
ABZ6 10 10 943 1255 10832 960 1010 9349 394 950 7584 943
ABZ7 20 15 656 1678 12359 700 NG 9484 662 1107 7345 656
ABZ8 20 15 665 NG** NF* 670 1756 NF* 665 1298 5346 665
SWV01 20 10 1407 NG** NF* 1430 2269 12985 1430 1657 7584 1420
SWV03 20 10 1398 NG** NF* 1445 2567 8734 420 1970 6483 1425
SWV07 20 15 1620 NG** NF* 1650 NG** NF* 6 4378 8679 1625
SWV10 20 15 1767 NG** NF* 1871 NG** NF* 58 5289 9363 1800

*: The solution could not be found; **: This infoation is not given

Table 8 shows the comparisons of CPU time andeast near optimal solutions for all well-known ben
number of iteration to reach optimal makespan among'ark problems. In aimost all cases the proposegsys

TS, GA and HGATS for the problem instances. Co|umnpe_rf0rmed better. On all the job _shop cases on whic
o . .this framework has been tested improved result® hav
1 provides problem instances to be used for testin

. : Been achieved. In future this algorithm may be iepp!
whereas number of jobs and number of machines agiih the real time application to optimize the

specified in column 2 and 3 respectively. In column  scheduling in production. Moreover, when this syste
optimal makespan value for each problem is givémeT was tested on 52 benchmark problems that exidtdn t
required to reach optimal value for TS, GA and HGAT literature it found optimum solutions for 39 of #ee
are specified in column 5-11 respectively andproblems and achieved an average ARE of 1.56%.
corresponding number of iterations are given il 6-

12 respectively. Among three methods specifiedabld REFERENCES

3, HGATS performs well. For all problems, values of

makespan are reached in HGATS with lesser timé'mico, D and M.M. Trubian, 1993. Applying tabu

compare to TS and GA methods. search to the job-shop scheduling problem. Annals
Oper. Res., 41: 231-252. DOI:
CONCLUSION 10.1007/BF02023076
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