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Abstract: Error correcting codes, also known as error controlling codes, 
are set of codes with redundancy that allows detecting errors. This is quite 
useful in transmitting data over a noisy channel or when retrieving data 
from a storage with possible physical defects. The idea is to use a set of 
code words that are maximally distant from each other, hence reducing the 
chance of changing a valid codeword to another valid codeword by flipping 
bits. The problem can be viewed as picking m codes out of 2n available n-
bit combinations, such that the aggregate hamming distance among those 
codewords is maximized. Due to the large solution spaces of such 
problems, greedy algorithms are sometimes used to generate quick and 
dirty solutions. However, modern evolutionary search algorithms like 
genetic algorithms, swarm particles, gravitational search and others, offer 
good alternatives, yielding near optimal solutions in exchange for some 
time. Chemical Reaction Optimization (CRO) has emerged as a new 
evolutionary algorithm to solve complex optimization problems. This 
algorithm mimics the molecular interactions towards finding a minimal 
energy state, which corresponds to an optimal solution for the problem in 
hand. In this research, we proposed a solution for the maximally distant 
codes allocation problem, through a binary knapsack mapping and 
compared the performance with the well established Ant Colony 
Optimization (ACO) algorithm, which is inspired by the ant’s capability to 
find the shortest path between the nest and source of food. The binary 
knapsack mapping was used in the two algorithms. Test results showed that 
the CRO outperformed the ACO in every metric given any time budget.  
 
Keywords: Maximally Distant Codes, Evolutionary Algorithms, Chemical 
Reaction Optimization, Ant Colony Optimization 

 

Introduction  

Allocating sets of codes with maximum aggregate 
mutual distances for use as error control codes is of 
great significance and finding optimal solutions for 
practically sized problems using full search is a 
challenge due to the prohibitively large solution 
spaces. For example, the solution space of the small 
instance (7, 16, 3), which requires finding a set of 16 
codewords of 7 bits with minimal mutual Hamming 
distance of 3, is at least 1020, ruling out any exact 
search methodology. Table 1 shows various code 
lengths n and the number of codewords with minimal 
distance d of 3 and 5.  

Evolutionary optimization algorithms offer optimal 
or near optimal solutions in reasonable time. Many 
evolutionary algorithms have been used to solve 
complex problems with varying time and quality 
tradeoffs. The CRO and ACO algorithms have 
emerged recently as new methods to efficiently 
explore such large spaces with reasonable computational 
resources. In this study, we mapped the maximally 
distant code allocation problem to the well known binary 
knapsack problem and compared the performance of 
those two algorithms in finding sets of codewords of 
various length and cardinality, using a weighted fitness 
(or cost) function to provide balance between two 
objectives; mean and minimum distance. 
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Table 1. Codewords with minimal distance 

n d=3 d=5 

6 8 2 
8 20 4 
10 72-79 12 
12 256 32 
14 1024 128 
16 2560-3276 256-340 

 

Literature Review 

Dorigo and Gambardella (1997), proposed an early 
work of ACO; an artificial ant capable of solving both 
symmetric and asymmetric Traveling Salesman Problem 
(TSP), using a natural metaphor to design an optimization 
algorithm, through a sensibility analysis to help tune the 
parameters of an ant colony model where ants leave a 
fuzzy trace of pheromone to mark their track and its 
neighborhood. Recently, many complex problems were 
solved by variants of the ACO algorithm with great 
success; Baterina and Oppus (2010) presented an edge 
detection technique by establishing a pheromone matrix 
representing the edge information at each pixel based on 
the routes formed by the ants dispatched on the image. 
The ants movement was guided by the variation in the 
intensity values. Experimental results have shown the 
success of the technique in extracting edges from a digital 
image. Yu et al. (2005) developed a coarse-grain parallel 
ACO algorithm to develop an optimization model for bus 
transit network based on road network, aiming at 
achieving maximum passenger flow and minimum 
transfers per unit length with non-linear rate and line 
length as constraints. It used a heuristic pheromone 
distribution rule, by which path searching activities are 
adjusted according to the objective value. Hung et al. 
(2007) reported analysis using a lower pheromone trail 
bound and a dynamic updating rule for the heuristic 
parameters based on entropy to improve the efficiency of 
the algorithm in solving the TSP, with extremely large 
problem space and claimed superior search performance 
over traditional ACO algorithms. Lorpunmanee et al. 
(2007) addressed the scheduling problem by developing a 
general framework of grid scheduling using dynamic 
information and an ACO algorithm to improve making 
decisions, by comparing its performance with various 
dispatching rules such as First Come First Served (FCFS), 
Earliest Due Date (EDD), Earliest Release Date (ERD). 
G <omez (2005) proposed the Omicron ACO (OA); a 
population-based ACO alternative originally designed as 
an analytical tool and proved the advantages of the OA by 
experimentally comparing the behavior of the OA and the 
MMAS as a function of time. The ACO algorithm 
performance has been boosted by involving other 
techniques in its internal workings; for example, 

Zaferanieh et al. (2009) used an ACO and Simulated 
Annealing (SA) algorithms to find the core of a graph, 
such that the total travel cost time required for the demand 
points to reach the closest vertex on this path is 
minimized. Ginidi et al. (2010) developed a new fuzzy-
logic based ACO algorithm, taking into consideration the 
uncertainties that can be found in both the heuristic and 
the pheromone factors, by considering fuzzy levels in 
calculating the involved parameters. They proposed a 
stochastic-based technique to enable the artificial ant to 
choose the best oncoming step based on the values of the 
probabilities and their corresponding fuzzy levels. The 
proposed algorithm gave the optimal solution in a form of 
an optimal value and its corresponding fuzzy level, using 
benchmark Quadratic Assignment Problem (QAP) and 
TSP. Ho et al. (2006) proposed an algorithm that 
incorporated key features of the tabu-search method in the 
development of a relatively simple but robust global ACO 
algorithm and used numerical results to validate and 
demonstrate the feasibility and effectiveness of the 
proposed algorithm in solving Electromagnetic (EM) 
design problems. Shieh et al. (2003) focused on the 
transmission of codebook indices in a noisy environment, 
to minimize the impact of channel noise, using ACO to 
find a suitable index assignment and reported that the 
channel distortion was substantially reduced without 
incurring extra cost such as that in error-detection code 
and error-correction code. Eldos et al. (2013a) used the 
ACO algorithm to solve the Printed Circuits Boards 
Drilling Problem (PCBDP), by finding the best order to 
drill each set of holes of the same diameter. Kanan et al. 
(2013) used the ACO in solving the routing problem in ad 
hoc mobile networks. 

Haas and Houghten (2009) compared the performance 
of many evolutionary algorithms with local search and 
greedy methods, in solving the error-correcting-code 
problem and concluded that the GAs were the best of all 
other algorithms in general, with even more performance 
advantage as the cases got harder. Bland (2007) resolved 
the question of the utility of the crossover operator in earlier 
studies on optimizing DNA error correcting codes, where 
the crossover operator in question was found to be 
substantially counterproductive and the majority of the 
crossover events produced results that violated the 
minimum distance constraints required for error correction. 

Hwanga et al. (2005) investigated the use of 
different evolutionary algorithms for improving the 
lower bounds for given parameters by relating this 
problem to the well known Maximum Clique 
Problem. Lacan and Chatonnay (1999) presented an 
algorithm for the joint design of source and channel 
codes, where Channel-Optimized Vector Quantization 
(COVQ) and Rate-Punctured Convolutional Coding 
(RCPC) were used to design the source and channel 
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codes, respectively. They used a Genetic Algorithm to 
allow the design of COVQ escape poor local optima 
and to reduce the time required for realizing the 
unequal error protection scheme best matched to the 
COVQ. Test results proved that their method was an 
effective alternative for cases with high rate-distortion 
performance and low computational resources. 

Alba and Chicano (2004) have shown some 
promising results of computations as an answer to 
why and how the GA was used for this problem. Cotta 
(2004) tackled the error correcting codes allocation 
with two related techniques, Memetic algorithms and 
Scatter search and investigated the instantiation of 
those techniques for error correction codes design; the 
design of the local improvement strategy and the 
combination method in specific. Tests showed that 
these techniques could outperform previous 
approaches to this problem. Ghosh et al. (2005) 
proposed an approach to reduce the power 
consumption in single-error correcting, double error 
detecting checker circuits in memory, using the 
degrees of freedom in selecting the parity check 
matrix of the error correcting code. They used 
Simulated Annealing and Genetic Algorithms to solve 
the non-linear power optimization problem. Tests on 
actual memory traces of Spec and MediaBench 
benchmarks indicated that considering power along 
with area and delay when selecting the parity check 
matrix could result in power reductions of up to 27 
and 41% for Hsiao and Hamming codes, respectively. 

Lee and Kim (2008) presented the Repulsion 
Algorithm, as a new local search algorithm for the 
problem using a hybrid between Parallel Genetic 
Algorithm and this new algorithm and compared it 
against a pure Parallel Genetic Algorithm. The results 
showed that an important improvement was achieved 
with the inclusion of the Repulsion. The genetic 
algorithm equipped with the symbiotic mechanism 
was used to design a power-efficient ECC which 
provided single error correction and double-error 
detection. The work formulated the selection of the 
parity check matrix into a collection of individual and 
specialized optimization problems and proposed a 
symbiotic evolution method to search for an ECC with 
minimal power consumption. 

Lam et al. (2010) presented an optimization 
algorithm to solve the population transition problem, 
to maximize the probability of universal streaming by 
manipulating population transition probability matrix. 
They employed a metaheuristic inspired by the 
chemical reaction process and called it CRO, to solve 
the problem. Simulations showed that it outperformed 
many commonly used methods for controlling 
population transition in many practical P2P live 
streaming systems. Xu et al. (2010) proposed a CRO 
algorithm for the grid scheduling problem and compared it 

with four generally acknowledged methods and showed 
that it performed the best. Lam et al. (2010) developed an 
allocation algorithm based on the recently proposed 
CRO, to study three utility functions for utilization 
and fairness, with the consideration of the hardware 
constraint and showed that it always outperformed the 
others by a good margin. Lam and Li (2010a) tested the 
performance of CRO on three nondeterministic polynomial-
time hard combinatorial optimization problems, a real-
world problem and two traditional benchmark problems. 
Simulations showed that CRO was very competitive with 
the existing metaheuristic and outperformed them in some 
cases, like the real-world problem. 

McCarney et al. (2012) examined both genetic 
algorithm and genetic programming on three different 
binary error correcting code problems to generate 
optimal sets of codes. They devised a new chromosome 
representation, claiming benefits in certain conditions. 
Eldos et al. (2013b) used the CRO in allocating sets of 
maximally distant codes for a certain set of parameters, 
to provide for error control and reported good results in a 
relatively short time. 

As Wolpert and Macready (2002) stated in their no 
free lunch theorems for optimization, the ACO and 
CRO have equal performance as the others on 
average, but could outperform all other metaheuristic 
when matched to the right problem type. 

Maximally Distant Codes 

Maximally distant codes are of great significance in 
data transmission due to their error tolerance capability. 
The search spaces for these codes are so large and hence 
exhaustive search strategies are ruled out, even for small 
instances. The problem is to find an n-bit m-codeword 
set of maximum mean mutual distance or maximum 
minimum distance, or to find the largest set of n-bit 
codewords with minimum hamming distance. The 
problem can be viewed as a binary knapsack problem, 
where the 1's indices represent the codewords that 
belong to the required set. The problem is only complex 
in terms of the prohibitively large solution space. 
However, the evolutionary search paradigms work well 
on such problems and we are going to compare the 
performance of two such optimization algorithms, one is 
a maximizer and the other is a minimizer. 

Based on the application, the objective can be a given 
number of codewords with maximum mutual distance, or 
largest number of codewords with a given minimal 
distance. In this study, our objective is to compare the 
CRO and ACO performance in allocating a set of 
codewords with minimal distance. 

There are three measures to use to guide the search 
process. The CRO uses a cost function to minimize, while 
the ACO uses a fitness function to maximize. The cost is 
related to how similar the codewords are, while the fitness 
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is the opposite; how distant the codewords are. For n-bit 
codewords, the maximum similarity is n-1, while the 
minimum distance is 1. Now, for m codewords, there exists 
m (m-1)/2 values (similarities or distances) related to those 
pairs and one can use the mean, the mean of maxima of all 
codewords, or the maximum overall.  

In the early implementation, we used the two 
extremes; the maximum similarity and the mean 
similarity for the CRO and the minimum distance and 
mean distance for the ACO, through a balancing factor 0 
≤ µ ≤ 1. The cost and fitness functions for the CRO and 
ACO respectively were: 
 

( ) 1 1

2
(1 ) ( ( ))

1

m m

ij iji j i
C S Max Max S

m m

µ
µ

= = +

= + −

−
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= + −

−
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Where: 
S = The Similarity matrix of m2 entries 
D = The Distance matrix of m2 entries 
m = The number of Codewords 
 

The performance was less than expected in terms of 
the minimum distance especially when the codeword set 
size is m = 2n-3. So, we opted to use the mean of maxima 
and mean of minima of all codewords as cost and fitness 
functions for the CRO and ACO respectively, as shown 
in Equation 3 and 4. We compared the performance of 
the two algorithms using the two approaches in guiding 
the search while judging the quality of the solutions 
using the same metrics; the mean and minimum distance:  
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Chemical Reaction Optimization 

The CRO algorithm starts with an initial set of 
randomly selected molecules and applies predefined 
actions until some stopping criteria are met. The 
exploitation actions have an equal number of inputs and 
outputs and hence the population size remains fixed 
regardless of how often they are applied. On the 
contrary, the exploration actions either decrease or 
increase the population as they generate one out of two 
or two out of one and unless they are equal in frequency, 
the population size may reach unwanted limits. 
Extremely large population is undesirable because it acts 
as computational burden and extremely small population 
is undesirable because it reduces the effectiveness in 
exploring the solution space. The algorithm should 
provide control over to keep it within reasonable limits. 

CRO Elementary Actions 

The elementary actions of the CRO are divided into 
four types, based on the input and output cardinality. The 
following sections detail the actions using an example of 
finding 8 maximally distant codewords of 5-bit. 

A1T1, 1-to-1 action, or deformation; one molecule is 
involved to produce one molecule. In this process, the 
molecule is deformed through a minor or a major 
structural change. We select two random numbers in the 
range 0 to 31 to index the entries to flip under the 
condition that the selected entries are opposite, i.e., one 
of them is 1 and the other is 0. Example: 
 
Input 

 
 
Output 

 
 

A1T2, 1-to-2 action, or decomposition; one molecule 
is involved to produce more than one molecule; typically 
two molecules are derived from one. We make a copy of 
the molecule and select a random number in the range 0 
to 31 to make a cut and then we shuffle the upper part of 
the first and the lower part of the second. Shuffling can 
be carried out by circulating the string a certain number 
of bits at random or through any other scheme. In the 
example below, the isolated position represent the 
shuffling process, while the continuous ones are 
outcomes of the copying process: 
 
Input 

 
 
Output 1 

 
 
Output 2 

 
 

A2T1, 2-to-1 action, or combination; two or more 
molecules are merged into one molecule; a process in 
which the properties of two or more molecules are 
passed to a new one. We form a molecule with 
permanent 1's and 0's where the two input molecules 
have 1's and 0's respectively, then fill the rest at random 
by 1's to complete the set of codeword. In this example, 
the gray positions represent voted 1's and 0's, 4 positions 
are left to be filled at random by 3 missing 1's:  
 
Input 1 

 
 
Input 2 
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Output 

 
 

A2T2, 2-to-2 action, or collaboration; two molecules 
are involved to produce two molecules; a process in 
which properties of both are passed into two new 
molecules. We select two random numbers in the range 0 
to 31, or use one for both and make cuts in the two 
molecules, then form two molecules; one from the lower 
part of the first and the upper part of the second and the 
second from the lower part of the second and the upper 
part of the first. This process may produce invalid 
solutions, more or less 1's than the required size of 
codewords set and hence the two new molecules are 
scanned to randomly insert 1's instead of some 0's or 0's 
instead of some 1's, all at random. In this example, a 
single random cut is selected for both, the lower part of 
input 1 is copied to the lower part of output 1 and the 
upper part of input 2 is copied to the upper part of output 
1, the upper part is then scanned to flip some 0's into 1's 
or some 1's into 0's such that the total number of 1's is 
equal to the size of the codeword set. In this case, the 
isolated gray positions represent 0's converted to 1's: 
 
Input 1 

 
 
Input 2 

 
 
Output 1 

 
 
Output 2 

 
 

In the context of transforming a set of solutions into a 
new one, hopefully of better quality, we name the first 
two actions, the ones that involve one molecule, D-type 
actions; Deformation and Decomposition, while we 
name the other two, the ones that involve two molecules, 
C-type actions; Combination and Collaboration. Most of 
the literature uses chemical reactions terminology like 
synthesis instead of combination and intermolecular 
collision instead of collaboration. We opted to use terms 
that express the processes behavior as they take place in 
the search process. 

Successive application of those actions to sets of 
molecules representing solutions over and over generates 
better ones. It is quite important for convergence to carry 
out operations that provide both exploration and 
exploitation. Table 2 shows the significance of those 
actions to the exploration and exploitation.  

Table 2. Actions and significance 
Action Exploration Exploitation  
A1T1 (Deformation) minor major   
A1T2 (Decomposition) major minor 
A2T1 (Combination) major minor 
A2T2 (Collaboration) minor major 
 

 
 
Fig. 1. Generic CRO algorithm 
 

 
 
Fig. 2. CRO actions provoking mechanism 
 

The CRO algorithm starts with an initial set of 
solutions (molecules) and an initial set of parameters 
based on the instance to solve and goes through a 
repetitive process of applying actions until a stopping 
criterion is satisfied. In each iteration, one of the C-type 
actions or D-type actions is carried out based on a 
parameter called the C-type actions rate that determines 
the percentage of the C-type actions. 

In each path, whether it is C-type or D-type, a test is 
carried out to see if the combination condition or 
decomposition condition, respectively, is met, or else 
collaboration or deformation, respectively, are carried 
out instead. The pseudocode in Fig 1 outlines the CRO 
algorithm behavior. 

The solutions generation function performs one of the 
four actions, based on a preset rate (car) which defines 
the c-type actions rate. Otherwise, it performs d-type 
actions. Within the c-type or d-type code, the DCS and 
CCS conditions decide whether to carry out 
decomposition and combination, respectively, or the 
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other actions. The four elementary actions are provoked 
based on the pseudocode in Fig. 2.   

Typically, we used the number of computations as 
stopping criteria, with varying values of car, CCS and 
DCS based on the objective of the test run. 

Ant Colony Optimization 

This algorithm is inspired by the ants’ moves 
between nests and food sources. Starting with random 
walk looking for food, ants place pheromone on the 
route, which accumulates against evaporation, leaving 
more of it on shorter routes and less on the longer 
unused ones, as routes with stronger pheromone appeal 
more to the ants. 

The problem of maximally distant codes allocation 
maps straightforwardly to the binary knapsack problem; 
5-bit codes are 32 and using an array of 32 entries 
representing 1 or 0 for take and leave respectively, 
would make it easy for the ant, as an agent generating a 
solution, to decide on which codeword to take or leave 
by setting or resetting its corresponding index. The 
pheromone matrix in this case is 32x32 symmetric 
entries with zero diagonal. For each solution, the fitness 
function decides how much pheromone is added to each 
link between any two codewords in the solution. The 
idea is to place pheromone on edges connecting all 
codewords of a candidate solution in proportion to the 
fitness of that solution. Agents start solutions by 
selecting a random entry (corresponding to a codeword) 
and select the next entry based on the largest entry in the 
pheromone matrix. Now the two will have to decide on 
the third entry based on the sum (or average) of 
pheromone and the three of them decide on the fourth 
and so on. With a large number of bits n, the pheromone 
matrix becomes extremely large for processing, 22n 
entries. Instead, we opted to change for a model that is 
less complex with a little compromise, where the 
pheromone is accumulated on the nodes rather than 
edges, this way we need only a vector of 2n entries. In 
the original model, an ant makes a random starting point 
then walks stochastically to the other nodes based on the 
edges pheromone and distance of the nodes. We used a 
simple approach that lets an ant decide on the next node 
based on group thinking; all the accumulated nodes 
decide who to join them next. After evaluating the 
fitness of the solutions, the pheromone of every entry is 
updated in proportion to the fitness of every solution it 
was taken as part of, relative to the maximum fitness so 
far. An outline of the algorithm is shown in Fig 3. 

A set of ants generate a set of solutions whose 
fitness values are used to update the pheromone values. 

 
 
Fig. 3. Generic ACO algorithm 
 

To form a solution, an ant starts at a random codeword 
then move from codeword x to codeword y based on the 
following probability function: 
  

( )
.

.

( ( )) )

( ( )) ( )

(xy xyk

xy

xl xll Nkx

t
p t

t
α

α β

β

τ δ

τ δ
∈

=

∑
 (5) 

 
where, α and β are influence parameters, δxy represents 
the attractiveness, which is the distance between the 
codewords x and y, τxy is the pheromone on the edge 
between the two codewords x and y, Nkx is the set of 
codewords feasible to take with codewords x by ant k. In 
our implementation all ants use the same definition of 
feasibility, which is being at distance δ ≥ h, where h is 3, 
4, or 5. For every edge pairing x and y codewords, the 
pheromone update formula is: 
 

( ) 1   /
xy xy m max

F Fτ ρ τ= − + ∑   (6) 

 
where, ρ is the pheromone evaporation rate, F is the 
fitness of the solution and Fmax is the maximum fitness 
so far. The second part updates only the edges of nodes 
that are part of the solution. The daemon actions here 
refer to some centralized housekeeping actions. 

Experiments 

We used the CRO ToolBox by Li and Lam (2015) as 
a ready framework for minimization and wrote Java code 
for the maximally distant codes allocation problem, 
while the whole ACO was written in C++ to allow using 
effective string manipulation of large structures. To test 
the power of the algorithms in directing the search with 
balanced objective, we ran several tests to locate sets of 
8, 16 and 32 codewords using 8-bit strings. Varying µ 
from 0.0 to 10 in steps of 0.25, The CRO outperformed 
the ACO in both mean and minimum distance measure. 



Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901 

DOI: 10.3844/jcssp.2015.892.901 

 

898 

Table 3. CRO-distance against µ (8-bit Codewords) 
 µ = 0.0  µ = 0.5  µ = 1.0 
 -------------------- -------------------- ------------------- 
8-bit Mean Min Mean Min Mean Min 
8 4.43 4 4.46 4 4.57 3 
16 4.06 2 4.27 2 4.27 2 
32 3.77 1 4.13 1 4.13 1 
 
Table 4. ACO-Distance against µ (8-bit Codewords) 

 µ = 0.0  µ = 0.5  µ = 1.0 
 --------------------- -------------------- ------------------- 
Set size Mean Min Mean Min Mean Min 

8 4.29 2 4.54 3 4.57 1 
16 3.42 1 4.24 2 4.27 1 
32 2.57 1 4.10 1 4.13 1 
 
Table 5. Performance against set size (8-bit Codewords) 

 CRO  ACO 
 ---------------------------- ----------------------- 
Set size Mean Min Mean Min 

8 4.32 4 4.21 3 
16 4.25 3 3.97 2 
32 4.08 2 4.08 1 
 

Table 6. Performance against codeword length/set size 

 CRO  ACO 

 ----------------------- ----------------------- 

Length/set size Mean Min Mean Min 

8-bit/8 4.32 4 4.21 3 

10-bit/32 5.11 3 4.98 2 
12-bit/128 6.04 2 5.75 1 
 

Table 3 and 4 list those results, after discarding 
µ=0.25 and µ=0.75 as the results were quite similar to 
those of µ=0.5 in the two tests.  

Table 5 shows the performance of both algorithms in 
locating sets of 8-bit Codewords with three sizes. The 
CRO outperformed the ACO marginally in the mean 
distance, but have always shown superiority in the 
minimal distance measure. 

Table 6 shows the performance of both algorithms in 
finding three sets of fixed size and codeword length. The 
CRO outperformed the ACO marginally in the mean 
minimal distance. The reason is possibly that the ACO 
needs some parameter tuning, like the pheromone 
evaporation factor and the neighborhood threshold 
relation with the codeword length and set size.  

Figure 4 and 5 show the progress of the CRO 
algorithm; the quality of the allocated sets over time 
represented by the number of evaluations or actions. 

Tracing the progress of the CRO algorithms 
indicated that the first few thousands evaluations get 
more than 95% of the work done. To test the validity 
of this statement, we picked 100,000 solutions at 
random and started with the worst 100 solutions as 
initial population. The outcome was almost the same. 
The decomposition (A1T2) and combination (A2T1) 
condition were set to limit the rates to nearly 5 to 10% 
of the total evaluations for each. 

Tests were run on i7 Intel dual core processor based 
desktops with 16 GB DRAM. Typical runs took few 
minutes for small instances. The two algorithms were 
given long enough time to run and the competition was 
in the ability of each to find a better solution rather than 
how fast the solution is found. 

 

 
 

Fig. 4. CRO progress in locating 8-bit Codeword sets 
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Fig. 5. CRO Progress in locating 12-bit codeword sets 
 

Conclusion 

Chemical Reaction Optimization and Ant Colony 
Optimization algorithms worked well in finding good 
solutions to the Maximally Distant Codes Allocation 
problem. The CRO outperformed the ACO marginally in 
the mean distance and drastically in the minimum 
distance in every test, regardless of the problem instance 
and time budget, even with various random initial 
populations. The reason for demonstrating lower 
performance is possibly due to the fact that the ACO 
algorithm parameters are a bit harder to tune than those 
of the CRO. To benchmark the CRO algorithm better, 
we plan to change the approach to find the largest set of 
codewords with preset minimum distance. 
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