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ABSTRACT

In the last years the development of interactiven@oter-based methods for building virtual and
physical 2.5D models from single shaded imagesdagi&h an exponential growth. In particular, a
wide range of methods based on image processingdbpsocedures and on Shape From Shading
(SFS) can be documented. On the basis of the naostrdble techniques devised in literature, the
present work describes an improved interactive nettapable of retrieving 2.5D models using image
shading information. The pro-posed method perfoan®S-based reconstruction where (1) the overall
geometry of the expected surface is first recovenad (2) the final 2.5D reconstruction is obtairmd
minimizing a suitable functional using the rouglrface as an initialization function. The method
improves previous interactive works by introducegovel two-step rough surface recovery and a new
definition of a functional to be minimized for sahg the SFS problem. Tested against a set of case
studies the proposed method proves to be effeatipeoviding 2.5D models.
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1. INTRODUCTION certain circumstances, often by means of useraictien.
Image embossing (Huamyal., 2011; Golchiret al. 2013)

In recent years a strong improvement of Computer-is one of the most used methods for recovering5® 2.
based methods for retrieving shapes from singlelestha model from single image. It consists of a compbtesed
images can be documented (Remondino and El-Hakimmethod where each pixel, for a given image, isacsal
2006; Stylianou and Lanitis, 2009; Muruganatieaal., either by a highlight or a shadow, depending ohtAitark
2014). This is particularly true when dealing with area boundaries on the original image. The ressiially
simplified 3D models (Algabargt al., 2014; Vaniet al., resembles a bas-relief but, due to the algorithsedan
2012), such as virtual bas-relief representaticalso( image gradient computation, depth is reconstruotedn
named 2.5D models). A digital bas-relief delivers a inconsistent way. Other techniques (e.g., the one
volumetric projection of shapes into the viewepsce, proposed by Sunet al., 2009) for improving
so that it is detached from the two-dimensional embossing-based methods have been proposed so far,
background (Kerbesgt al., 2010); as a result, a nearly flat mainly based on image pre-processing such as
surface maintaining as much as possible the peortept histogram equalization and image enhancement.
of the full 3D scene can be generated (Weysthl., Also into commercial software packages, like JDnPai
2007). A major issue in the retrieval of this “riga3D (Wanget al., 2010) and Art CAM (www.artcam.com), are
shape” is that it results in an ill-posedness abfgm as  developed specific tasks for 2.5D reconstructiooweler,
stated by (Tsai and Shah, 1994) consequently, aptev these packages are mainly CAD modelers where user
literature works are typically aimed to solve itden interaction is a strongly required in both the arel post-
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processing phases. Another widely known technique,and standard deviation. Moreover, the 2.5D modetxel
besides implemented in commercial software, isshe  is obtained by minimizing a new, improved and fioral
called “image inflation”. This technique consiste i where both smoothness and brightness constraint are
constraining the outlines of the object to be wiltiu weighted. As described below, once the initialoati
reconstructed (Igarashi al., 2007; Repenning, 2005) and, function is obtained, the setting of the weightstfe two
subsequently, in inflating the surface. A different constraints results quite easy.

perspective in 2.5D model reconstruction is providsy

Shape From Shading (SFS) techniques, a set of compu 2. MATERIALS AND METHODS

tational approaches whose main aim is to re caisting
three-dimensional shape of a surface depicted simgle
grey-level image. In detail, as described by (Dugbdl.,
2008), SFS methods are based on the hypothesiththat
image pixel brightness linearly depends on the eangl
between the surface normal and the direction ofesce *  Definition of a suitable functiondt

ilumination. Even if SFS proves to be effective in * :g‘rzgealprocessmg'ba%d high frequency details
reconstructing shapes of shaded objects, unfoeiyritey IV ) .

prove to be unsuitable for producing high-qualigeliefs ri?)t(gli:‘ai\elgl eor];oerl fruor:ch[ir(])r?ac\)l:éuggglinz}(/j Tslmrg;“:sn?n&t
(Wang et al., 2010) unless a certain degree of human

. S . . the new starting image
interaction is provided. To overcome this drawbaak, . Retrieval of a rough solutioR, by minimizing the

number of interactive methods have been proposed functionalE with high smoothness values and using,

The proposed method starts from a given shaded
digital image of the object to be reconstructed iat
2.5D representation and consists of the followingirm
steps, as described kig. 1

(Daniel and Durou, 2000; Wet al., 2008); as a matter of as input, the original image

fact, interactive SFS methods may be considerechgiiie <«  Retrieval of the rough solutiorR as a linear
best candidate techniques for generating high tgu2a5D combination oRR; andR,

models starting from single images. For this reagora ~ *  Retrieval of the final surface (digital 2.5D model)
previous authors’ paper (Goverd al., 2014) a method usingR as initialization function for a Gauss-Seidel

iterative procedure with Successive Over Relaxation

combining image filtering and SFS for retrievingb2. (SOR) method

models starting from single images was proposedhén
above cited approach, authors minimize a suitable2 1. Definition of a Suitable Functional E
functional (i.e., the so called SFS problem) cdimgjsof
two terms, namely brightness and smoothness contstra : O

functional whose minimization allows to recover the

The minimization is carried out using as initiafiaa expected shape of the object. In this work, such a
function a surface roughly resembling the shapehef  fnctional is obtained under the following specific

image to be reconstructed (i.e., a smoothed vewfidhe  hypothesis, usually adopted in almost all SFS-based
original shaded image). This is obtained by applyin  techniques: The surface to be reconstructed is ety
Gaussian low-pass filter. Even if the results @f thethod  diffusive (i.e., Lambertian); the albedo is constanthe

are quite robust, the use of a Gaussian filteodhitces two ~ entire reconstruction domain; the light source és &
variables to be set: The size of filter kernel tivelvalue of  infinity; image is free from perspective distortion
Gaussian standard deviation. Moreover, the formethoual It all the above conditions are fulfilled, it is
requires a manual, optimal, setting of a weightiegpon possible to state the h|§tor|cally known SFS proble
smoothness constraint; the greater is the choder, e (Horn, 1970) Equation 1.

smoother is the retrieved solution. Accordinglythaihe o
aim of improving the method proposed in (Govestril., LIN=
2014) the present work describes a 2.5D reconstruct

method where the smoothed surface used for iaitiglithe where, is the unit-vector opposed to light directio is

SFS problem is obtained by using a proper polynomia the outward unit-length vec-tor normal to the scefa
approximation of the (discrete) surface built frémimage (unknown of the problem), is the albedo and his t
height map. This allows the definition of a smodthe image brightness; since starting image is grayscthis
surface without the need of taking into accouterfikernel  term indicates both the image and its brightness.

The first step consists in the definition of a ahle

[ (1)
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Fig. 1. Original image |. The image is obtained by authors
start-ing from a sphere properly modelled usingA\®C
software and providing a virtual illumination ogtkcene

This equation, where the unknown is the vector, is

usually expressed using surface gradient as wmkno
term thus resulting in the following non-linear &alr
Differential Equation 2 (PDE):

L) 14|07 +0,1,)mz-1,= 0 )
P
Several works are in literature for solving

Equationl, mainly based on direct methods (Kimnmel a
Bruckstein, 1995; Pradas al., 2006; Rouy and Tourin,

1992), minimization methods (Frankot and Chellappa, O(E(1)) = A(l)®+b

1988; Governiet al., 2013; Horn, 1990; lkeuchi and

B(I):Z(;Ii -NJ D:} (4)

ib

sh=> (N-N) (5)

{i. ;0D

and wherd is the pixel index]j is the index of a generic
pixel belonging to the 4-neighbourhood of ith pjxedk the
brightness of pixel (range [0-1])N, and are the unit
length vectors normal to the surface (unknown)asitpns
i andj, /A, is a regularization factor for brightness constrai
and J, is a regularization factor for smoothness constrain
Since both of the two constraint8 ¢(I) and S (I)-are
quadratic, the resulting functional is a quadriatin too.

Let now @ be the array containing the elements of
all N, defined as follows Equation 6:

1 2 k

® =[n, n,...,n¢ n

2 k 21 ,.,2 k
8o GO ol ol K

(6)

where, is the overall number of pixels; as a redti
functional can be rewritten in a matrix form Eqoati7:

E(I):%¢TA(I)¢+<DTb+c @)

Whose minimization can be carried out
minimizing its gradient Equation 8:

by

(8)

Horn, 1981), local approximation methods (Lee and where, A(l) (size kxk ) is a sparse symmetric matrix.
Rosenfeld, 1985) and linear approximation methodspepending on values set for regularizing smoothaess
(Tsai and Shah, 1994). brightness constraint, the definition Afl) values changes
Among  them,  minimizaton methods are considerably i.e., a different functional can béirsel for

acknowledged to afford the right compromise betweenany choice of values, and A . The indirect minimization
efficiency and flexibility leading to robust resailalso  of the functional expressed in Equation 8 allowprtvide
when the starting point consists of a noisy image 0 the final solution of the SFS problem, i.e., theented
imprecise illumination settings (e.g., guessed tligh syrface. The minimization can be accomplished ipjyamm
direction when unknown). Minimization methods are well known linear methods (e.g., Jacobi, Gaussebeid

based on the hypothesis that the expected (recotesth)
surface is the one that minimizes a suitable fonet,

composed by the sum of several contributions (dalle

“constraints”) and usually representing the erremleen
the (iteratively) reconstructed surface and theeetqd
one. In the present work, such a functional isthbasl a
linear combination of brightness

constraints, as follows Equation 3 to 5:
E(1) =AB(1) + A,S(1) 3)

where,
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Successive-Over-Relaxation (SOR) etc.) since theyige
fast convergence to a minimized (optimized) sofutio

2.2. High Frequency Details Removal

Depending on the values selected fotand A the

and smoothnesssurface reconstruction may differ in terms of highe

details (using higher values for) or higher smoetm
(using higher values for). A correct balancing between

the two regularizing factors could allow a reliable
reconstruction by taking into account both contiitins.

JCS
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However, unrelatedly of the method used for
minimizing Equation 8, one of the main drawbacks of
direct minimization is that it often falls to theearest
local minimum (instead of the global ones).
Consequently, the optimal setting of regulariziagtérs
is not sufficient to guarantee a correct reconsitvac

In order to overcome this shortfall, minimization
algorithms need to be suitably initialized by imipgsan
initial guess to the solution. A convenient wayptovide a
reliable initial guess of the final solution (i.¢o, initialize
properly the minimization procedure) consists efting a
low-frequency version of the desired surface. A vkmo
method for discarding image high-frequency detail$o
use a convenient low-pass filter; by way of exampie
(Governiet al., 2014) a Gaussian filter is used as a main
step for retrieving the rough surface. However, ctiniag
filters are kernel-based operators and, thereftmejr
effectiveness depends on kernel dimension and lm&igh
pixel values. With the aim of retrieving a roughface
globally, i.e., regardless of the local pixel valuend the
kernel size, in the present work a surface appratiim of
image height map using polynomial approximatiousisd.

Let accordingly | be the original image to be
reconstructedHig. 1). Such an image has been obtained
using a digital object whose virtual illuminatioashbeen
provided under a CAD software environment. Using
brightness as an elevation factor, it is possibléuild a
height map H for the original imag€i@. 2). Obviously,
higher values in the height map are located in
correspondence of the higher brightness valuesine.
the areas where scene illumination insists.

Once H is defined, by means of a least-square
approximation using a cubic polynomial approximatio
it is possible to discard brightness contribute ttuboth
high frequency details and illumination so as toiege a
surface resembling a very smoothed surface.

In Fig. 3the surfacd is over-imposed to the original
(discrete) set of data.

The surface I~ strongly differs from the one
obtainable using, for instance, a smoothing fi{tere for
instanceFig. 4 where a Gaussian filter is applied to the
original image and a surface is then retrieved gisin
brightness as surface heigtfjgure 5a shows the image
I resulting from the application of the proposed rodth

ter Science 10 (10): 2141.22944

by Equation 3 and using as an initialization fuoctiThe
minimization procedure requires setting a series of
Boundary Conditions (BCs). In the present worksaru
based procedure has been adopted for imposing such
BCs. The description of the best BCs to be impdsed
solving this kind of minimization problem (beyonket
scope of the present work) has been extensively
discussed in (Goverrt al., 2013). On the basis of this
work, the BCs taken into account are the followimgs:
Background, singular points (boundary white andtevhi
points) and silhouette contou¥ig. 6).

Such BCs are set by means of an interactive GUI
(Fig. 7) developed using MATLAB® environment.

First, the user is required to select a single tpin
the image belonging to the object background. An
automatic procedure has been implemented for diegect
the overall background and setting the verticalt-uni
normal in all the background points so that thesytauilt
perfectly horizontal in the final 2.5D model.

Then, analogously to the BC taken for
background points, user has to set a specificngrinal
vector for all the singular points (i.e., white pt in
image) and their boundaries.

For such points the brightness level of the image
reaches its maximum value (equal to 1); as a
consequence the unit normal is set (by an appgsitel
devised procedure) so that it coincides with vettor

Finally, again by user interaction, it is necesstry
set the value of the unit normal around its sillteué.e.,
on its outline), as inward or outward-pointing degeag
on the kind of surface, respectively convex or awec
This assumption, valid when the object represeniagi
be clearly separated from the background (i.e.,dbr
real shapes) is meant to determine the coarse eobfm
the shape. Once the BCs are set, the GUI allows
inspecting (see the histogram positioned upper iteft
the GUI) the number of imposed conditions for eath
the described BCs. Moreover, the devised interface
allows to check the possible over-imposition of
constraints; in case more different conditions are
imposed to the same point, a procedure for removing
the redundant BCs starts. Once the user is satisfye
the imposed BCs, the procedure provides, as ougut,
modified matrix formulation of the gradient wheteet
number of unknown is reduced (since the unit normal
for each point with imposed BC is obviously solved)

the

compared with the image obtained using a Gaussian  The mogified formulation is the following Equatién

filter (Fig. 5b) it can be visually noticed a more uniform
gray level obviously due to the approximating scefia.

2.3. Retrieval of a Rough Solutiorr;

Once the surface is obtained, it is possible teesol
the SFS problem by minimizing the functional desed
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O(E,(1) = AD+b, 9)

WhereE, (1), Ay, B, and® are the “reduced” versions
of, respectivelyE (1), A, B and®. Minimizing Equation
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9 means recovering 2.5D model for the smoothed émag 2.5. Retrieval of the Rough Solution R as a

For this a}im, the regularizing factor is set elqngl Linear Combination of R; and R,

while A, is set equal to 10-2. As already mentioned, ) ) )

the main strength in minimizing the functional hése Since two versions of a smoothed surface visually
the use of the surface as initialization function. f€sembling the overall geometry of the original gea
Minimization is carried out using a Gauss-Seidel are available, a final rough solutiéhcan be obtained

iterative procedure with Successive Over Relaxation@S @ linear combination & andR,. In this work the
(SOR) method (Ikeuchi and Horn, 1981). weights of the linear combination are set equa).®
Minimization procedure is stopped after a predafine SC as the surfac® coincides with the mean value
number i of iterations whose value depends on theP&tweenRi andR.

image size n x m. In particular the number of 3 g Retrieval of the Final Surface

iterations is set equal to Oxin x m. The final result of )

this step consists of a normal m@pfrom which, using As already stated, one of the main strength of the
the approach described by (Tsai and Shah, 19943, it Proposed procedure rely in the fact that the
possible to exactly retrieve the surface, Bhat minimization procedure can provide a more reliable
generates a low-frequency version of the final, solution if the _iterative process is guided by iadit
desired, surface. IRig. 8 the surface obtained starting 9uess of the final surface. In such terms, the low-

from image inFig. 5ais provided. frequency surfac® can be an effective initialization
] ) surface. Accordingly, once the surfaBeis obtained,
2.4. Retrieval of a Rough Solution it is possible to compute its normal még and to use

Despite the rough solutioR; visually resembles the it for initializing Equation 8. Minimization can ém
overall geometry of the original image, the imaifering proceed using again a Gauss-Seidel iterative
could have been, generally speaking, removed tochmu procedure with Succ_e_sswe Over Relaxation (SOR)
details. In order to partially overcome this poksib Method. The regularizing factoss,and A, are now
drawback, another rough solutidR) is evaluated. Such a balanced (e.g., both equal to 1). _
surface is retrieved by minimizing the functional o The resulting normal map is, eventually, converited
Equation 3 using a low value for (e.g., = 0.2 anhigh  the final surface  using the approach proposed by
value for (e.g., = 2). This approach allows tdagb a (Wu et al., 2008). InFig. 10the surface obtained for

very smoothed surface (sEig. 9). the exemplificative case ofFig. 1 is shown.
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Fig. 2. Height map (H) obtained for image |
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Fig. 3. Smoothed surfade over-imposed on the original data set

50
200
£
3 150- ,
72100 i
w
£ |
® 0 100
o o
400
300
200
Pixels .
Pixels

Fig. 4. Surface obtained by filtering original data witiGaussian filter

@ (b)

Fig. 5. (a)Image resulting from the application of the prambsethod; (b) image resulting from the applicatbéa Gaussian filter
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Fig. 7. GUI devised under MATLAB® environment. The GUI@lls the user to interactively set the BCs
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Fig. 8. SurfaceR; obtained by minimizing Equation 9

Fig. 10.Final surface obtained by minimizing Equation ggghe surface as initialization function
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3. CASE STUDIES balancing the regularizing factors closely resemble

the expected surface. It has to be noticed thaheve

The devised method has been tested against afinest details, as wrinkles or veins, have been
extensive set of case studies in order to highlightcorrectly reconstructed. Conversely, the result
strengths and possible weaknesses. In the preapet p oObtained using image embossing-based techniques

two of them are reported. (Fig. 17D is significantly worse thus demonstrating the
effectiveness of authors’ method with respect tchsa
3.1. Case Study 1: Old Man’s Head traditional one.

The first case study consists of a grayscale image3z 2 Case Study 2: Darth Vader Helmet
representing an old man’s head detailed with sévera

features such as: The wrinkles on the skin and the The second case study is a synthetic image
parietal branch of the superficial temporal artery  'epresenting the legendary Darth Vader helntag.(

the temple Fig. 11). 193). Using the proposed procedure, it is possible to
In Fig. 12 the  height map of the original Tetrieve the 2.5D model &fig. 19b _

image is shown. Since the ground truth is avallablg for this case

Using the approach described above, the polynomiaStudy, @ color map of the absolute distance between

approximatior” can be easily retrievefig. 13. the retrieved surface and such a ground trkip.(14)

Using I as initialization function it is possible to has been produced in order to highlight the exgstin
retrieve the surfac®, (Fig. 14) using the approach differences. The analysis &fg. 19§1and b points out _
described in section 2.3 that the proposed method provides good results in

By using the approach described in section 2.4 It reconstructing .2'5D model_s from single shaded
possible to retrieve surface EEig. 15). images. In particular, referring to _the color mab_o
Finally, surface R is evaluated as a linear Fig. 20it can be observed that the final reconstruction

combination ofR; andR,. Such a surface is shown in generally resemt_)le_s the or_iginal i_mage. Moreover an
Fig.16. As it is clearly visible inFig. 17a the final ~ @bsolute error within 10% is obtained for the se&ton
results obtained by minimizing the functional of case study; this can be considered reasonablenior t
Equation 3 using  as initialization function and kind of representations.

Fig. 11.0ld man’s head original image
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Fig. 15.Surface obtained for old man’s head image
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Fig. 16.SurfaceR obtained for old man’s head image
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Fig. 17. (a)2.5D model obtained with the proposed methi{b§i2.5 D model obtained using a traditional embossieghod
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Fig. 20.Color map of the absolute distance between thieved surface and such a ground truth

Table 1. Computational time for differently sized images

Image size [pixels x pixels] Number of iterations or@ergence time [s] ([min]) Time per iteration [ms]
100x100 10000 4.00000 4.00
200x200 40000 22.00000 5.50
500x500 25000 326 (5.43) 13.04
1000x1000 100000 3124 (52.06) 31.24

4. CONCLUSION was performed starting from the retrieval of a

preliminary surfaceR roughly resembling the desired
The present work described an improved digital 2.5D model. Such a surface, created asieali
interactive method for single image based surfacecombination of two surfaces, one obtained by remgvi
reconstruction obtained by improving the approachhigh frequency details from original image and the
proposed in (Governit al., 2014). The reconstruction other one obtained using an interactive SFS-based
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