
Journal of Computer Science 8 (5): 705-710, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Subbaraj, P., Sri Nandhanam College of Engineering and Technology, Tirupattur-635601,
 Vellore District, TamilNadu, India

705

Parallel Memetic Algorithm for VLSI

Circuit Partitioning Problem using Graphical Processing Units

1Subbaraj, P. and 2P. Sivakumar
1Sri Nandhanam College of Engineering and Technology, Tirupattur-635601,

Vellore District, TamilNadu, India
2Department of Electronics and Communication Engineering,

Arulmigu Kalasalingam College of Engineering,
Anand Nagar, Krishnankoil-626126, Srivilliputhur,

Virudunagar District, Tamilnadu, India

Abstract: Problem statement: Memetic Algorithm (MA) is a form of population-based hybrid
Genetic Algorithm (GA) coupled with an individual learning procedure capable of performing local
refinements. Here we used genetic algorithm to explore the search space and simulated annealing as a
local search method to exploit the information in the search region for the optimization of VLSI netlist
bi-Partitioning problem. However, they may execute for a long time, because several fitness
evaluations must be performed. A promising approach to overcome this limitation is to parallelize this
algorithms. General Purpose computing over Graphical Processing Units (GPGPUs) is a huge shift of
paradigm in parallel computing that promises a dramatic increase in performance. Approach: In this
study, we propose to implement a parallel MA using graphics cards. Graphics Processor Units (GPUs)
have emerged as powerful parallel processors in recent years. Using of Graphics Processing Units
(GPUs) equipped computers; it is possible to accelerate the evaluation of individuals in Genetic
Programming. Program compilation, fitness case data and fitness execution are spread over the cores
of GPU, allowing for the efficient processing of very large datasets. Results: We perform experiments
to compare our parallel MA with a Sequential MA and demonstrate that the former is much more
effective than the latter. Our results, implemented on a NVIDIA GeForce GTX 9400 GPU card.
Conclusion: Its indicates that our approach is on average 5×faster when compared to a CPU based
implementation. With the Tesla C1060 GPU server, our approach would be potentially 10×faster. The
correctness of the GPU based MA has been verified by comparing its result with a CPU based MA.

Key words: Genetic Algorithm (GA), Graphics Processing Units (GPUs), Memetic Algorithm (MA),

netlist partitioning, genetic programming, graphics cards, local search, physical design

INTRODUCTION

 Physical design of VLSI circuits is the process of
mapping structural representations of circuits into
layout representation. Due to the complexity of the
physical design phase it is usually broken down to sub
problems like, partitioning, placement and routing
which are then solved one after the other. This study is
concerned with the circuit partitioning problem. Circuit
net list partitioning is an important step in VLSI
physical design. This involves the breakup of a circuit
into smaller parts for ease of design, layout and
testability. The main objective of circuit partitioning is
minimization of number of interconnections between
the partitions (Sait and Youssef, 1999; Sarabian and

Lee, 2010; Go et al., 2010). Partitioning is a technique
to divide a circuit or system into a collection of smaller
parts (components). It is on the one hand a design task
to break a large system into pieces to be implemented
on separate interacting components and on the other
hand it serves as an algorithmic method to solve
difficult and complex combinatorial optimization
problems as in logic or layout synthesis. Partitioning
has been an active area of research for at least a quarter
of a century. The main reason that partitioning has
become a central and sometimes critical design task
today is the enormous increase of system complexity in
the past and the expected further advances of nano-
electronics system design and fabrication. Soaring
system complexities result from a combination of

J. Computer Sci., 8 (5): 705-710, 2012

706

reasons: Widely accepted powerful high-level synthesis
tools allow the designers to automatically generate huge
systems. By just changing a few lines of code in a
functional specification the size of the resulting
structural description (netlist) of a system can increase
dramatically. Synthesis and simulation tools often
cannot cope with the complexity of the entire system
under development and designers want to concentrate on
critical parts of a system to speed-up the design cycle.
Thus, the present state of design technology often
requires a partitioning of the system with fast and
effective optimization. Moreover, fabrication technology
makes increasingly smaller feature sizes and augmented
die dimensions possible, thus allowing, a circuit to
accommodate several million transistors. However,
circuits are restricted in size and in the number of
external connections. Thus, fabrication technology
requires the partitioning of a system into components.

MATERIALS AND METHODS

 This study addresses the problem of VLSI netlist
partitioning with the objective of optimizing cutset
while considering the balance constraint (same as
area constraint as unit area is assumed for every
gate). Formally, the problem can be stated as
follows: Given a set of modules V = {v1, v2… vn},
the purpose of partitioning is to assign the modules
to a specified number of clusters k (two in our case)
satisfying prescribed properties. In general, a circuit
can have multi-pin connections (nets) apart from
two-pin and therefore it is better to represent it by a
hypergraph. A hypergraph H (V, E) is defined where,
V is a set of nodes and E is a set of hyper edges.
Node vi Є V corresponds to an element (e.g., a gate)
in the circuit and hyper edge ei Є E corresponds to a
net in the circuit. Given a hypergraph H (V, E) with
E = {e1, e2... em} being the set of signal nets, each net
is a subset of V containing the modules connecting
the net. It is assumed that for each hyperedge e Є E,
|e|≥ 2 (it connects at least two nodes). Our task is to
divide V into 2 subsets (clusters) V0 and V1 in such
a way that the objectives are optimized, subject to
some constraints.

Cutsize: The set of hyper edges cut by a cluster C is
given by E(C) = {e Є E: 0 < |e ∩ C| < |e|} i.e., e Є E(C)
if at least one, but not all, of the pins of e are in C. The
set of nets cut by a partitioning solution pK can be
expressed as E(pk)= k

i 1 ()= iU E c or equivalently E(pk) = {e
Є E|Ξ u, v Є e; h ≠ l with u Є Ch and v Є Cl }. We say
that |E(pk)| is the cutsize of pk. The cost function f can
be written as follows Eq. 1:

e

f w(e)
∈ψ

=∑ (1)

where, ψ Є E denotes the set of off-chip edges, i.e., nets
cut. The weight w(e) on the edge e represents the cost
of wiring the corresponding connection as an external
wire. If all weights equal one, the cost function
becomes simpler Eq. 2:

f = |ψ| (2)

where, |ψ| denotes the cardinality of the set ψ.

Area or balance constraint: If we assume that the area
of all cells is identical, then the problem reduces to
balancing the two partitions in terms of the number of
cells. The balance constraint is given below Eq. 3:

1 2| |β − β ≤ α
φ

 (3)

where, βi is the number of cells in partition i , φ is the
total number of cells in the circuit, α is the tolerance
which is equal zero in case of a perfect balance. When
balance is used as cost, it will be |β1 - β2|.
 Numerous partitioning algorithms have been
developed by researchers over the years. Bui and Moon
(1998) and Alpert et al. (1996) suggested a hybrid
genetic approach for circuit partitioning. Yodtean and
Chantngarm (2004) suggested a hybrid algorithm which
combines Genetic and Simulated Annealing techniques,
to improve the performance in circuit partitioning while
using less resources. Coe et al. (2004) investigated the
feasibility of using Reconfigurable Computing
platforms to improve the performance of VLSI circuit
partitioning problem.
 Due to the fact that Memetic Algorithms (MA)
aimed at drawing the attention from two communities
of researchers with different agendas, aiming at
hybridizations of their methods, this met heuristic had
to suffer tough initial times. Today they are becoming
increasingly popular due to their impressive success
record and the high sophistication of the hybridizations
proposed. Although Memetic Algorithms (MA) are
effective in solving many practical problems in science,
engineering and business domains, they may execute
for a long time to find solutions for some huge
problems, because several fitness evaluations must be
performed.
 A promising approach to overcome this limitation is
to parallelize these algorithms using parallel, distributed
and networked computers (Yussof et al., 2011).
However, these computers are relatively more difficult to
use, manage and maintain. Moreover, some people may
not have access to this kind of computers. Consequently,

J. Computer Sci., 8 (5): 705-710, 2012

707

we propose to implement a parallel MA using graphics
cards which are available in all-pervading personal
computers. Harding and Banzhaf (2007) demonstrates
the benefit of using the graphics processor to parallelise
the genetic evaluations. Robilliard et al. (2008)
suggested about parallelizing both Genetic programs
and training data, on GPU.

Graphics processing unit: Three major factors make the
development of graphics hardware based on commodity
PCs truly outstanding in recent years. First, the
computational power of Graphics Processing Units
(GPUs) for commodity PC hardware has grown much
faster than for CPUs. Second, the high performance is
available at a very good cost/performance ratio. Finally,
within the last 4-5 years, GPUs have become
programmable by high level languages. From an abstract
point of view, the GPU is a parallel streaming processor,
particularly suitable for the fast processing of large
arrays. Thus, many researchers have started utilizing
graphics processors to enhance the performance of their
specific, in many cases, non-graphics applications and
simulations. The special field of “General-Purpose
computation on GPU (GPGPU)” has evolved offers a
survey of this emerging research area. Although
performance gains depend strongly on the application,
one can say that speedup factors around 5 against
algorithms on the CPU are commonly reported.
 Graphics Processing Units (GPUs) are fast, highly
parallel processor units. In addition to processing 3D
graphics, modern GPUs can be programmed for more
general purpose computation. The GPU consists of a
large number of ‘shader processors’ and conceptually
operates as a Single Instruction Multiple Data (SIMD)
or Multiple Instruction Multiple Data (MIMD) stream
processor. A modern GPU can have several hundred of
these stream processors, which combined with their
relatively low cost, makes them an attractive platform
for scientific computing.
 Graphics processors are specialized stream
processors used to render graphics. Typically, the GPU
is able to perform graphics manipulations much faster
than a general purpose CPU, as the processor is
specifically designed to handle certain primitive
operations. Internally, the GPU contains a number of
small processors that are used to perform calculations
on 3D vertex information and on textures. These
processors operate in parallel with each other and study
on different parts of the problem. First the vertex
processors calculate the 3D view and then the shader
processors paint this model before it is displayed.

Programming the GPU is typically done through a
virtual machine interface such as OpenGL or DirectX
which provide a common interface to the diverse GPUs
available thus making development easy. However,
DirectX and OpenGL are optimized for graphics
processing, hence other APIs are required to use the
GPU as a general purpose device. Depending on the
GPU, the number of instructions may be limited. In
order to use more than this number of operations, a
program needs to be broken down into suitably sized
units, which may impact performance. Newer GPUs
support unlimited instructions, but some older cards
support as few as 64 instructions. GPUs typically use
floating point arithmetic, the precision of which is often
controllable as less precise representations are faster to
compute with. Again, the maximum precision is
manufacturer specific, but recent cards provide up to
128-bit precision.
 The rapid increase in the number and diversity of
scientific communities exploring the computational
power of GPUs for their data intensive algorithms has
had a key contribution in encouraging GPU
manufacturers to design more powerful, easily
programmable and flexible GPUs. In addition, the
development of open-source programming tools and
languages for interfacing with the GPU platforms has
further fueled the growth of general purpose GPU
(GPGPU) applications. Further, GPU architectures have
been continuously evolving towards higher
performance, larger memory sizes, larger memory
bandwidths and relatively lower costs. This high
computing power mainly arises from a fully pipelined
and highly parallel architecture, with extremely high
memory bandwidths.
 The NVIDIA® Tesla™ C1060 computing
processor enables the transition to energy efficient
parallel computing power by bringing the performance
of a small cluster to a study station. With 240 processor
cores and a standard C compiler that simplifies
application development, Tesla scales to solve the
world’s most important computing challenges more
quickly and accurately.
 The GeForce 9400 GTX architecture has 16 stream
processors and access to 512Mb of RAM. The
theoretical performance of this card is 44 Gflops.
Although currently the GPUs in this setup are low end,
we are confident that the approach detailed here will
also be applicable to high-end and future devices.

Memetic algorithm for circuit partitioning: The
Genetic Algorithm starts with a set of initial solutions
called population that is generated randomly. When

J. Computer Sci., 8 (5): 705-710, 2012

708

generating the random initial solution it is preferred that
it is within the bounds of the balance constraint. PMX
Crossover is used as a genetic operator. It offers better
performance than most other crossover techniques.
Basically, parent 1 donates a swath genetic material and
the corresponding swath from the other parent is
sprinkled about in the child. Once that is done, the
remaining alleles are copied direct from parent 2.
Depending on the mutation rate, a few nodes are
selected randomly from the chromosome and replaced
in the other possible nodes in the chromosome. This
mutation process would permit population diversity to
be maintained in later stages of the GA. Mutation also
helps the GA to surmount any local optimum.
Individuals for the next population are selected based
on the elitist-random selection (ernd). Np/2 (Np is the
population size) best chromosomes are selected and the
remaining Np/2 are selected randomly.
 Initially, the Memetic Algorithm (MA) randomly
generates a population of individuals using the
technique described above. Then, the MA starts
evolving the population generation by generation. In
each generation, the MA uses the genetic operators
probabilistically on the individuals in the population
to create new promising search points (admissible
partitioning) and uses the Simulated Annealing (SA)
as a local search method to optimize them if the
fitness of the admissible partitioning is greater than
or equal to existing solution provided as input to the
local search.
 Simulated Annealing (SA) is a general iterative
improvement algorithm that can be used for many
different purposes. In partitioning, SA starts with a
random partition from the GA. A new state is
computed by selecting a gate at random from each of
the two subsets and swapping them. As before, the
swap remains tentative, until the quality of the new
partitioning is computed. The number of nets cut is
the measure of goodness. If the new state is better
than the old state, it is accepted and the swap is made
permanent. If the new state is worse than the old
state, it might be accepted and it might not. In most
cases the acceptance function is computed using the

following function,
s

e
T

−δ
, where δs is the change in

the quality and T is the current temperature. For bad
moves this function will produce a value between 0
and 1. A random number between 0 and 1 is
generated and if the quality measure is larger than
the generated random number, the bad move is
accepted. Recall that in partitioning, negative values
of δs are good and positive values are bad.

Memetic algorithm on GPU: We have implemented
our Memetic algorithm in MATLAB® program. The
GPU is especially well-suited to address problems
that can be expressed as data-parallel computations;
one of the most important things we can do to
prepare for GPU computing with MATLAB is to
understand those segments of our target application
where data parallel computations take place. This is
our first indication of place in our code that is
prospects for GPU computing.
 Next, profiling our application to identify the
segments of our code that represent the most time
consuming regions will provide further indication of
those segments of our code that could benefit from
GPU computing. The MATLAB Profiler tool helps
tremendously in determining where best to focus
your energy when moving code to the GPU. Looking
at the results of the profiler, a user can determine
where the program is spending most of its time and
focus transformation time to the area of code to get
the biggest return.
 GPUmat, developed by the GP-You Group,
allows Mat lab code to benefit from the compute
power of modern GPUs. It is built on top of NVIDIA
CUDA. The acceleration is transparent to the user,
only the declaration of variables needs to be changed
using new GPU-specific keywords. Algorithms need
not be changed. A wide range of standard Mat lab
functions have been implemented. GPUmat is
available as freeware for Windows and Linux from
the GP-You download page.
 GPUmat uses a technology developed by
NVIDIA called CUDA SDK which allows
programming the GPU for general purpose
applications. The GPUmat core is based on CUDA
libraries, such as CUFFT and CUBLAS and many
other functions developed and optimized by the GP-
you Group for the GPU architecture.

RESULTS AND DISCUSSION

 We experimentally evaluated the quality of the
bisections produced by our GPU based parallel
Memetic algorithm on a large number of hyper graphs
that are part of the widely used ISCAS circuit
partitioning benchmarks suite. All experiments were
carried out on Pentium Quad core 2 processor 2.6
GHz withNVIDIA Tesla C1060 computing processor
and GeForce GTX 9400 GPU display card, with 8GB
main memory and 512MB GPU memory.

J. Computer Sci., 8 (5): 705-710, 2012

709

Table 1: Performance of MA for VLSI Circuit Partitioning problem

 MA on GTX MA on Tesla

 MA on CPU 9400GPU card C1060GPU processor Speed up

Benchmark Number Number ------------------------ -------------------------- ------------------------------- --------------------------------
circuit of cells of nets Cut T(S) Cut T(S) Cut T(S) GTX 9400 Tesla C1060

S298 136 130 19 123 11 30 10 20 4.100 6.150

S386 172 165 36 163 28 50 26 40 3.260 4.075

S641 433 410 45 1868 15 300 13 200 6.227 9.340

S832 310 291 55 1055 39 500 37 400 2.110 2.638

S953 440 417 96 618 45 200 43 150 3.090 4.120

S1196 561 547 123 375 75 250 74 200 1.500 1.875

S1238 540 526 127 397 79 150 77 104 2.647 3.817

S1488 667 648 104 1238 80 454 78 406 2.727 3.049

S1494 661 642 120 1345 75 500 74 410 2.690 3.280

S2081 122 121 50 354 13 150 12 104 2.360 3.404

S3330 1962 1888 55 756 46 350 44 307 2.160 2.463

S5378 2994 2944 171 5201 151 854 140 590 6.090 8.815

S9234 5845 5822 231 9654 191 1723 180 1500 5.603 6.436

S13207 8652 8530 340 9789 311 1874 300 1604 5.224 6.103

S15850 10384 10296 421 8534 411 985 390 685 8.664 12.460

Avg. 3.897 5.202

Fig. 1: Execution time of the GPU and CPU approaches

 The GPUstart command is used to start GPUmat.
The system might have more than one GPU installed.
By default GPUstart selects the first available GPU
device. The command GPUinfo prints information
about installed GPUs. GPU-based implementation
was compared with software implementation running
on single CPU.
 The following parameters were used in the
experiments: For the Memetic Algorithm, the population
size was set to 10, the probability for crossover is 0.95
and the probability for mutation is 0.05 for all test
problems as it was the best configuration found
empirically for the Genetic Algorithm. Table1 shows the
statistics for the experiment.
 The Figure 1 shows the comparison of time
required to execute the modules on CPU platform and
GPU platforms. The speedup obtained is on average of
3.89 on GTX 9400 GPU card. By using the NVIDIA

Tesla C1060, the available global memory increases by
8GB. The speedup obtained in this case is on average of
5.202. Note that the commercial tool can be run on
several CPUs using a distributed option. If each of these
CPUs had a 9400 GTX GPU on board, then the GPU
approach could also exploit a distributed option and the
above speedup numbers would be increased.

CONCLUSION

 In this research, we have implemented a parallel
MA on consumer-level graphics cards and proposed
indirect indexing and many optimization skills to
achieve maximal efficiency. The parallel MA is a
hybrid of master-slave and fine-grained models.
Competition and selection are performed by CPU (i.e.,
the master) while fitness evaluation, mutation and
reproduction are performed by GPU which is
essentially a massively parallel machine with shared
memory. Unlike other fine-grained parallel computers
such as Maspar, GPU allows processors to
communicate with any other processors directly, thus
more flexible fine-grained EAs can be implemented on
GPU. We have done experiments to compare our
parallel MP on GPU and a Sequential MA on CPU. It is
found that the speed-up factor of our parallel MA
ranges from 1.5-8.6 while using GTX 9400 GPU card
and 1.875-12.46 while using Tesla C1060 GPU
processor. A couple of other important factors can help
to get the best performance out of our transformation to
GPUs such as avoiding of excessive memory transfer ,
inherent parallelism and computation dependency
between CPU and GPU. The first time GPUs see a new
piece of code from us, it spends some time analyzing it

J. Computer Sci., 8 (5): 705-710, 2012

710

and compiling various instruction sequences for faster
lookup on subsequent runs. That first run will be a little
slower, but for long-running computations (several
minutes) there won’t be any noticeable lag. This is
often referred to as “warm up”.
 There are still several constrains while using
GPUmat. The performance of our method will be
seriously limited because of the bottleneck GPUmat
functions. For future study, we plan to implement the
same study using either openGL or CUDA language. It
will give better performance while compare with
GPUmat functions.

REFERENCES

Alpert, C.J.L.W. Hagenand A.B.Kahng, 1996. A hybrid

multilevel/genetic approach for circuit partitioning.
Proceeding of the IEEE Asia Pacific Conference on
Circuits and Systems, Nov. 18-21, IEEE XPlore,
Seoul, South Korea, pp: 298-301. DOI:
10.1109/APCAS.1996.569275

Bui, T.N. and B.R. Moon, 1998. GRCA: A hybrid
genetic algorithm for circuit ratio-cut partitioning.
IEEE Trans. Comp.-Aided Design Integrated Cir.
Sys., 17: 193-204. DOI: 10.1109/43.700718

Coe, S., S. Areibi and M. Moussa, 2004. A Genetic
local search hybrid architecture for VLSI circuit
partitioning. Proceedings of the 16th International
Conference on Microelectronics, Dec. 6-8, IEEE
XPloor, Canada, pp: 253-256. DOI:
10.1109/ICM.2004.1434259

Go, T.F., D.A. Wahab, M.N.A. Rahman and R. Ramli,
2010. A design framework for end-of-life vehicles
recovery: Optimization of disassembly sequence
using genetic algorithms. Am. J. Environ. Sci., 6:
350-356. DOI: 10.3844/ajessp.2010.350.356

Harding, S. and W. Banzhaf, 2007. Fast genetic
programming on GPUs. Lec. Notes Comput. Sci.,
4445: 90-101. DOI: 10.1007/978-3-540-71605-
1_9

Robilliard, D., V. Marion-Poty and C. Fonlupt, 2008.
Population parallel GP on the G80 GPU. Lec.
Notes Comput. Sci., 4971: 98-109. DOI:
10.1007/978-3-540-78671-9_9

Sarabian, M. and L.V. Lee, 2010. A modified partially
mapped multicrossover genetic algorithm for two-
dimensional bin packing problem. J. Math. Stat., 6:
157-162. DOI: 10.3844/jmssp.2010.157.162

Sait, S.M. and H. Youssef, 1999. VLSI Physical Design
Automation: Theory and Practice. 1st Edn.World
Scientific, Singapore Europe. pp: 1-460.

Yodtean, A. and P. Chantngarm, 2004. Hybrid
algorithm for bisection circuit partitioning.
TENCON. IEEE Region 10 Conf., 4: 324-327.
DOI: 10.1109/TENCON.2004.1414935

Yussof, S., R.A. Razali and O.H. See, 2011. An
investigation of using parallel genetic algorithm for
solving the shortest path routing problem. J.
Comput. Sci., 7: 206-215.

