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Abstract: Problem statement: The problem of scheduling n jobs on m machines with each job having 
specific machine  route has been researched over the decade. The Job Shop Scheduling (JSS) is one of 
the hardest combinatorial optimization problems. Each resource can process at most one job at a time. 
Approach: This study proposes a new approach to solve a Job Shop Scheduling problem with the help 
of integrating Genetic Algorithm (GA) and Tabu Search (TS). After an initial schedule is obtained the 
GA, the result is given as an input to TS to improve the status of the initial schedule. The objective of 
this study is to minimize the makespan, process time and the number of iterations. This approach 
achieves a better result with the help of efficient chromosome representation, powerful crossover 
strategies and neighborhood strategies. Results: This research resolves the allocation of operation to 
different machine and the sequence of operation based on machine sequence. Job Scheduling is the 
process of completing jobs over a time with allocation of shared resources. It is mainly used in 
manufacturing environment, in which the jobs are allocated to various machines. Jobs are the activities 
and a machine represents the resources. It is also used in transportation, services and grid scheduling. 
Conclusion/Recommendations: The result and performance of the proposed work is compared with 
the other conventional algorithm and it is also testing using standard benchmark problems.  
 
Key words: Job Shop Scheduling (JSS), Genetic Algorithm (GA), Tabu Search (TS), Simulated 

Annealing (SA), Tabu List (TL), Aspiration Criteria (AC) 

 
INTRODUCTION 

 
 Meta-heuristics is used to solve with the 
computationally hard optimization problems. Meta-
heuristics consist of a high level algorithm that guides 
the search using other particular methods. Meta-
heuristics are used as a standalone approach for solving 
hard combinatorial optimization problems. But now the 
standalone approach is drastically changed and 
attention of researchers has shifted to consider another 
type of high level algorithms, namely hybrid 
algorithms. There are at least two issues has to be 
considered while combining the more than one meta-
heuristics: (a) how to choose the meta-heuristic 
methods to combine and (b) how to combine the chosen 
heuristic methods into new hybrid approaches. 
Unfortunately, there are no theoretical foundations for 
these issues. For the former, different classes of search 
algorithms can be considered for the purposes of 
hybridization, such as exact methods, simple heuristic 
methods and meta-heuristics. Moreover, meta-heuristics 
themselves are classified into local search based 
methods, population based methods and other classes of 

nature inspired meta-heuristics. Therefore, in principle, 
one could combine any methods from the same class or 
methods from different classes. Our hybrid approach 
combines Genetic Algorithms (GAs) and Tabu Search 
(TS) methods. Roughly, our hybrid algorithm runs the 
GA as the main algorithm and calls TS procedure to 
improve individuals of the population. The rest of the 
study is organized as follows.We briefly present the 
problem description and formulation. Followed by we 
have discussed about the literature review. In fourth 
part, GA and TS methodologies are given for job shop 
scheduling. Finally implementation of the HGATS to 
the JSSP is given with the algorithm using the proposed 
method and the experimental results and a discussion of 
the proposed method are given and a conclusion and 
future enhancement is also given. 
 
Problem description and formulation: The nxm Job 
Shop Scheduling problem labeled by the symbol n, m, 
J, O, G and Cmax. It can be described by the finite set of 
n jobs J = {j0, j1, j2, j3,…..jn, jn+1} (the operation 0 and 
n+1 has duration and represents the initial an final 
operations), each job consist of a chain of operations O 
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= {o1,o2,o3,….om}, Each operation has processing time 
{ʎi1, ʎi2, ʎi3,…. ʎim}, finite set of m machines M = {m1, 
m2, m3….mm}, G is the matrix that represents the 
processing order of job in different machines and Cmax 
is the makespan that represents the completion time of 
the last operation in job shop. On O define A, a binary 
relation representing precedence between operations. If 
then u has to be performed before v. A schedule is a 
function that for each operation u defines a start time S 
(u). A schedule S is feasible if it satisfy the condition in 
Eq. 1-4: 
 

u 0 :S(u) 0∀ ∈ ≥  (1) 
 

u,v 0,(u,v) A :S(u) (u) S(v)∀ ∈ ∈ + λ ≤  (2) 
 

u,v 0,u v,M(u) M(v) :

(u) S(v)orS(v) (v) S(u)

∀ ∈ ≠ = +
λ ≤ + λ ≤

 (3) 

 

v 0Thelength of ascheduleSis len(S) max (S(u) (u))∈= + λ  (4) 
 
 The goal is to find an optimal schedule, a feasible 
schedule of minimum length, min (len (S)).  
 An instance of the JSS problem can be represented 
by means of a disjunctive graph G = (O, A, E).The 
vertices in O represent the operations, the conjunctive 
arcs in A represent the given precedence between the 
operations and the edge in E = {(u, v)| u, v∈ 0,u ≠ v, M 
(u) = M(v)}represent the machine capacity constraints. 
Each vertex u has a weight, equal to the processing time 
ʎ (u). Let us consider the bench mark problem of the 
JSSP with four jobs, each has three different operations 
and there are three different machines. Operation 
sequence, machine assignment and processing time are 
given in Table 1.  
 Based on the above bench mark problem, we create 
a matrix G, in which rows represent the processing 
order of operation and the column represents the 
processing order of jobs. Also we create a matrix P, in 
which row i represents the processing time of Ji for 
different operations: 
  

31 2

3 2 1

32 1

31 2

MM M 32 4
M M M 4 4 1G P

MM M 32 2
MM M 3 3 1

   
   
   = =
   
   
    

 

 
 The processing time of operation i on machine j am 
represented by Oij. Let ʎij be the processing time of Oij  
in the relation. Cij  represents the completion of the 
operation Oij. So that the value Cij = Cik + ʎij represents 
the completion time of Oij. The main objective is to 
minimize of Cmax. It can be calculated as Eq. 5: 

max all ij ijC max 0 0(C )= ∈  (5) 

 
 The distinctive graph of the above bench mark job 
scheduling problem is shown in Fig. 1, in which 
vertices are represents, the operation. Precedence 
among the operation of the same job is represented by 
Conjunctive arc, which are doted directed lines. 
Precedence among the operation of different job is 
represented by Disjunctive arc, which undirected solid 
lines. Two additional vertices S and E represented the 
start and end of the schedule.  
 The gantt chart of the above bench mark job 
scheduling problem is shown in Fig. 2. Gantt chart is 
the simple graphical representation technique for job 
scheduling. It simply represents a graphical chart for 
display schedule; evaluate makespan, idle time, waiting 
time and machine utilization.  
 
Literature review: Number of researchers has adopted 
GA and TS technique for solving the job shop 
scheduling problem. They include algorithms such as 
Simulated Annealing (SA), Genetic Algorithms (GA) 
(Yamada and Nakano, 1996; Gholami and Zandieh, 
2009), Tabu Search (TS) (Glover, 1989; Amico and 
Trubian, 1993; Nowicki and Smutnicki, 1996; 
Thomsen, 1997; Pezzella and Merelli, 2000), ant 
optimisation and Genetic Local Search (GLS) (Yamada 
and Nakano, 1996; Zhou et al., 2009), Scatter Search 
and Path Relinking (SS PR). The majority of GA and 
GLS approaches appear to give poor results due to the 
difficulties they have with crossover operators Tabu 
search was first presented by (Glover, 1986) and 
improved in the following years. The effectiveness of 
the technique in the job shop problem was examined by 
Taillard (1994); Laarhoven et al. (1992); Barnes and 
Chambers (1995); Amico and Trubian (1993) and 
finally Nowicki and Smutnicki (1996). All algorithms 
demonstrated outstanding results comparing to 
simulated annealing and shifting bottleneck. Calderia et 
al. (2004) presented Tabu-Hybrid using one of the 
representation for the JSSP called Permutation With 
Repetition (PWR) in which the order of operations 
within the permutation is interpreted as a sequence for 
building a schedule solution. Yu and Liang (2001) 
integrate GA with neural network for JSSP. Weckman 
et al. (2008) given solution for JSSP using neural 
network. Eswaramurthy and Tamilarasi (2009) 
presented Hybridization of Ant Colony Optimization 
Strategies in Tabu Search for Solving Job Shop 
Scheduling Problem.  
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Table 1: Processing Time and Sequence for 4×3 problem Instance 
 Operation number and Machine Processing 
Job  processing sequence  assigned  Time  
Start operation  0  --  0  
(dummy) 
J1  O11  M1  2  
 O12  M2  3  
 O13  M3  4  
J2  O21  M3  4  
 O22  M2  4  
 O23  M1  1  
J3  O31  M2  2  
 O32  M3  2  
 O33  M1  3  
J4  O41  M1  3  
 O42  M3  3  
 O43  M2  1  
End operation (dummy)  0  --  0  

 

 
 
Fig. 1: Illustration of disjunctive graph 
 

 
 
Fig. 2: A Schedule of Gantt Chart for 4X3 problem 

Instance 
 
 Gonzalez et al. (2009) presented a hybrid GA and 
TS system as in the case of Meeran and Morshed 
(2011), however (Gonzalez et al., 2009)”s proposed 
method is for the job shop scheduling problem with set-
up times. Although they have obtained some very good 
results, their proposed system is for different set of 
bench mark problems and also they have reported 
results of a limited number of established benchmark 
problems, namely 6instances of LA and three instances 
of ABZ. Most other systems (Chiu et al., 2007; Zhang 
and Wu, 2008) shown a good progress in solving a 
specific set of benchmark problems albeit in some cases 
the benchmark problems used are not from the hard 
instances of established benchmark problems such as 
LA, ABZ, ORB and FT. Furthermore, it could not be 

established from the publications that most of these 
systems work well with real life practical problems in 
addition to solving standard JSSP benchmark problems. 
The system being presented here is tested on a 
substantial number of bench mark problems including 
hard instances from FT, LA, ABZ and ORB, attaining 
optimum solutions for 48 out of 51 of them. Details of 
the results attained are available. As mentioned earlier, 
here we are presenting in this study another aspect of 
the system with regard to its application to real life 
practical cases from real life manufacturing companies.  
 

MATERIALS AND METHODS 
 
Genetic algorithm: Genetic algorithms are 
probabilistic Meta heuristic technique, which may be 
used to solve optimization problems. They are based on 
the genetic process of chromosome. Over many 
generations, natural populations evolve according to the 
principles of natural selection, i.e., survival of the 
fittest, first clearly stated by Charles Darwin in The 
Origin of Species. It starts with the initial solution 
called Population and it is filled with chromosome. 
Each element in chromosome is called gene. Job is 
represented by each gene in chromosome and the job 
sequence in a schedule based on the position of the gene. 
GA uses Crossover and Mutation operation to generate a 
new population. By crossover operation, GA generates the 
neighborhood to explore new feasible solution.  
 A typical genetic algorithm is illustrated in Fig. 3. 
It first creates an initial population consisting of 
randomly generated solutions. After applying genetic 
operators, namely selection, crossover and mutation, 
one after the other, new offspring are generated. Then 
the evaluation of the fitness of each individual in the 
population is conducted. The fittest individuals are 
selected to be carried over next generation. The 
above steps are repeated until the termination 
condition is satisfied. A GA is terminated after a 
certain number of iterations or if a certain level of 
fitness value has been reached.  
 The construction of a genetic algorithm for the 
scheduling problem can be divided into four parts: The 
choice of representation of individual in the population; 
the determination of the fitness function; the design of 
genetic operators; the determination of probabilities 
controlling the genetic operators.  
 Algorithm: GA_Procedure: 
  
Step 1: /*Initialization*/  
 Initialize 0 to MAX  
 Get the value for NUM  
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Fig. 3: A standard genetic algorithm 

 

 
 
Fig. 4: A standard Tabu Search algorithm 
 
Step 2: /*Generate initial population*/  
 Generate initial population using 
Current_Population ()  
Step 3: /*Evaluate the chromosomes*/  
 Evaluate the fitness value of current 
chromosomes using Evaluate_Current ()  
Step 4: Repeat  
 For i=0 to NUM do  
 For j=0 to 4 do  
 pop_next[j]=pop_current[j]  
 End for  
 Sorting the given set of pop_current 
chromosomes.  
Step 5: /*Reproduction strategies*/  
Apply any one Crossover strategies to get child 
chromosomes.  
Step 6: /*Mutation strategies*/  
 Apply Mutation () to mutate with low 
probability  
Step 7: /*Copy the chromosomes of pop_next to 
pop_current*/  
 For j=0 to 4 do  
 pop_current[j] = pop_next[j]  
 End for  
 Increment MAX by 1  
Step 8: /*Termination criteria*/  

 If MAX<NUM then  
 Go to Step 4  
 Else  
 Go to Step 8  
Step 9: /*Output the solution*/  
Stop.  
 
Tabu search: A typical tabu search algorithm is 
illustrated in Fig. 4. Tabu Search (TS) is a meta-
heuristic approach used to solve combinatorial 
optimization problems. TS algorithm starting from 
initial solution and iteratively generate a new solution 
through its neighborhood. In TS acceptance of moving 
to new solution in neighborhood is deterministic. It is 
one of the most efficient local search algorithms for job 
scheduling problems. It consists of the tabu list, 
aspiration criteria, neighborhood structures, the move 
attributes and stopping rules. Tabu list the list of 
records that move.  
 Tabu List (TL) is controlled by the trial solutions in 
the order in which they are made. Each time a new 
element is added to the 'bottom' of a list, the oldest 
element on the list is dropped from the 'top'. 
Empirically, TL sizes which provide good results often 
grow with the size of the problem and stronger 
restrictions are generally coupled with smaller size. 
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Best sizes of TL lie in an intermediate range between 
these extremes. The length of the tabu list is initially 
assigned according to the size of the problem and it 
will be decreased and increased during the 
construction of the solution so as to achieve better 
exploration of the search space.  
 
Aspiration Criteria (AC): Is another important 
element of TS arises when the move under 
consideration has been found to the associated with 
each entry in the TL. The simplest and most commonly 
used aspiration criterion consists of allowing a move, 
even if it is in tabu and results in a solution with an 
objective value better than that of the current best-
known solution. Many more complicated criteria have 
been implemented by different researchers and 
successfully implemented.  
 
Stopping Criteria (SC): The most commonly used 
stopping criterion in TS are either (i) a fixed number of 
iterations or ii) after some number of iterations without 
an improvement in the objective function value or (iii) 
when the objective function reaches a pre-specified 
threshold value.  
 
Proposed algorithm: The objective of the proposed 
system is to minimize the make span (Cmax) criterion, 
processing time and the number of iteration while 
satisfying all constraints. Genetic algorithm is capable 
of doing a parallel search to discover the global search 
space. Through the parallel search mechanism GA 
retains useful information about what has been learned 
from previous generations. GA searches the solution 
from a population of points instead of a single point. 
The algorithm is computationally simple and powerful. 
Tabu Search (TS) works on the individual string, which 
are points on the solution space. TS guides (Glover, 
1989; Barnes and Chambers, 1995) the iterations from 
one neighborhood point to another by locally improving 
the solution”s quality and has the ability to avoid poor 
local minima. Integration of GA and TS using their own 
strengths has a good chance of providing a reasonable 
solution to global combinatorial optimization problems 
such as JSSP. During the hybrid search process, GA starts 
with a set of initial solution and generates a set of new 
solutions. On each set of new solution, TS performs a local 
search to improve them. Then GA uses the improved 
solution of TS to continue with parallel evolution.  
 
Hybrid Genetic Algorithm and Tabu Search 
(HGATS) methodology:  
 
Proposed Hybrid Algorithm Approach:  
 Algorithm: HGATS_Procedure  
Step 1: /*Initialization*/  
 Initialize 0 to MAX  

 Get the value for NUM  
Step 2: /*Generate initial population*/  
 Generate initial population using 
Current_Population()  
Step 3: /*Evaluate the chromosomes*/  
 Evaluate the fitness value of current 
chromosomes using Evaluate_Current()  
Step 4: Repeat  
 For i=0 to NUM do  
 For j=0 to 4 do  
 pop_next [j] = pop_current [j]  
 End for  
 Sorting the given set of pop_current 
chromosomes.  
Step 5: /*use tabu search to generate new members*/  
 Using tabu search algorithm, generate 
new members in the new poplation  
Step 6: /*Reproduction strategies*/  
 Apply USXX Crossover strategies to get 
child chromosomes.  
Step 7: /*Mutation strategies*/  
 Apply Mutation() to mutate with low 
probability  
Step 8: /*improve status*/  
 Improve the status of new population by 
DynamicTabu() algorithm  
Step 9: /*Copy the chromosomes of pop_next to 
pop_current*/  
 For j=0 to 4 do  
 pop_current[j] = pop_next[j]  
 End for  
 Increment MAX by 1  
Step 10: /*Termination criteria*/  
 If MAX<NUM then  
 Go to Step 4  
 Else  
 Go to Step 8  
Step 11: /*Output the solution*/  
 Stop  
 
Procedure Current_Population is used to generate the 
new population and the new population is stored in 
pop_current variable.  
 
Procedure: Current_population ()  
 
 Inputs: RANDOM – is a random number 
generated by random () function  
 Output: Fitness value for pop_current  
 Begin  
 Assign VALUE and RANDOM  
 /*Calculate fitness function*/  
 For i=0 to 4 do  
 For j=0 to 6 do  
 Create random value for RANDOM  
 RANDOM=RANDOM%2  
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 pop_current[i].bit[j] = RANDOM  
 End for  
 VALUE=Evaluate_Current (pop_current [i])  
 /*get the value of chromosome as integer*/  
 pop_current [i].fit=Calculate_Fitness(VALUE)  
 /*calculate the fitness value*/  
 End for  
 Stop  
 
Procedure Evaluate_current ():  
 Input: pop_current[i] – for i=0 to 4  
 Output: value of chromosomes as integer  
 Begin  
 z=pop_current.bit[0]*1 + 
pop_current.bit[1]*2 + pop_current.bit[2]*4 + 
pop_current.bit[3]*8 + pop_current.bit[4]*16  
If pop_current.bit[5]==1 Then  
 z=z*(-1)  
 End if  
 End  
 
Procedure Calcuate_Fitness ():  
 Inputs: VALUE ie value of chromosome as 
integer  
 Output: objective function of chromosome  
 Begin  
 y= -(VALUE*VALUE)+5  
 End  
 
 The crossover operator involves the swapping of 
genetic material (bit-values) between the two parent 
strings. Two parents produce two offspring. There is a 
chance that the chromosomes of the two parents are copied 
unmodified as offspring. There is a chance that the 
chromosomes of the two parents are randomly recombined 
(crossover) to form offspring. Generally the chance of 
crossover is between 0.6 and 1.0 (Man et al., 1999). 
  
Representation: GA requires an appropriate 
chromosome (ie., a collection of operations) to find a 
solution (Cheng et al., 1996). All the chromosomes 
must be generated during the evolutionary process for 
feasible solution. In a traditional JSSP consist of J jobs 
and M machines starting that JxM operation. The 
chromosome [g1, g2, g3, g4, gJxM] can represent a 
schedule of JxM operations. The chromosome could be 
generated based on sequence of operations.  
 Once the basic schedule is generated, we need GA”s 
crossover and mutation to generate a further schedule.  
The fundamental crossover of GA operates on two 
parent chromosome and generates two child 
chromosomes. This operation needs to present the job 
sequence characteristics.  

 The representation of chromosome for JSSP is 
based on Cheng et al. (1996). The chromosome is an 
ordered sequence of job/operations where each gene 
represents a one operation. Order of the operations 
represented in chromosome is the order of schedule. Let 
us consider an example of 4X3 job shop problem. Each 
job shop problem has constraints for scheduling the 
operation to the machine with processing time is shown 
in Table 1. For example J1 is processed in the order 
M1, M2 and M3 and J2 is processed in the order M3, 
M2 and M1 respectively and so on. The objective of the 
algorithm is to complete all the operations of a 
particulate job with minimum possible time. Also the 
processing of operations on machines taking into 
account of the precedence and processing time of 
operations.  
 The main idea is how to represent the jobs in terms 
of sequence. In the relationship between the job 
scheduling and the chromosomes to represent the 
schedule. So that we can use the GA to find better job 
scheduling. For the above 4×3 job shop scheduling the 
chromosome such as [3 4 1 2 1 4 3 4 1 2 3 2] may be 
formed and then change the order for the better 
schedule. In the given chromosome the genes „1” 
stands for J1, „2” stands for J2 and so on. The order of 
the operation corresponds to the relative position of the 
gene. For example the first gene “3” stands for first 
operation of J3, seventh gene “3” stands for the second 
operation of J3, second gene “4” stands for first 
operation of J4 and so on. The above scheduling 
chromosome is also represented as [O31, O41, O11, O21, 
O12, O42, O32, O43, O13, O22, O33, O23]. Oij stands for the 
jth operation of the job Ji. For example O31 stands for 
the first operation of J3.  
 
Reproduction strategies: The crossover operator 
involves the swapping of genetic material (bit-values) 
between the two parent strings. Two parents produce 
two offspring. There is a chance that the chromosomes 
of the two parents are copied unmodified as offspring. 
There is a chance that the chromosomes of the two 
parents are randomly recombined (crossover) to form 
offspring. Generally the chance of crossover is between 
0.6 and 1.0 (Zhang and Wu, 2008). The following 
sections propose the new crossover algorithms for job 
shop scheduling.  
 The second genetic operator, mutation, can help 
GA to get a better solution in a faster time. In this 
model, relocation is used as a key mechanism for 
mutation. Operations of a particular job that is chosen 
randomly are shifted to the left or to the right of the 
string. Hence the mutation can introduce diversity 
without disturbing the sequence of a job”s operations.  
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Fig. 5: Unordered Subsequence Exchange Crossover 

(USXX) 

 
When applying mutation one has to be aware that if the 
diversity of the population is not sufficiently 
maintained, early convergence could occur and the 
crossover cannot work well.  
 
Unordered Subsequence Exchange Crossover 
(USXX): We introduce one more cross over strategy 
named as Unordered Subsequence Exchange Crossover 
(USXX) that children inherit subsequences on each 
machine as far as possible from parents. Unordered 
Subsequence exchange crossover creates new children”s 
even the subsequence of parent1 is not in the same order in 
parent2. The algorithm for USXX is as follows.  
 
Step 1: Generate two random parent individual namely 

P1 and P2 with a sequence of all operations  
Step 2: Generate two child individual namely C1 and 

C2 
Step 3: Select random subset of operations (genes) from 

P1 and copy it into C1 
Step 4: Starting from the first crossover point from P1, 

look for elements in P2 that have been copied as 
in the same order 

Step 5: The remaining operations of P2 that are not in 
the subset can be filled in C1 so as to maintain 
their relative ordering 

Step 6: If C1 is created then goto Step 3 to generate C2 
analogously  

 
 For example in Fig. 5 parent chromosome of M1 
is [3, 4, 1, 2, 1, 4, 3, 4, 1, 2, 3, 2]. The selected 
sequence is [1, 2, 1]. It is the first operation of J1, 
first operation of J2 and the second operation of J1 
respectively. Select the same operation from P2 even 
it is in different order.  
 In a given sample first operation of J1 is in first 
gene, first operation of J2 is in fourth gene and the 

second operation of J1 is in eighth gene respectively. 
Copy the remaining operation of P2 in to C2 so as to 
maintain their relative ordering.  
The tabu length is changed during the solution 
construction phase to increase the exploration of the 
search space and this strategy called “dynamic tabu 
length strategy” is applied in the proposed algorithm. 
The proposed algorithm to find the tabu length 
dynamically according to the iteration number is given 
below. Where the inputs are the current iteration 
number N, m, n, δ, α, β, p and q and the output is Tabu 
Length (TL).  
 
Algorithm for DynamicTabu ():  
 Start  
 If N < δ Then  
 TL = m + n, Return TL  
 Else  
 While q < n)  
 If N >= (p*δ) and N < (p*δ + q*α) Then  
 TL = (m + n) + (q*β), Return TL  
 Else  
 q = q + 1  
 EndIf  
 EndWhile  
 EndIf  
 End  
 
 The range, α and β are calculated as given in the 
Eq. 6-8 respectively. The integer parts of these 
variables are used for processing. p and q are the 
control variables used to find the position of the current 
iteration within the range interval: 

 
TOTN / (2* m)δ =  (6) 

 

/ (m n)α = δ +  (7) 

 

( 2 * m) / (m n)β = α + +  (8) 
 
 The number of jobs n and the number of machines 
m are also given as inputs. The value of the Tabu 
Length (TL) is m + n for the first range of iterations. 
For the even and odd range intervals, TL value is 
increased and decreased respectively by the value of β 
with subsequent interval value of α. This strategy 
improves the performance of the tabu search during the 
construction of the solution. TOTN represents the total 
number of iterations. TOTT represents the maximum 
number of times for which the improvement is not made 
during the construction of the solution. The length of the 
tabu list is dynamically changed by using the procedure 
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DynamicTabu () according to the current iteration 
number. If the selected neighbor si (0<i< k) is not in the 
tabu or the aspiration criterion is met, the neighbor si is 
added to the tabu. The aspiration criterion is used to 
check the condition f(S) < f (S∗). f (S) is the makespan of 
the neighborhood solution S produced by the application 
of the neighbor si which is already in the tabu and f (S∗) 
is the current best known solution. If the neighbor cannot 
be added to the tabu, the tabu list is cleared and the tabu 
restrictions are removed. This process is repeated until a 
termination criterion is met. The termination criterion is 
either reaching the maximum iterations or no 
improvements of the constructed solution for the TOTT 
number of iterations.  
 

RESULTS AND DISCUSSION 
 
 To measure the effectiveness of the proposed 
algorithm, we consider the standard JSP test instances 
of Fischer and Thomson (1963) instances FT06, FT10, 
FT20, instances from LA01 to LA40, instances 
SWV01-SWV20 and Yamada and Nakano (1996) 
instances YN1-YN4. The proposed algorithm is 
compared with Tabu Search (Nowicki and Smutnicki, 
1996), Genetic Algorithm (Gonçalves and Beirao). The 
proposed algorithm is implemented using C++ 
programming language on windows platform with Intel 
Pentium E5800, 3.2 GHz and 2GB RAM. The 
performance of the proposed algorithm ids based on the 
Relative Percentage Deviation (RPD) which is 
computed as. 
 Where Algosol is the solution obtained by different 
existing and proposed algorithms and Optsol is the 
optimal or best known solution.  
 Here the computational results are given for well-
known bench mark problems with Tabu search, Genetic 
Algorithm and HGATS.  
 

 
 
Fig. 6: Average Makespan values by Different 

Crossover Strategies for FT06, FT10 and FT20 

Table 2 shows comparison of makespan value produced 
from different algorithms for problem instances FT06, 
FT10 and FT20 (Fisher and Thompson, 1963) Column 1 
specifies the problem instances, Column 2 specifies the 
number of jobs, Column 3 shows the number of machines, 
Column 4 specify the optimal value for each problem. 
Column 5-7 specify results from TS, HGATS and GA 
respectively. It shows that HGATS with USXX 
strategy has succeeded in getting the optimal 
solutions for all the problems.  
 Figure 6 shows average makespan value generated 
by TS, HGATS and GA for different problem instances. 
It also shows that TS produce the worst result compare 
to other two algorithms and the HGATS algorithm is 
better than the other two algorithms. Figure 7 shows the 
comparison of Average Relative Error for all the three 
methods. It clearly shows that the Average Relative 
Error for HGATS is zero.  
 Table 3 shows comparison of makespan value 
produced from different algorithms for problem 
instances LA01-LA20 Column 1 specifies the problem 
instances, Column 2 specifies the number of jobs, 
Column 3 shows the number of machines, Column 4 
specify the optimal value for each problem. Column 5, 
6 and 7 specify results from TS, HGATS and GA 
respectively. It shows that HGATS with USXX strategy 
has succeeded in getting the optimal solutions for all 
the problems.  
 

 
 

Fig. 7: Average relative error values by different 
crossover strategies for FT06, FT10 and FT20 

 
Table 2: Results for instances  
 Problem size    
 ---------------------- Makespan time   Relative error (%) 
Problem Jobs Machines ---------------------------------- ----------------------------- 
name (n) (m) Optimal TS HGATS GA TS HGATS GA 
FT06  6  6  55  55  55  55  0.00  0.00  0.00  
FT10  10  10  930  932  930  930  0.22  0.00  0.00  
FT20  20  5  1165  1175  1165  1170  0.86  0.00  0.43  
Average    717  721  717  718  0.36  0.00  0.14  
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Fig. 8: Average Makespan values by different 

crossover strategies for LA01-LA20 
 

 
 
Fig. 9: Average Relative Error values by Different 

Crossover Strategies LA01-LA20 
 
 Figure 8 shows average makespan value generated 
by TS, HGATS and GA for different problem instances. 
It also shows that TS produce the worst result compare to 
other two algorithms and the HGATS algorithm is better 
than the other two algorithms. Figure 9 shows the 
comparison of Average Relative Error for all the three 
methods. It clearly shows that the Average Relative Error 
for HGATS is 0.05.  
 Typical runs of problem instances LA04, LA12 & 
LA16 are illustrated in Fig. 10-12 respectively by the 
GA, TS and proposed HGATS. In all cases HGATS 
reach the optimal solution faster than other two 
methods. For LA04, GA never produces the optimal 
solution. But GA and HGATA both are produced the 
optimal solution, whereas GA reached the optimal 
solution at 5500th iteration and HGATS reached the 
optimal solution at 4000th iteration. Similarly for LA12, 
TS reached the optimal value at 1600th iteration; GA 
reached the optimal value at 1500th iteration whereas 
HGATS reached at 1000th iteration.  

 
 
Fig. 10: The time evolutions of makespans for the 

LA04 (10 jobs and 5 machines) 
 

 
 
Fig. 11: The time evolutions of makespans for the 

LA12 (20 jobs and 5 machines) 
 
Table 3: Results for instances Lawrence, 1984 
 Problem size       
 ---------------------- Makespan time  Relative error (%) 
Problem Jobs  Machines  --------------------  ----------------------------- 
name (n) (m) Optimal TS HGATS GA TS HGATS GA 
LA01  10  5  666.00  666.00  666.00  666.00  0.00  0.00  0.00  
LA02  10  5  655.00  664.00  655.00  658.00 1.37  0.00  0.46  
LA03  10  5  597.00  608.00  597.00  600.00  1.84  0.00  0.50  
LA04  10  5  590.00  600.00  590.00 590.00  1.69  0.00  0.00  
LA05  10  5  593.00  598.00  593.00  593.00  0.84  0.00  0.00  
LA06  15  5  926.00  926.00  926.00 926.00  0.00  0.00  0.00  
LA07  15  5  890.00  895.00  890.00  890.00 0.56  0.00  0.00  
LA08  15  5  863.00  892.00  863.00  880.00  3.36  0.00  1.97  
LA09  15  5  951.00  951.00  951.00  951.00  0.00  0.00  0.00  
LA10  15  5  958.00  958.00  958.00  958.00  0.00  0.00  0.00  
LA11  20  5  1222.00  1222.00  1222.00  1222.00  0.00  0.00  0.00  
LA12  20  5  1039.00 1039.00  103.00  1039.00  0.00  0.00  0.00  
LA13  20  5  1150.00  1257.00  1150.00  1163.00  9.30  0.00  1.13  
LA14  20  5  1292.00  1298.00  1292.00  1292.00  0.46  0.00  0.00  
LA15  20  5  1207.00  1230.00  1207.00  1210.00  1.91  0.00  0.25  
LA16  10  10  945.00 950.00  945.00  952.00  0.53  0.00  0.74  
LA17  10  10  784.00  792.00 784.00 785.00  1.02  0.00  0.13  
LA18  10  10  848.00  860.00  852.00  858.00  1.42  0.47  1.18  
LA19  10  10  842.00  862.00  842.00  842.00  2.38  0.00  0.00  
LA20  10  10  907.00  907.00 907.00  907.00 0.00  0.00  0.00  
 Average   896.25  908.75  896.45  899.10  1.33  0.02  0.32  

 
Table 4: Results for instances  

   Problem size     
 -----------------------  Makespan time  Relative error (%) 
Problem Jobs Machines  -----------------  ------------------------ 
Name (n) (m) Optimal TS HGATS GA TS HGATS GA 

ABZ5  10  10  1234.00  1260.0  1234.0  1257.0  2.11  0.00  1.86  
ABZ6  10  10  943.00  960.0  943.0  943.0  1.80  0.00  0.00  
ABZ7  20  15  656.00  700.0  656.0  662.0  6.71  0.00  0.91  
ABZ8  20  15  665.00  670.0  665.0  665.0  0.75  0.00  0.00  
ABZ9  20  15  679.00 725.0  679.0  683.0  6.77  0.00  0.59  
Average    835.40  863.0  835.4  842.0  3.63  0.00  0.67  
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Fig. 12: The time evolutions of makespans for the 

LA16 (10 jobs and 10 machines) 
 

 
 
Fig. 13: Average Makespan values by different 

crossover strategies for ABZ5-ABZ9 
 
Table 5: Results for instances  

  Problem size 
 --------------------  Makespan time  Relative error (%) 
Problem Jobs Machines  ---------------------  -------------------------------- 
Name (n) (m) Optimal TS HGATS GA TS HGATS GA 

ORB1  10  10  1059.00  1093.00  1059.00  1059.00  3.21  0.00  0.00  
ORB2  10  10  888.00  903.00  888.00  888.00  1.69  0.00  0.00  
ORB3  10  10  1005.00  1025.00  1005.00  1013.00  1.99  0.00  0.80  
ORB4  10  10  1005.00  1012.00  1005.00  1005.00  0.70  0.00  0.00  
ORB5  10  10  887.00  892.00  887.00  887.00  0.56  0.00  0.00  
ORB6  10  10  1010.00  1037.00  1022.00  1025.00  2.67  1.19  1.49  
ORB7  10  10  397.00  421.00  397.00  415.00  6.05  0.00  4.53  
ORB8  10  10  899.00  95.00  899.00  899.00  6.23  0.00  0.00  
ORB9  10  10  934.00 942.00  934.00  934.00  0.86  0.00  0.00  
ORB10  10  10  944.00  952.00  944.00 962.00  0.85  0.00  1.91  
 Average  902.80  923.20  904.00  908.70  2.48  0.12  0.87  

 
Table 4-7 shows comparison of makespan value 
produced from different algorithms for problem 
instances Yamada and Nakano (1996) respectively. 
In all Table Column 1 specifies the problem 
instances, Column 2 specifies the number of jobs, 
Column 3 shows the number of machines, Column 4 
specify the optimal value for each problem. Column 
5-7 specify results from TS, HGATS and GA 
respectively. It values in the table shows that HGATS 
with USXX strategy has succeeded in getting the 
optimal solutions for all the problems. 

 
 
Fig. 14: Average relative error values by different 

crossover strategies for ABZ5-ABZ9 
 

 
 
Fig. 15: Average Makespan values by different 

crossover strategies for ORB01-ORB10 
 

 
 
Fig. 16: Average relative error values by different 

crossover strategies for ORB01-ORB10 
 
Figure 13-19 shows average makespan value generated 
by TS, HGATS and GA for different problem instances 
of Yamada and Nakano (1996) respectively. It also 
shows that TS produce the worst result compare to other 
two algorithms and the HGATS algorithm is better than 
the other two algorithms. Figure 14-22 shows the 
comparison of Average Relative Error for all the three 
methods. It clearly shows that the Average Relative Error 
for HGATS is lower than the other algorithms. 
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Table 6: Results for instances by Storer et al. 1992 
 Problem size   Optimal  Makespan T time   Relative error (%)  
 --------------------------------------- --------------------------- ------------------------------------- ----------------------------- 
Problem name Jobs (n)  Machines (m)  UB  LB TS  HGATS  GA  TS  HGATS  GA  

SWV11 50  10  2991.0  2983  3504.0  3012.00  3200.0  17.15  0.70  6.99  
SWV12  50  10  3003.0  2972  3442.0  3120.00  3250.0  14.62  3.90  8.23  
SWV13  50  10  3104.0   3876.0  3250.00  3754.0  24.87  4.70  20.94  
SWV14  50  10  2968.0   4006.0  3212.00  3487.0  34.97  8.22  17.49  
SWV15  50  10  2904.0  2885  4357.0  3589.00  4235.0  50.03  23.59  45.83  
SWV16  50  10  2924.0   3986.0  3326.00  3547.0  36.32  13.75  21.31  
SWV17  50  10  2794.0  3459.0  3005.00  3269.0  23.80  7.55  17.00  
SWV18  50  10  2852.0   3295.0  2950.00  31156.0  15.53  3.44  992.43  
SWV19  50  10  2843.0   3293.0  2934.00  3169.0  15.83  3.20  11.47  
SWV20  50  10  2823.0   3329.0  2978.00  3231.0  17.92  5.49  14.45  
 Average   2244.2  1957.1  2661.8  2375.45  3935.7  15.78  5.21  60.14  

 

 
 
Fig. 17: Average makespan values by different 

crossover strategies for SWV11- SWV20 
 

 
 
Fig. 18: Average relative error values by different 

crossover strategies for SWV11-SWV20 
 

 
 
Fig. 19: Average Makespan values by different 

crossover strategies for YN01-YN04 

 
 

Fig. 20: Average relative error values by different 
crossover strategies for YN01-YN04 

 

 
 
Fig. 21: Processing time for LT06, LA03 and LA09 

 

  
 

Fig. 22: Processing time for LA17, SWV01 and SWV10 
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Table 7: Results for instances by Yamada and Nakano (1996) 
 Problem Size  Optimal  Makespan time  
 ----------------------------- -------------------- ------------------------------------------------------------------------------------- 
Problem name Jobs (n) Machines (m) UB LB TS HGATS GA TS HGATS GA 
YN01  20  20  888.0  826.0  895.0  888.00  890.0  7.77  0.00  7.21  
YN02  20  20  909.0  861.0  925.0  909.00  910.0  7.04  0.00  5.39  
YN03  20  20  893.0  827.0  1056.0  893.00  924.0  25.64  0.00  10.86  
YN04  20  20  968.0  918.0  1112.0  987.00  1098.0  20.04  7.13  18.60  
 Average   914.5  858.0  997.0  907.50  955.5  919.25  1.78  10.51  
 
Table 8: Comparison of CPU Time and Number of Iterations to Reach Optimal makespan using TS, GA and HGATS  
 Problem size 
 --------------------------   TS   GA   HGATS 
Problem Jobs  Machines  CPU  ------------------------ CPU ------------------------ CPU --------------------------------- 
Name (n) (m) Optimal Time Iterations Makespan time Iterations Makespan Time Iterations Makespan 
FT06  6  6  55  2  27  55  1  12  55  1  8  55  
FT10  10  10  930  3  78  932  2  56  930  2  12  930  
LA01  10  5  666  32  576  666  25  552  666  10  426  666  
LA03  10  5  597  4  5952  608  4  4856  600  5  3823  597  
LA04  10  5  590  12  6784  600  12  5435  590  7  4023  590  
LA06  15  5  926  62  756  926  60  608  926  19  528  926  
LA07  15  5  890  83  873  895  75  756  890  22  784  890  
LA09  15  5  951  86  349  951  64  256  960  33  145  951  
LA10  15  5  958  84  489  958  65  178  958  31  78  958  
LA12  20  5  1039  206  1568  1039  150  1347  1039  62  958  1039  
LA14  20  5  1292  228  256  1298  124  156  1292  67  98  1292  
LA16  10  10  945  1655  2879  950  1576  1736  952  850  1238  945  
LA17  10  10  784  1250  1583  792  1233  1375  785  732  967  785  
LA20  10  10  907  1088  12846  907  1154  10237  907  836  8493  907  
ABZ5  10  10  1234  1453  13287  1260  1322  12889  1257  1002  9457  1235  
ABZ6  10  10  943  1255  10832  960  1010  9349  943  950  7584  943  
ABZ7  20  15  656  1678  12359  700  NG  9484  662  1107  7345  656  
ABZ8  20  15  665  NG**  NF*  670  1756  NF*  665  1298  5346  665  
SWV01  20  10  1407  NG**  NF*  1430  2269  12985  1430  1657  7584  1420  
SWV03  20  10  1398  NG**  NF*  1445  2567  8734  1420  1970  6483  1425  
SWV07  20  15  1620  NG**  NF*  1650  NG**  NF*  1645  4378  8679  1625  
SWV10  20  15  1767  NG**  NF*  1871  NG**  NF*  1855  5289  9363  1800  

*: The solution could not be found; **: This information is not given 

 
 Table 8 shows the comparisons of CPU time and 
number of iteration to reach optimal makespan among 
TS, GA and HGATS for the problem instances. Column 
1 provides problem instances to be used for testing 
whereas number of jobs and number of machines are 
specified in column 2 and 3 respectively. In column 4, 
optimal makespan value for each problem is given. Time 
required to reach optimal value for TS, GA and HGATS 
are specified in column 5-11 respectively and 
corresponding number of iterations are given in column 6-
12 respectively. Among three methods specified in Table 
3, HGATS performs well. For all problems, values of 
makespan are reached in HGATS with lesser time 
compare to TS and GA methods.  
 

CONCLUSION 
 
 Even though many integration techniques 
developed for solving JSSP. Integration of TS with GA 
produces a better result compare to other methods. The 
system presented here is one such system. In this 
system TS is directly used in solution string exploration 
(of GA) making the input format common to both GA 
and TS. The proposed model has been used on different 
types of real-life practical problems. The system 
described here is able to find the optimal solutions or at 

least near optimal solutions for all well-known bench 
mark problems. In almost all cases the proposed system 
performed better. On all the job shop cases on which 
this framework has been tested improved results have 
been achieved. In future this algorithm may be applied 
with the real time application to optimize the 
scheduling in production. Moreover, when this system 
was tested on 52 benchmark problems that exist in the 
literature it found optimum solutions for 39 of these 
problems and achieved an average ARE of 1.56%. 
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