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Abstract: Problem statement: Memetic Algorithm (MA) is a form of population-basehybrid
Genetic Algorithm (GA) coupled with an individuadrning procedure capable of performing local
refinements. Here we used genetic algorithm toaepthe search space and simulated annealing as a
local search method to exploit the informationtie search region for the optimization of VLSI rsdtli
bi-Partitioning problem. However, they may execditr a long time, because several fithess
evaluations must be performed. A promising apprdaabvercome this limitation is to parallelize this
algorithms. General Purpose computing over Grapfioacessing Units (GPGPUS) is a huge shift of
paradigm in parallel computing that promises a d@tigrincrease in performanc&pproach: In this
study, we propose to implement a parallel MA ugingphics cards. Graphics Processor Units (GPUS)
have emerged as powerful parallel processors iantegears. Using of Graphics Processing Units
(GPUs) equipped computers; it is possible to acatdethe evaluation of individuals in Genetic
Programming. Program compilation, fithess case dathfitness execution are spread over the cores
of GPU, allowing for the efficient processing ofrydarge dataset®Results. We perform experiments

to compare our parallel MA with a Sequential MA ateimonstrate that the former is much more
effective than the latter. Our results, implementeda NVIDIA GeForce GTX 9400 GPU card.
Conclusion: Its indicates that our approach is on average Bfashen compared to a CPU based
implementation. With the Tesla C1060 GPU server,approach would be potentially 10xfaster. The
correctness of the GPU based MA has been veriffsazbimparing its result with a CPU based MA.

Key words. Genetic Algorithm (GA), Graphics Processing Uni&PUs), Memetic Algorithm (MA),
netlist partitioning, genetic programming, graphiasds, local search, physical design

INTRODUCTION Lee, 2010; Geet al., 2010). Partitioning is a technique
to divide a circuit or system into a collectionsphaller

Physical design of VLSI circuits is the process ofparts (components). It is on the one hand a désigk
mapping structural representations of circuits intoto break a large system into pieces to be impleetent
layout representation. Due to the complexity of theon separate interacting components and on the other
physical design phase it is usually broken dowsub hand it serves as an algorithmic method to solve
problems like, partitioning, placement and routingdifficult and complex combinatorial optimization
which are then solved one after the other. Thidysts ~ problems as in logic or layout synthesis. Partitign
concerned with the circuit partitioning problemreZiit ~ has been an active area of research for at legsarder
net list partitioning is an important step in VLSI of a century. The main reason that partitioning has
physical design. This involves the breakup of awitr become a central and sometimes critical design task
into smaller parts for ease of design, layout andoday is the enormous increase of system compléxity
testability. The main objective of circuit partiting is  the past and the expected further advances of nano-
minimization of number of interconnections betweenelectronics system design and fabrication. Soaring
the partitions (Sait and Youssef, 1999; Sarabiah ansystem complexities result from a combination of
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reasons: Widely accepted powerful high-level sysithe where,y € E denotes the set of off-chip edges, i.e., nets
tools allow the designers to automatically genenaige  cut. The weight w(e) on the edge e represents dke ¢
systems. By just changing a few lines of code in af wiring the corresponding connection as an exstern
functional specification the size of the resultingwire. If all weights equal one, the cost function
structural description (netlist) of a system cacré@se  pecomes simpler Eq. 2:

dramatically. Synthesis and simulation tools often

cannot cope with the complexity of the entire syste - | )
under development and designers want to concermrate
critical parts of a system to speed-up the desigthec
Thus, the present state of design technology ofte
requires a partitioning of the system with fast andAreaor balance constraint: If we assume that the area
effective optimization. Moreover, fabrication tectogy )

makes increasingly smaller feature sizes and augguien 8f Ia” gells,th|s tldentlczat[,t_ then_ tft‘e prob]letrr'r]w reductt)ef:as
die dimensions possible, thus allowing, a circuat t aiancing the two partiions n terms ot the numoer

accommodate several million transistors. HoweverC€llS- The balance constraint is given below Eq. 3:

circuits are restricted in size and in the numbér o
external connections. Thus, fabrication technology!Pi=Bzl_ 3)
requires the partitioning of a system into compadsien ¢

MATERIALSAND METHODS where,; is the number of cells in partition ip, is the

This study addresses the problem of VLSI netlisttotal number of cells in the circuit, is the tolerance
partitioning with the objective of optimizing cutse which is equal zero in case of a perfect balanckeiwV
while considering the balance constraint (same abalance is used as cost, it will iBg-|B,|.
area constraint as unit area is assumed for every Numerous partitioning algorithms have been
gate). Formally, the problem can be stated ageveloped by researchers over the years. Bui anthMo
follows: Given a set of modules V = {vVa... Vo},  (1998) and Alpertet al. (1996) suggested a hybrid
:geapsugggi?ii dOLSr?qrt;IélroglfnglJgté(r)salfs(lgvr:) tirrleoLnr(:}g:ée genetic approach for circuit partitioning. Yodteand

Chantngarm (2004) suggested a hybrid algorithm kvhic

satisfying prescribed properties. In general, @utr X ) _ ) .
can have multi-pin connections (nets) apart fromcombines Genetic and Simulated Annealing techniques

two-pin and therefore it is better to represerityita {0 improve the performance in circuit partitioningile
hypergraph. A hypergraph H (V, E) is defined where,using less resources. Ceeal. (2004) investigated the
V is a set of nodes and E is a set of hyper edgedeasibility of wusing Reconfigurable Computing

Node v € V corresponds to an element (e.g., a gateplatforms to improve the performance of VLSI citcui
in the circuit and hyper edge € E corresponds to a partitioning problem.

net in the circuit. Given a hypergraph H (V, E) hwit Due to the fact that Memetic Algorithms (MA)

E = {€), &... &} being the set of signal nets, each net o4 4t grawing the attention from two communities

is a subset of V containing the modules connectin%f researchers with different agendas. aiming at
the net. It is assumed that for each hypered@eke 9 ' 9

leb 2 (it connects at least two nodes). Our task is tgVyPridizations of their methods, this met heuristad
divide V into 2 subsets (clusters) VO and V1 intsuc to suffer tough initial times. Today they are beaugn
a way that the objectives are optimized, subject tdncreasingly popular due to their impressive susces
some constraints. record and the high sophistication of the hybritiores
roposed. Although Memetic Algorithms (MA) are
ffective in solving many practical problems inesaie,

there, J| denotes the cardinality of the get

Cutsize: The set of hyper edges cut by a cluster C i

9“’6” by E(C) ={ec E: 0 <|en C]| < lel} i.e.., € E(C) engineering and business domains, they may execute
if at least one, but not all, of the pins of e &r€C. The ¢, 5 long time to find solutions for some huge

set of nets cut by a partitioning solutioff pan be  proplems, because several fitness evaluations beist
expressed as Eg-U/SE(c) or equivalently E() ={e  performed.

€ EE u, v€ e; h# 1 with u€ G, and v€ G }. We say A promising approach to overcome this limitatisn i
that |E(f)| is the cutsize ofp The cost function f can to parallelize these algorithms using paralleltritisted
be written as follows Eq. 1: and networked computers (Yussat al., 2011).
However, these computers are relatively more diltfito
f =ZW(E) (1) use, manage and maintain. Moreover, some people may
ey not have access to this kind of computers. Conselyye
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we propose to implement a parallel MA using graphic Programming the GPU is typically done through a
cards which are available in all-pervading personalirtual machine interface such as OpenGL or DirectX
computers. Harding and Banzhaf (2007) demonstrateghich provide a common interface to the diverse 6PU
the benefit of using the graphics processor tolledis®  gyajlable thus making development easy. However,
the genetic evaluatlons: _Rob|II|ard§t al._(2008) DirectX and OpenGL are optimized for graphics
suggested about parallelizing both Genetic programs,,cessing, hence other APIs are required to uee th
and training data, on GPU. GPU as a general purpose device. Depending on the

) ) . ) GPU, the number of instructions may be limited. In
Graphics processing unit: Three major factors make the ,rger to yse more than this number of operations, a

development of graphics hardware based on CommOdiﬁXrogram needs to be broken down into suitably sized

PCs truly outstanding in recent years. First, th€nits \which may impact performance. Newer GPUs
computational power of Graphics Processing UnItSsupport unlimited instructions, but some older sard

]SGFt’Ust)hfor fcomcrr;cijjitySPC hgrdt\f/:ar(:]. hr?s grfown .mucr%upport as few as 64 instructions. GPUs typicalig u
aster than for s. >econd, he high performasce floating point arithmetic, the precision of whichaften

available at a very good cost/performance ratinalli . :
L ’ controllable as less precise representations aterfto
within the last 4-5 vyears, GPUs have become b P

X compute with. Again, the maximum precision is
programmable by high level languages. From an adistr i .
. . . : manufacturer specific, but recent cards providetap
point of view, the GPU is a parallel streaming j@ssor, . -
; : . 128-hit precision.
particularly suitable for the fast processing ofgéa

Th h h d ntilizi The rapid increase in the number and diversity of
arrays. Thus, many researchers have started m@lizi gqientific communities exploring the computational

graphics processors to enhance the performandeenf t power of GPUs for their data intensive algorithnas h
specific, in many cases, non-graphics applicatand had a key contribution in encouraging GPU
simulations. The special field of “General-Purposemanufacturers to design more powerful, easily
computation on GPU (GPGPU)" has evolved offers gprogrammable and flexible GPUs. In addition, the
survey of this emerging research area. Althougrdevelopment of open-source programming tools and
performance gains depend strongly on the applitatio languages for interfacing with the GPU platforms ha
one can say that speedup factors around 5 againtither fueled the growth of general purpose GPU
algorithms on the CPU are commonly reported. (GPGPU) applications. Further, GPU architecturegha
Graphics Processing Units (GPUSs) are fast, highl een  continuously evolvmg. towards  higher
) . performance, larger memory sizes, larger memory
parallel processor units. In addition to processihy

hi d b qf bandwidths and relatively lower costs. This high
graphics, modern GPUs can be programmed for mor(‘?omputing power mainly arises from a fully pipeltine

general purpose computation. The GPU consists of gng highly parallel architecture, with extremelygthi
large number of ‘shader processors’ and concegtuallmemory bandwidths.
operates as a Single Instruction Multiple Data (B)M The NVIDIA® Tesla™ C1060 computing
or Multiple Instruction Multiple Data (MIMD) stream processor enables the transition to energy efficien
processor. A modern GPU can have several hundred Qﬁarallel computing power by bringing the performanc
these stream processors, which combined with theisf a small cluster to a study station. With 240qessor
relatively low cost, makes them an attractive platf  cores and a standard C compiler that simplifies
for scientific computing. application development, Tesla scales to solve the
Graphics processors are specialized streamyorld’s most important computing challenges more
processors used to render graphics. TypicallyGR&J quickly and accurately.
is able to perform graphics manipulations muchefast The GeForce 9400 GTX architecture has 16 stream
than a general purpose CPU, as the processor fsocessors and access to 512Mb of RAM. The
specifically designed to handle certain primitive theoretical performance of this card is 44 Gflops.
operations. Internally, the GPU contains a numider oAlthough currently the GPUs in this setup are lawd,e
small processors that are used to perform calomati we are confident that the approach detailed hete wi
on 3D vertex information and on textures. Thesealso be applicable to high-end and future devices.
processors operate in parallel with each othersandly
on different parts of the problem. First the vertexMemetic algorithm for circuit partitioning: The
processors calculate the 3D view and then the shad&enetic Algorithm starts with a set of initial stituns
processors paint this model before it is displayedcalled population that is generated randomly. When
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generating the random initial solution it is preéet that
it is within the bounds of the balance constraifi¥1X Memetic algorithm on GPU: We have implemented
Crossover is used as a genetic operator. It offeter  our Memetic algorithm in MATLAB program. The
performance than most other crossover technique&PU is especially well-suited to address problems
Basically, parent 1 donates a swath genetic matnéh  that can be expressed as data-parallel computations
the corresponding swath from the other parent i®ne of the most important things we can do to
sprinkled about in the child. Once that is dones th prepare for GPU computing with MATLAB is to
remaining alleles are copied direct from parent 2understand those segments of our target application
Depending on the mutation rate, a few nodes ar&here data parallel computations take place. This i
selected randomly from the chromosome and replacedur first indication of place in our code that is
in the other possible nodes in the chromosome. Thiprospects for GPU computing.
mutation process would permit population diversay Next, profiling our application to identify the
be maintained in later stages of the GA. Mutatilma segments of our code that represent the most time
helps the GA to surmount any local optimum.consuming regions will provide further indicatioh o
Individuals for the next population are selecteddah those segments of our code that could benefit from
on the elitist-random selection (ernd)/A (N, is the ~ GPU computing. The MATLAB Profiler tool helps
population size) best chromosomes are selectedhand tremendously in determining where best to focus
remaining N/2 are selected randomly. your energy when moving code to the GPU. Looking
Initially, the Memetic Algorithm (MA) randomly at the results of the profiler, a user can deteemin
generates a population of individuals using thewhere the program is spending most of its time and
technique described above. Then, the MA start§°cus_ transformation time to the area of code tb ge
evolving the population generation by generation. | the biggest return.
each generation, the MA uses the genetic operators GPUmat, developed by t-he GP-You Group,
probabilistically on the individuals in the poputat ~ 210WS Mat lab code to benefit from the compute

to create new promising search points (admissible?ower of modern GPUs. It is built on top of NVIDIA

partitioning) and uses the Simulated Annealing (SA)CUDA. The acceleration is transparent to the user,

as a local search method to optimize them if theonIy the declaration of variables needs to be chdng

fitness of the admissible partitioning is greateart us;ng ne\;]v GPL(Jj—SpAeCIijC keywordsf. Atlgodrlthdm:/l n;etladb
or equal to existing solution provided as inputhe not be changed. A wide range of standar atla
local search functions have been implemented. GPUmat is

Simulatéd Annealing (SA) is a general iterativeava"able as freeware for Windows and Linux from

improvement algorithm that can be used for manyth® GP-You download page.

different purposes. In partitioning, SA starts wah GPUmat uses a technology developed by
random partition from the GA. A new state is NVIDIA called CUDA SDK which allows
computed by selecting a gate at random from each gfrogramming the GPU for general purpose
the two subsets and swapping them. As before, thapplications. The GPUmat core is based on CUDA
swap remains tentative, until the quality of thevne lipraries, such as CUFFT and CUBLAS and many

partitioning is computed. The number of nets cut ispther functions developed and optimized by the GP-
the measure of goodness. If the new state is bettc@;ou Group for the GPU architecture.

than the old state, it is accepted and the swapaide
permanent. If the new state is worse than the old RESUL TS AND DISCUSSION
state, it might be accepted and it might not. Insto

cases the acceptance function is computed using the We experimentally evaluated the quality of the

following function, e%és, whereds is the change in bisections produced by our GPU based parallel
Memetic algorithm on a large number of hyper graphs
moves this function will produce a value between Othat, are part of the W'd‘?'y used ISQAS circuit
and 1. A random number between 0 and 1 ideartitioning benchmarks suite. All experiments were

generated and if the quality measure is larger thaf@/ried out on Pentium Quad core 2 processor 2.6
the generated random number, the bad move i$Hz withNVIDIA Tesla C1060 computing processor
accepted. Recall that in partitioning, negativeueal and GeForce GTX 9400 GPU display card, with 8GB

of 3s are good and positive values are bad. main memory and 512MB GPU memory.
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Table 1: Performance of MA for VLSI Circuit Pantitiing problem

MA on GTX MA on Tesla
MA on CPU 9400GPU card C1060GPU processor &ppe
Benchmark Number Number — ----semeemmeemmemes s
circuit of cells of nets Cut T(S) Cut T(S) Cut T(S) GTX 9400 Tesla C1060
S298 136 130 19 123 11 30 10 20 4.100 6.150
S386 172 165 36 163 28 50 26 40 3.260 4.075
S641 433 410 45 1868 15 300 13 200 6.227 9.340
S832 310 291 55 1055 39 500 37 400 2.110 2.638
S953 440 417 96 618 45 200 43 150 3.090 4.120
S1196 561 547 123 375 75 250 74 200 1.500 1.875
S1238 540 526 127 397 79 150 77 104 2.647 3.817
S1488 667 648 104 1238 80 454 78 406 2.727 3.049
S1494 661 642 120 1345 75 500 74 410 2.690 3.280
S2081 122 121 50 354 13 150 12 104 2.360 3.404
S3330 1962 1888 55 756 46 350 44 307 2.160 2.463
S5378 2994 2944 171 5201 151 854 140 590 6.090 58.81
S9234 5845 5822 231 9654 191 1723 180 1500 5.603 4366.
S13207 8652 8530 340 9789 311 1874 300 1604 5.224 .1036
S15850 10384 10296 421 8534 411 985 390 685 8.664 2.460
Avg. 3.897 5.202
12000 —4—MA on CPU Tesla C1060, the available global memory increases
10000 MA on GTX 9400 8GB. The speedup obtained in this case is on agevhg
—4—MA on Tesla C1060 5.202. Note that the commercial tool can be run on
. 8000 several CPUs using a distributed option. If eacthe$e
] CPUs had a 9400 GTX GPU on board, then the GPU
g 6000 approach could also exploit a distributed optiod e
T 000 above speedup numbers would be increased.
2000 CONCLUSION
0 H = . .
D D S S b S A In this researclh, V\;e havr?_ |mpler(1j1ente<(jJI a paralleolI
T E P PP DGR P P MA on consumer-level graphics cards and propose
Module indirect indexing and many optimization skills to

achieve maximal efficiency. The parallel MA is a

Fig. 1: Execution time of the GPU and CPU approache YPrid of ‘master-slave and fine-grained models.
Competition and selection are performed by CPU, (i.e

. the master) while fitness evaluation, mutation and
e e S O mafepraducton are_perormed by GPU. which s
By default GPUstart selects the first available GPU ssentially a massively parallel machine with stiare

) . . i - “memory. Unlike other fine-grained parallel compster
device. The command GPUinfo prints information such as Maspar, GPU allows processors to

about installed GPUS' GPU_-based Imp!ement""t.'oQ:ommunicate with any other processors directlysthu
was compared with software implementation running oo fexibl

. e fine-grained EAs can be implemented o
on s_:_r;]gle fCﬁU d in th GPU. We have done experiments to compare our
ne 0_ owing parameters were used in t eparallel MP on GPU and a Sequential MA on CPUs It i

experiments: For the Memetic Algorithm, the pogolat found that th d-up fact f lel MA
size was set to 10, the probability for crossoge.p5 oun at the speed-up lactor of our parare
and the probability for mutation is 0.05 for allste ranges from 1.5-8.6 W_h'le using GTX 9400 GPU card
problems as it was the best configuration foung®nd 1.875-12.46 while using Tesla C1060 GPU
empirically for the Genetic Algorithm. Tablel shotke  Processor. A couple of other important factors balp
statistics for the experiment. to get the best performance out of our transforonatid

The Figure 1 shows the comparison of timeGPUS such as avoiding of excessive memory transfer
required to execute the modules on CPU platform anénherent parallelism and computation dependency
GPU platforms. The speedup obtained is on averfge detween CPU and GPU. The first time GPUs see a new
3.89 on GTX 9400 GPU card. By using the NVIDIA piece of code from us, it spends some time anagyitin
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and compiling various instruction sequences fotefas Go, T.F., D.A. Wahab, M.N.A. Rahman and R. Ramli,
lookup on subsequent runs. That first run will Hetke 2010. A design framework for end-of-life vehicles
slower, but for long-running computations (several recovery: Optimization of disassembly sequence
minutes) there won’'t be any noticeable lag. This is  using genetic algorithms. Am. J. Environ. Sci., 6:
often referred to as “warm up”. 350-356. DOI: 10.3844/ajessp.2010.350.356

There are still several constrains while usingHarding, S. and W. Banzhaf, 2007. Fast genetic
GPUmat. The performance of our method will be  programming on GPUs. Lec. Notes Comput. Sci.,
seriously limited because of the bottleneck GPUmat 4445: 90-101. DOI: 10.1007/978-3-540-71605-
functions. For future study, we plan to implemems t 19
same study using either openGL or CUDA language. IRobilliard, D., V. Marion-Poty and C. Fonlupt, 2008
will give better performance while compare with Population parallel GP on the G80 GPU. Lec.

GPUmat functions. Notes Comput. Sci,, 4971: 98-109. DOL:
10.1007/978-3-540-78671-9_9
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