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ABSTRACT

In kernel methods, choosing a suitable kernel dispensable for favorable results. No well-founded
methods, however, have been established in gefoenahsupervised learning. We focus on kernel FRpiic
Component Analysis (kernel PCA), which is a nordinextension of principal component analysis argl ha
been used electively for extracting nonlinear fesguand reducing dimensionality. As a kernel method
kernel PCA also suffers from the problem of kerctabice. Although cross-validation is a popular roeth
for choosing hyperparameters, it is not applicatitaightforwardly to choose a kernel in kernel PCA
because of the incomparable norms given by diftekemnnels. It is important, thus, to develop a well
founded method for choosing a kernel in kernel PQAis study proposes a method for choosing
hyperparameters in kernel PCA (kernel and the nurabeomponents) based on cross-validation for the
comparable reconstruction errors of pre-imageshi@ original space. The experimental results on
synthesized and real-world datasets demonstrate thea proposed method successfully selects an
appropriate kernel and the number of componentkemel PCA in terms of visualization and
classification errors on the principal componeftse results imply that the proposed method enables
automatic design of hyperparameters in kernel PCA.

Keywords: Kernel Principal Component Analysis, Pre-Imagerniée Choice, Cross-Validation

1. INTRODUCTION the original data by mapping them into a high-disienal
feature space Reproducing Kernel Hilbert Space (BKH

Dimension reduction is an essential part of mod@ta  This mapping is called feature map. A number ofhoes
analysis, where we often need to handle large diimeal have been proposed as kernel methods, which include
data. The purpose of dimension reduction may beSupport Vector Machine (SVM), (Boset al., 1992),
visualization, noise reduction and pre-processimdurther kernel ridge regression (Saundestsal., 1998), kernel
analysis. Among others, the Principal Componentlysi®  canonical correlation analysis (Akaho, 2001; Backl a
(PCA), (Pearson, 1901) is one of the most famoubods  Jordan, 2002; Alanet al., 2010), A novel multiclass
to reduce the dimensionality by projecting dataantow- SVM algorithm using mean reversion and coefficieht
dimensional subspace with largest variance. variance (Premanod al., 2013) and so on.

Kernel Principal Component Analysis (kernel PCA) It is well known that the performance of a kernel
(Scholkopfet al., 1998) has been proposed as a nonlinearmethod is dependent highly on the choice of kerret.
extension of the standard PCA and has been apied supervised learning such as SVM and kernel ridge
various purposes including feature extraction, dgng regression, cross-validation is popularly used for
and pre-processing of regression. Kernel PCA is anchoosing the hyperparameters of a kernel algorituoh
example of the so-called kernel methods (Scholleopf  as parameters in a kernel (e.g., bandwidth of Gass
Smola, 2002), which aim to extract nonlinear feaguof RBF kernel), with the objective function of leargirOn
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the other hand, no well-founded methods have beemreproduced by the kernel; namely, for any functidit
proposed in general for unsupervised learning sagch and point XIx, the function value f (x) is given by:
kernel PCA and kernel canonical correlation analysi

This study focuses on kernel PCA and proposes a _
method for choosing hyperparameters: Parametees in H )_<f ()k(x)>H @
kernel and the number of kernel principal composent
][n thelcasae of standard linear ]E’CA, tﬂe algoritiam e A where ()4 in the inner product of H. Equation 1 is called
ormulated as minimization for self-regression wit ; ; RO\ i
reduced rank and cross-validation approaches haee b the reproducing property. Replacing f wikf. ) yields
proposed for choosing the number of componentsk(x,g):<k(_,x),k(_,~x)> for any x,x X .
(Krzanowski, 1987; Wold, 1978). In contrast, whée . . .
similar regression formulation is possible for keirn To transform data for extracting nonlinear feasyre
PCA, the crossvalidation approach is not applicablethe mapping ®: x—H is defined by:®(x) = k(..x).
straightforwardly for choosing a kernel in kern@# ~ Which is regarded as a function of the first argntme
The error of the regression is given by the RKHS This map is called feature map and the veétdk) in H
norm of the feature space associated with the kerneis called feature vector. The inner product of feature

and thus the cross-validation errors are notyectors is then given dw(x)’q’(f‘)% =k(x,%). This is

comparable for different kernels. K the K | trick . tralé
As detailed in section 2, the proposed method for'nnok\évrr;lgsme(tehozrsneB nt(;]s ?ﬁé\lilqgealfe?nZ?Z;ilesé
choosing the hyperparameters of kernel PCA uses - oy this i

. . the inner product of any two feature vectors eéfitly
crossvalidation for the reconstruction errors oé-pr : ) - )
. . - . without knowing an explicit form of eithe®(.) or H.
images in the original space. The pre-image of a

feature vector is defined by an approximate inverseWith this computation of inner product, many linear
image of the feature map (Mik al., 1999). Various methods of classical data analysis can be extetaled

hods h b read i lculateréh nonlinear ones with efficient computation based on
met 0ds have been already propose _to calcu apré’e  5ram matrices. Once Gram matrices are computed, the
image of a feature vector, as explained in secfdn

X _ _ computational cost does not depend on the imen#ipna
(Mika et al., 1999; Kwok and Tsang, 2003; Bakiral., of the original space.

2004; Rathiet al., 2006; Ariaset al., 2007; Zhengt al., Kernel PCA (Scholkopfet al., 1998) conducts
2010). In the proposed method, given an evaluationyrincipal component analysis for the feature vestor
data in the cross-validation, we compute the pragen  \jore precisely, given data pointsD%, i = 1, 2,..,n

of the corresponding feature vector projected dh®  ernel PCA outputs a set of principal functions thg
subspace given by kernel PCA and then evaluate thgollowing two-step procedure: (i) transform the alat
reconstruction error of the evaluation point. _A rier nonlinearly into the feature space H, i.e.,-X®(X;), (ii)
and the number of components corresponding to thesplve the linear PCA problem for the feature vestoe.,
minimum average reconstruction error are chosen asolve the directions in H for which the variance of
the optimum ones. We demonstrate the effectiveagss {®(X)} along those directions is maximized. The

this method experimentally with various synthesized a|gorithm of kernel PCA is described as follows

and real-world datasets. (Scholkopf et al., 1998). Let

1.1. Kernel PCA D (X) := D(X) —%zj”:lcb(x ) be the centered feature
In kernel methods, the nonlinear feature map isWiv yector. The estimated covariance matrix is given by

by a positive definite kernel, which provides noaskr L - . T

methods for data analysis with efficient computatia. G~ L®(%)®(x,) with  the centered feature

symmetric kermel k(.,.) defined on a space x idedal vectors. The principal directionsJgl are given by the
positive definite if for arbitrary number of poinks,..., unit éigenveF::torsp Correspondigig tog the ylargest

X.Ux the Gram matrix (k{x x)); is positive semi-  gigenyalues and thus the problem is converted tangp
definite. It is known (Aronszajn, 1950) that a pivel the eigenequation:

definite kernel k is associated with a Hilbert spad,
called Reproducing Kernel Hilbert Space (RKHS),
consisting of functions on x so that the functiaiue is Gg=Ag
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By using the kernel trick, this problem is reduded
the generalized eigenproblem that finds

g=Y " a,®(X)such that Equation 2:

Ma =nAa, subject toa” M= :

)

where, M is the ®n centered Gram matrix defined by M
= CKC with Kj = k(X; Xj) andC=1, —%1n1ﬁ. Here In is

the identity matrix of size n and, Is the vector with n

ones. The constraint’Ma = 1 corresponds to the

condition{gi, g, = &n, whered;, is the Kronecker’s delta.
Let A=A,=>...2A >0 denote the ordered

eigenvalues of M with associated eigenvectors

ai,...0, where o; = (alj...an,-)T. The vectors are
normalized so thata/M, =3,. The j-th principal

direction g O H is then given by:

1

g; = \/Z,Zl:a”d)(x )

and the j-th principal component of the data pd&inis
given by:

<gi ld)(xi )> =\/i—(Muj) =\/)\j o0
i

For a test point X out of the sample, the j-th gipal
component is similarly given by:

e

.803) =S
_%zinqk(xi vY)

+rlez“fj:1k(Xi X, )is the centered kernel.

where, R(x,y):k(x,y)—%zi"zlk(x,xi)

1.2. Choice of Kerne

The result of kernel PCA obviously depends on the

choice of kernel. It is often the case that thenkéhas

s in Gaussian RBF kernel and degree d and constant
in the polynomial kernelRig. 1). From the figure, we
see that in both the kernels the results of keR@A
depend strongly on the parameters and an apprepriat
choice is indispensable for the method to give
reasonable low-dimensional representation of data.

It is known that the standard PCA can be formulated
as a self-regression or reconstruction problem;aham
the first r principal components of centered data

{xi}: OR®are equal to the projections Biven by the
reduced rank regression:

fpiQanHXi - ABX, | subject to BE = |
=)

where, A and B are>at and xd matrices, respectively.
Based on this regression formulation, the crosslatbn
approach (Stone, 1974) has been used for the sthnda
PCA to choose the number of components (Wold, 1978;
Krzanowski, 1987) by minimizing the above self-
regression errors.

In a similar manner, the kernel PCA can be also
formulated as the self-regression of the centeeadufe
vectors. In fact, it is easy to see that the firptincipal
directions are given by:

2

min Zn:

fj0; OH T

cb(xi)—z;;fj (g,,8(x))

H

where, f, gOH with (g, g) = §;. One might expect that
this self-regression formulation could be appliedthe
cross-validation method for choosing a kernel imnké
PCA. This is not possible, however, because the/eabo
regression error is measured by the RKHS norm given
by the kernel and thus the errors are not comparabl
among different kernels.

The goal of this study is thus to propose a method
of choosing a kernel (and the number of components)
in kernel PCA by introducing a criterion comparable
for different kernels.

some parameters like the popular examples shown "Mrable 1. Examples of popular kernels with parameters

Table 1. In such a case, these parameters may haV(f\l

. ame of kernel
To depict the
influence, using Wine data (see section 3) we showGaussian RBF kernel e

strong influence on the results.

the plots of the first two kernel principal compoite
with different values of inverse band width paraenet
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Fig. 1. Plots of the first two kernel principal componefdswine data: Gaussian RBF kernel is used in dipepianel (a) s = 0.05 (b)
$=0.75(c) s =1 (d) s = 10 and polynomial keiméhe bottom (e) c=0.001,d=2 (f)c=10,46g)c=1,d=3(h)c=1,d=4

2. MATERIALSAND METHODS of learning a pre-image map was developed by Balak.
_ (2004). To apply this technique, we need an adutio
The proposed method for choosing a kernel and theregularization parameter. Some authors have extende
number of components uses cross-validation by thethese approaches in different ways (Rathal., 2006;
comparable reconstruction errors in the originacgp  Arias et al., 2007; Zhengt al., 2010). More recently, a
To evaluate the errors, we need to solve the pegignof  two-stage closed-form approach has been also pedpos
the feature vectors projected on the subspace diven (Honeine and Richard, 2011). These advanced methods
the principal directions. We first give a brief iew of however, usually require some tuning parameters. We

pre-image methods. use the fixed-point method in our proposed method,
since it has a simple form for Gaussian RBF kernel.
2.1. Pre-lmage of Kernel PCA We here explain the fixed-point method for solving
_ _ _ ~ the pre-image problem in the kernel PCA setting.: Le
While many kernel methods provide their output in x, x, ... , % OR™ be the training data for kernel

the form of feature vectors in the RKHS, in some pca and g,=Y,a,®X)(j=1..) be
problems we want to find a point in the originaheg. . o=t T
Mika et al. (1999), kernel PCA is applied to a denoising principal d|rect|onsl. The projector onto the sulespa
task, in which an image corresponding to the RKHS spanned by {gj}j:l is denoted by P ie,
vector obtained by kernel PCA is used as a denoised | ) i i .
version of the original image. Rf=3(f.9)g . Given test point X in the original
Given a vector fin RKHS H, it is in general nospible  space, x the feature vector projected onto thecipah
to find a rigorous pre-image, that is a point Xfia original  subspace is given by ® (X). The pre-image of this vector
space such tha(X) = f holds exactly. We thus define an ;, the RKHS is defined by the minimizer of Equat@n
(approximate) pre-image of f by the minimize of;

the unit

2

min|f - & (Z)| p(2) =HP' d(X) _(D(Z)HH 3)
ZOH H
In the original paper, Mikat al. (1999) have used the It is easy to see that:

fixed-point iterative method. Many other approaches

have been also proposed to solve the pre-imagdegmob p(2)=
A non-iterative approach of distance constraint lhesn

proposed by Kwok and Tsang (2003), while it is +le ®(X)
dependent on the choice of neighborhood. An approac

®(2)[ -2(®(2).RO(X),

4
Hi:k(z,z)—z_z:l:yik(z,x)+9 )
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Feature spaces

where, v, :zjha“ajhk(xh,X) and Q is a constant

independent of Z.
For Gaussian RBF kernel, Equation 4 is equal to

p(Z):1—22?21yie_4‘x'_4‘ +Q and by setting the

derivative zero we obtain the fixed-point algorithm

KPCA , o

z =z‘,in:1yie_sHXI _Z‘H X :Zinzla X (5)
" Syet T LA
j=1Yi

L

where,a, =y e 12

In the case of polynomial kernels, the fixed point g, :
condition does not r(JJIe%ve such an iterative forntraps HipRisgin A %”“O_{E}l Pre-image space
Gaussian RBF kernel. We thus use the steepestrdesce
method for Equation 4 in our experiments on polyiam Fig. 2. Architecture of kernel choice in kernel PCA
kernels in section 3.4.

Input: D = {X.X7,...X,;}in R™. Parameters {s,...,sr}
2.2. Method for Hyper parameter Choice for kernel k,. Threshold TH.
For the objective function of cross-validation, we 1. Seth=1.

use reconstruction errors between a test point & an
the corresponding pre-image Z of the projecteduiieat

vector R ®(X) given by kernel PCA. The 1y Seri=1.
reconstruction errors are measured by the distafice
the original spacex =R™ . By this approach, unlike the

2. Do the following steps:

(2) Solve kernel PCA for D — {X;} with kernel k,

regression error in the RKHS, we can consider (Eq. 2.

comparable errors for different kernels. The (3) Compute the approximate pre-image Z:’ for X;
architecture of the proposed method is givefiig. 2. using the fixed-point method Eq.(d). The itera-
The algorithm of the kernel choice in kernel PCA is tion stops il |[Z;41 — Z,|l < TH.

given inFig. 3. We describe the Leave-One-Out Cross (4) Compute the reconstruction error Ef = |[X; —
Validation (LOOCV) for simplicity, but the extensgio Z2.

to the general K-fold cross-validation is (5) b= b+ 1

straightforward. By a similar algorithm we are abde
select the number of principal components or any
other hyperparameters. 3. Compute the LOOCV error E* = L y2 | ph.
In solving approximate pre-images, the fixed-paint
the steepest descent method may be trapped by local
minima. To avoid this problem, we use five inifdints 5. If h > T. END. Otherwise, go to 2.
for the optimization algorithm and choose the hmst.
As shown in the next section, the obtained pre-gmsag
give appropriate results. Guputy Sypy = 5y 4
Note also that the fixed-point method may not
work well for a very |arge inverse-bandwidth S,csjn Flg 3. Algorithm of kernel choice in kernel PCA with
the term of the nearest ¥ dominant in the right hand Gaussian RBF kernel
side Qf Equation 5 so that, Znay stay at X In the 3. RESULTS
experiments, we set a reasonable parameter range of
by checking the kernel PCA results with two We apply the proposed method for choosing the
components. parameters in a kernel and the number of principal

(6

e

If i > n, BREAK: otherwise go to (2).
4 h=h+1.

6. h,p := arg min, E*,
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components in kernel PCA for various datasets. &8ans We prepare the inverse bandwidth parameters
RBF kernel is used except section 3.4, where potyab ~ s(0{0.05, 1, 5, 10, 25, 50} and(¥1, 5, 10, 20, 50,
kernel is discussed. We use two synthesized anensev 100, 200} for Synthesized data-1 and Synthesized
real-world datasets, which are summarizedl able 2. data-2, respectively and calculate the LOOCV
For the real world datasets, we standardize eaghbl@  reconstruction errors by pre-images. To see the
of data before applying kernel PCA. In solving pre- variations over sampling, we generate 100 sampules f
images, we take initial values from the uniform each case of data 1 and 2 and make boxpfotsire 4
distribution on the interval [-1; 1]. The detailed shows (a): Scatter plots of a sample of the origina
discussions on the results will be shown in secfion datasets, (b): The boxplots and (c,d): The scatiwis
. of first two kernel principal components with thedb

3.1. Synthesized Data kernel bandwidths (c) and with other ones (d). Ve ¢

We use two synthesized datasets to illustrate thesee by comparing (c) and (d) that the proposed oaeth
effectiveness of the proposed method. Each datasdt chooses a hyper parameter that can separate three

two dimension and have three clusters. clusters clearly, which suggests the effectivenefs
Synthesized data-1. About 175 data are generatedhe method. Note that kernel PCA does not use the
along three circles of different radii with smatlise: explicit information of the three clusters, whileety
are displayed with different colors and markers for
COS( Z) visualization purpose.
X. =r + (6) . .
sin(z ) Table 2. The configuration of datasets
Dataset # data Dimension # classes
where, 1 = 1, 0.5 and 0.25, for i = 1,...,100, i = iiﬂiﬂiiliiﬂé e 2 gg
101,....,150 and i = 15-1,....,175, respectively[1[-Tg, Wine 178 13 3
m andJ; ON(O, 0.01 }) independently. Diabetes 145 3 3
Synthesized data-2. This is an example taken fromBUPA 345 6 2
(Scholkopf and Smola, 2002). The dataset has 15CFertility 100 9 2
points, which consists of 50 points from each ok¢h  Zoo 101 16 7
Gaussian distributions with means (-0.5, -0.1), () USPSG-500 500 256 5
and (0.5, 0.1) and variance 0.1. Food 961 6 -
e g = = < =0
!_4‘ 5 a By " ML o7 ® % -A' . ml _‘
14 T | - % 4 N
alf £z o S T EEI o% be d D*l #
st ¢ 3} 5| 1FLipTA .
O Rl I I T T "
‘| E““-U ) n"-'!;lf ._.j P —J " ‘r '
= o, T 2 s * o [Y =)
‘10 -05 00 05 1.0 CAPSLE A T 5 b 5 o' 5 0 5 1o
: § g _-?-_ '(2 5 ;;Iu =] =200
g i .:;":_ '3;“ ] ? + i w0 - w0 - g
o + + -
g 37 % T LT : H o o - ‘j‘,
2] =gees; P SN
2 gl ILl:-"* el Nl .
C AL 5 0 5 5 0 5
(b) (c) (d)

Fig. 4. Kernel PCA for Synthesized data-1 (top) and Syritlegisdata-2 (bottom), (a) scatter plot for the wamiables of a sample.
(b) boxplots of the LOOCV reconstruction errors fod0 samples, (c,d) scatter plot of the first twernel principal
components using (c) the best inverse kernel wigths5, 10) and (d) larger bandwidths s = 50, 200
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3.2. Computational Cost errors for all the hyperparameters are showiahle 4,
. . from which we see that the selected hyperparameters

To illustrate the computational cost of the attain  the minimum or close to the minimum
p_roposed method, the CPU time (”_1 second) for SIX classification error for all the datasets. Thisgesgs that
different sizes of data (n) .and five numbers of the proposed method provides  appropriate
components (1) using synthesized data-2 are shown i pyperparameters that maintain the cluster structure
Table 3. The CPU time increases as the sample size isffective for the classification tasks.
optimization of pre-images Is heavier for .Iarger datasets in dimensionality and sample size. USRS da
samples. The C(_Jnflgura'uon of the computer is Intel (Songet al., 2008) consists of ¥@6 gray scale images
(R) Core (TM) i7 CPU 920@ 2.67 GHz., memory of handwritten digits and thus the dimensionality266.
12.00 GB and 64-bit operating system. We have usedrhe original dataset has 2007 images, but we draw
‘kernlab’ package in R program for implementatidn o 1(g images from each of five digits 1, 2, 3, 4,rila
the kernel PCA. Gaussian RBF kernel is used inverseqqd Gaussian noise with mean 0 and standard
band width s = 50. deviation 0.01. The dataset is referred to as USPSG
3.3. Real World Problems 500. We take seven inverse bandwidtti§0s0001,

. . 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025} and teigh
We first apply the proposed method to five datasets ,ympers of kernel principal components{2, 4, 8,

Wine, Diabetes, BUPA liver disorders, Fertility arido, 16, 32, 64, 128, 256}. The LOOCV reconstruction
the former three of which are taken from Izenmzi0g) errors in the proposed method are showr able 5,
and available at the website of the book and thterla ;, which the minimum is attained at s = 0.01 arw |
two are taken from UCI Machine Learning Repository g4 The kNN (k = 5) misclassification rates estietht

(Bache and Lichman, 2013). _ with LOOCYV are also listed in the table.
As the kernel PCA is an unsupervised method, the  \ye next apply the proposed method to the

evaluation of results is not straightforward. Since . iritional value of food, which is not for

kernel PCA is often used as a pre'proceSSingclassification. The dataset has 961 food items with

technique for regression _anq cla55|f|ca_t|on, W€ hutritional components as attributes (Izenman, 2008
evaluate the LOOCYV classification errors with the k . . .
We consider seven values of inverse bandwidtlis s

NN classifier (k = 5) to see the appropriatenesghef (0.001, 0.1, 0.5, 0.75, 1, 5, 10, 100, 200} andefiv
hyper parameters chosen by the proposed method;

Note that we do not use the class labels for kernelnumbers of _componentsl]] {1, 2,3, 4,5 6} The
PCA, but use them only for evaluating the results are displayed ihable 6. The smallest LOOCV

classification errors. reconstruction error is attained at s = 0.5 and2.=

We consider a set of inverse bandwidth¥{0s05 Since, unlike classification tasks, it is not
0.10, 0.25, 0.50, 0.75, 1.00, 10.00} and six nursksr straightforward to evaluate the performance of the

kernel principal components {2, 3, 4, 5, 8, 10} for proposed mtho_d, we show the scaFter plots ofitee f
each dataset. The LOOCV reconstruction errors ised two kernel principal components using three valaks
the proposed method and the LOOCV classificationinverse bandwidths[$0.001, 0.5, 200} inFig. 5.

Table 3. Computational cost (in second) of the proposed atethr synthesized data-2 with di-erent data s{pg¢sand the numbers
of components (1)

N/I 2 4 6 8 10

100 20.3 20.3 22.3 285 29.0
200 86.8 87.0 102 110 152
400 512 549 610 684 896
600 1.5410° 1.55¢10° 1.56x10° 1.63x10° 2.2310
800 3.3%10, 3.4x10° 3.6710° 3.51x10° 4.7%10°
1000 6.0&610° 6.51x10° 6.50x10° 6.5%10° 1.07%10*
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Table4. Five real-world data sets. LOOCYV reconstructiomesiand LOOCYV classification errors for inverse daitths (s) and the
number of components (l), the minimum values aréitewr in bold fonts and the classification errorsthwthe
hyperparameters chosen by the proposed methodhdeslined

Reconstruction errors Classification errors

S/ 2 3 4 5 8 10 2 3 4 5 8 10
Wine

0.05 3.749 3.846 3.952 3.713 3.893 4.040 5.056 33.93 3.371 2.809 3.371 2.809
0.10 3.418 3.495 3.582 3.560 3.556 3.845 2.247 92.80 3.371 2.247 2.809 3.371
0.25 3.422 3.506 3.531 3.885 3584 3.733 2.247 92.80 4.494 3.933 5.618 5.618
0.50 3.518 3.603 3.651 3.719 3.790 3.723 3.933 75.05 6.180 5.618 7.303 8.427
0.75 3.789 3.703 3.751 3.858 3.882 3.939 25.281 037.3 6.180 6.180 7.865 9.551
1.00 3.788 3.923 3.883 3.919 3.807 3.825 33.708 3330. 9.551 8.427 9.551 10.674
10.00 4.131 4.070 4.005 4.073 4,119 4.134 39.888 5781 42.697 41.011 38.764 42.135
Diabetes

0.05 2.343 2.398 2.183 7.591 16.027 20.605 20.6901.31P 21.310 20.000 20.000 20.000
0.10 1.761 1.872 1.795 1.713 4.879 6.913 23.448 31P1. 21.310 24.828 24.138 25.517
0.25 1.598 1.467 1.660 1.636 2.066 2.751 20.690 0020. 21.310 20.690 21.379 20.000
0.50 1.505 1.318 1.492 1.476 1597 1.712 22.069 6920. 20.000 21.379 21.379 21.379
0.75 1.555 1.494 1.560 1.519 1575 1.716 21.379 00BO0. 22.069 22.069 22.069 21.379
1.00 1.626 1.617 1.609 1.530 1.647 1.512 20.690 4433. 24.138 20.690 20.000 20.690
10.00 2.362 2.167 2.152 2.098 2,292 2.269 37.241 .2437 40.000 34.483 36.552 37.241
BUPA

0.05 2.964 2.751 2.758 2.190 5.462 5.300 42.319 4783. 40.580 42.029 42.029 42.029
0.10 2.439 2.232 2.325 2.042 4.266 4.838 48.116 6646. 41.739 47.826 48.116 47.826
0.25 2.064 2.042 2.012 2123 2175 2.269 50.145 6948. 42.029 50.145 50.145 50.145
0.50 2.138 2.148 2.077 2.238 2166 2.071 50.145 95%6. 44.638 49.855 49.855 49.855
0.75 2.253 2.196 2.147 2.364 2.138 2.241 53.333 6092. 49.855 53.333 53.333 53.623
1.00 2.128 2.177 2.154 2.282 2.256 2.123 50.145 1893. 47.826 50.145 50.145 50.145
10.00 2.464 2.447 2.467 2427 2.392 2.481 44.058 .9284 44.928 44,058 44.058 44.058
Fertility

0.05 3.955 4.132 4.100 3.911 3.876 3.811 13.000 00D4. 16.000 13.000 13.000 13.000
0.10 3.570 3.568 3.560 8.067 3.490 3.428 15.000 0001. 12.000 15.000 15.000 15.000
0.25 3.325 3.330 3.349 3.279 3.442 3.407 11.000 00D4. 15.000 11.000 11.000 11.000
0.50 3.601 3.592 3.630 3.713 3.764 3.559 13.000 0001. 11.000 13.000 13.000 13.000
0.75 3.896 3.848 3.911 4.031 3.624 3.673 10.000 0000. 12.000 10.000 10.000 10.000
1.00 3.989 3.936 3.892 3.919 3.774 3.819 12.000 0005. 13.000 12.000 12.000 12.000
10.00 3.678 3.663 3.568 3.714 3.489 3.500 12.000 .0005 13.000 12.000 12.000 12.000
Z00

0.05 4.581 4.644 5.460 6.051 7.434 5.957 12.871 8712. 13.861 12.871 11.881 11.881
0.10 3.861 3.858 3.816 3.820 4.886 5.369 14.851 8811. 12.871 15.842 16.832 14.851
0.25 3.607 3.615 3.632 3.748 3.863 3.871 19.802 84p5. 10.891 17.822 19.802 19.802
0.50 3.572 4.078 3.460 3.637 3.935 3.667 22772 8712. 11.881 22.772 22.772 21.782
0.75 3.523 3.501 3.801 3.750 3.893 4.140 27.723 72387. 26.733 26.733 24.752 24.752
1.00 3.738 3.853 3.866 3.999 3.896 4.013 24.752 7435. 30.693 22.772 24.752 25.743
10.00 4.013 4.049 3.992 4.024 4.037 4.006 56.436 .4653 48.514 55.446 55.446 56.436

{0.1, 0.5, 1, 5, 10, 25, 50}, two values of degckEl {2,
3} and four numbers of kernel principal compondnis
We use the proposed method for choosing the{2, 3, 4, 5}. The results are given irable 7. We observe
hyperparameters in the polynomial kernel. Using &Vin that the smallest LOOCV reconstruction error isiagd
dataset, we consider seven values of offset paeasel] in the area close to the minimum classificatiooerr

3.4. Polynomial Kerne

///// Science Publications 1146 JCS



Md. Ashad Alam and Kenji Fukumizu / Journal of Cartgy Science 10 (7): 1139-1150, 2014

Table5. USPSG-500. LOOCYV reconstruction errors and LOOQssification errors (bold numbers indicate the minn value)

s/l 2 4 8 16 32 128 256
Reconstruction errorsin the proposed method

0.0001 1139.810 1203.316 1159.020 752.494 134.936 30.618 143.080 534.779
0.0010 129.168 129.627 124.333 110.106 143.470 382.7 69.729 203.068
0.0025 42.422 40.708 44.493 38.588 51.707 26.516 4992 107.448
0.0050 18.967 21.120 22.642 20.010 18.957 20.592 .8286 33.991
0.0075 18.989 15.903 16.963 14.804 14.369 13.909 .8794 17.523
0.0100 16.648 15.081 14.161 12.785 12.485 12.444 .7815 14.270
0.0250 13.339 13.498 13.149 13.085 13.915 14.173 .0864 14.595
Classification errors (%)

0.0001 32.000 11.200 4.600 2.000 3.000 3.000 3.400 4.000
0.0010 31.000 12.200 4.400 2.200 2.800 3.000 3.000 4.200
0.0025 31.400 11.600 4.400 2.600 2.200 3.000 3.200 3.400
0.0050 31.600 11.000 4.600 3.00 1.800 2.400 3.600 4004
0.0075 28.200 11.400 4.800 3.400 1.800 2.800 3.200 5.200
0.0100 31.000 15.200 4.400 3.800 3.000 2.200 2.600 5.000
0.0250 45.800 25.400 7.600 5.200 5.600 6.800 5.200 15.600
Table 6. LOOCYV reconstruction errors for food data

S/ 1 2 4 5 6

0.001 20.226 18.741 18.334 18.361 18.462 13.901
0.1 2.215 2.024 1.977 1.840 1.849 1.956
0.5 1.923 1.738 2.143 2.097 2.034 1.922
0.75 1.817 1.908 1.883 1.891 1.850 1.930
1 1.854 1.844 1.813 1.798 2.050 1.927
5 2.306 2.214 2.128 2.229 2.203 2.238
10 2.380 2.286 2.200 2.239 2.808 2.259
100 1.987 1.982 1.943 2.014 2.088 2.234
200 2.070 2.066 2.097 2.123 2.234 2.192

Table7. Polynomial kernel for Wine data: LOOCV reconstrantierrors and the LOOCV classification errors (boltmbers

indicate the minimum value)

=2 =3 4 I=5
c/d 2 3 2 3 2 3
Reconstruction errorsin the proposed method
0.1 4.165 3.807 4.059 3.818 4.108 3.821 4.153 3.805
0.5 4.051 3.781 3.978 3.758 4.003 3.768 3.952 3.805
1.0 3.976 3.837 3.888 3.869 3.966 3.709 4.023 3.819
5.0 3.752 3.859 3.759 3.813 4.108 3.803 4.153 3.739
10.0 3.784 3.780 3.740 3.810 4.003 3.762 3.952 2.79
25.0 3.755 3.820 3.709 3.730 3.966 3.768 4.023 53.77
50.0 3.761 3.782 3.735 3.724 3.750 3.777 3.736 3B.74
Classification errors (%)
0.1 18.539 17.978 16.292 3.933 15.730 5.056 15.730 4.494
0.5 14.045 17.978 11.798 3.933 11.798 3.933 14.045 4.494
1.0 15.730 16.292 12.360 3.371 11.798 3.933 8.989 .9333
5.0 2.247 3.371 3.933 3.371 3.933 3.371 1.685 3.933
10.0 2.809 1.685 3.371 2.809 1.685 3.371 2.247 92.80
25.0 3.933 3.371 2.809 2.247 4.494 2.247 2.247 72.24
50.0 4.494 3.933 2.809 2.809 4.494 2.247 2.247 72.24
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Fig. 5. Visualization of the first two kernel principal cponents of food data (a) s = 0.001, (b) s = 0.5@nsl= 200

4. DISCUSSION Izenman (2008) provides detailed analysis on thkelte
of kernel PCA with a hand-tuned bandwidth parameter
While kernel PCA has been applied in various aofas A meaningful “curve” structure is observed in theesult
machine learning, such as dimensionality reducfeature of two-dimensional kernel PCA. As shownFiyg. 5, our
extraction, de-noising and so on (Scholkopf and I8mo method automatically chooses such a hyperparameter
2002; Rathiet al., 2006; Hofmann, 2007; Zhers al., that accords with the observation in Izenman (2008)
2010; Feng and Liu, 2013), in most cases the kemthe We can also observe frofireble 7 that the proposed
number of features are chosen in a heuristic wageRly,  method chooses the hyperparameters for kernel PCA
multi-kernel PCA (Renet al., 2013) has been also jth polynomial kernel so that the corresponding
proposed, which applies combination of multiplerkss | oocv for classification error attains the third she
instead of choosing one. It is well known, howewBat  This accords with the observation on the othersagth
the multi-kernel approach results in a computatigna Gaussian RBF kernel and demonstrates the
heavy algorithm, which may need advanced optintrati appropriateness of the proposed method.

technique. The method proposed in this study, in . i
. . 4 Regarding the computational cost of the proposed
contrast, is based on the reconstruction errorthén othod. the pronosed method needs to solve the
original space, which can be regarded as a natural . prop .
preimage problem for each of the data, which masea

extension of the aim of the standard linear PCAe Th ional i for | q stble 3 sh
required computation is simply cross-validationhat & computational issue for large data Setble 3 shows
that the computational time increases roughly

basic optimization algorithm such as the fixed-poin _ i -

or gradient method. quadratically with respect to the sample size. 8duce
We provide detailed discussions on the experimentaithe computational cost, it may be possible to udg a

results for real-world data sets in section 3. Forpart of data for evaluating reconstruction errors i

classification data sets, we can see frbable 4 and 5 choosing hyperparameters.

that the hyperparameter (bandwidth parameter in

Gaussian RBF kernel and the number of principal 5. CONCLUSION

components) gives the best or close to best LOOCV

classification error: The best for Wine data ané th We have discussed the kernel PCA and proposed a

. method for choosing hyperparameters, optimal kernel
second or third best for the other 5 data setallloases, (parameters in a kernel) and the number of kernel

we observe that the chosen hyperparameters are ttos principal components, through the LOOCV for the
the best parameters for the classification errdiesE  o-onstruction errors of pre-images. We have made
experimental observations imply that the proposedempirical studies using synthesized examples aati re
method gives appropriate hyperparameters, with lwhic worig datasets. For evaluation of the proposed attth
the low dimensional features obtained by kernel PCAjn addition to visualization, we used classificatierrors
represent effective information of data. for the projected data onto the subspace choseieby
From Table 6 and Fig. 5, we can see that the method, if the data set is provided for a clasatftm
hyperparameter chosen by the proposed method g®vid task. We have observed that for all the datasets
the features with clearer structure than the other classification performance of the kernel PCA chokgn
hyperparameters used in (a) and (c). For this data  the proposed method is the best or close to thé bes
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among the candidates of hyperparameters. TheBache, K. and M. Lichman, 2013. UCI machine leagnin
experimental results imply that the proposed method repository.
successfully provides an automatic way of findimghs  Bakir, G., J. Weston and B. Scholkopf, 2004. Leagnb

hyperparameters that give appropriate low-dimeradion Find Pre-Images. In: Advances in Neural
representation of data by kernel PCA. Information Processing Systems, Thrun, S., L. Saul
There are also limitations of the proposed method. and B. Scholkopf (Eds.), MIT Press, Cambridge,
First, the optimization such as fixed-point andeptest ISBN-10: 0262201526, pp: 449-456.
descent method for computing the pre-image hasBoser, B.E., .M. Guyon and V.N. Vapnik, 1992. A
possibility of being trapped by local optimum. Apiplg training algorithm for optimal margin classifiers.
other pre-image methods to alleviate this problefbe Proceedings of the 5th Annual Workshop on
an important future research. Second, since ouhadet Computational ~Learning Theory, Jul. 27-29,
uses the cross-validation with pre-image optimaratit Pittsburgh, PA, USA,  pp: 144-152. DOL

10.1145/130385.130401

Feng, Y. and Y. Liu, 2013. A cellular automata mode
based on nonlinear kernel principal component
analysis for urban growth simulation. Environ.
Plann. B, 40: 116-134. DOI: 10.1068/b37142

may be time-consuming for large datasets. One Ipl@ssi
approach is to use a part of data for evaluating
reconstruction errors and it is also an interesfirtgre
direction to develop a more efficient way of
hyperparameter choice for kernel PCA. Third, the Hofmann, H., 2007. Kernel PCA for novelty detection
reconstruction errors in the proposed method asshate Patt. ' .’Recoén. 40- 863-874. DOI:
the original space admits a metric, while kerneAR@n 10.1016/j.patcog.2'006.07.009

be applied to more general data spaces includimg N0 oneine P and C. Richard, 2011. A closed-form

metric spaces. It is also among our future studées solution for the pre-image problem in kernel-based
consider hyperparameter choice applicable to kernel  machines. J. Signal Process. Syst., 63: 289-299.

PCA for non-metric spaces. DOI: 10.1007/s11265-010-0482-9
Izenman, A.J., 2008. Modern Multivariate Statidtica
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