

© 2015 Taisir Eldos, Waleed Nazih and Aws Kanan. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Maximally Distant Codes Allocation Using Chemical Reaction

Optimization and Ant Colony Optimization Algorithms

1,3
Taisir Eldos,

2
Waleed Nazih and

1
Aws Kanan

1Department of Computer Engineering, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
2Department of Computer Science, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
3Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan

Article history

Received: 10-05-2015
Revised: 11-09-2015
Accepted: 17-10-2015

Corresponding Author:
Taisir Eldos
Department of Computer
Engineering, Prince Sattam Bin
Abdulaziz University, Alkharj,
Saudi Arabia;
Department of Computer
Engineering, Jordan University
of Science and Technology,
Irbid, Jordan
Email: eldos@sau.edu.sa;
eldos@just.edu.jo

Abstract: Error correcting codes, also known as error controlling codes,
are set of codes with redundancy that allows detecting errors. This is quite
useful in transmitting data over a noisy channel or when retrieving data
from a storage with possible physical defects. The idea is to use a set of
code words that are maximally distant from each other, hence reducing the
chance of changing a valid codeword to another valid codeword by flipping
bits. The problem can be viewed as picking m codes out of 2n available n-
bit combinations, such that the aggregate hamming distance among those
codewords is maximized. Due to the large solution spaces of such
problems, greedy algorithms are sometimes used to generate quick and
dirty solutions. However, modern evolutionary search algorithms like
genetic algorithms, swarm particles, gravitational search and others, offer
good alternatives, yielding near optimal solutions in exchange for some
time. Chemical Reaction Optimization (CRO) has emerged as a new
evolutionary algorithm to solve complex optimization problems. This
algorithm mimics the molecular interactions towards finding a minimal
energy state, which corresponds to an optimal solution for the problem in
hand. In this research, we proposed a solution for the maximally distant
codes allocation problem, through a binary knapsack mapping and
compared the performance with the well established Ant Colony
Optimization (ACO) algorithm, which is inspired by the ant’s capability to
find the shortest path between the nest and source of food. The binary
knapsack mapping was used in the two algorithms. Test results showed that
the CRO outperformed the ACO in every metric given any time budget.

Keywords: Maximally Distant Codes, Evolutionary Algorithms, Chemical
Reaction Optimization, Ant Colony Optimization

Introduction

Allocating sets of codes with maximum aggregate
mutual distances for use as error control codes is of
great significance and finding optimal solutions for
practically sized problems using full search is a
challenge due to the prohibitively large solution
spaces. For example, the solution space of the small
instance (7, 16, 3), which requires finding a set of 16
codewords of 7 bits with minimal mutual Hamming
distance of 3, is at least 1020, ruling out any exact
search methodology. Table 1 shows various code
lengths n and the number of codewords with minimal
distance d of 3 and 5.

Evolutionary optimization algorithms offer optimal
or near optimal solutions in reasonable time. Many
evolutionary algorithms have been used to solve
complex problems with varying time and quality
tradeoffs. The CRO and ACO algorithms have
emerged recently as new methods to efficiently
explore such large spaces with reasonable computational
resources. In this study, we mapped the maximally
distant code allocation problem to the well known binary
knapsack problem and compared the performance of
those two algorithms in finding sets of codewords of
various length and cardinality, using a weighted fitness
(or cost) function to provide balance between two
objectives; mean and minimum distance.

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

893

Table 1. Codewords with minimal distance

n d=3 d=5

6 8 2
8 20 4
10 72-79 12
12 256 32
14 1024 128
16 2560-3276 256-340

Literature Review

Dorigo and Gambardella (1997), proposed an early
work of ACO; an artificial ant capable of solving both
symmetric and asymmetric Traveling Salesman Problem
(TSP), using a natural metaphor to design an optimization
algorithm, through a sensibility analysis to help tune the
parameters of an ant colony model where ants leave a
fuzzy trace of pheromone to mark their track and its
neighborhood. Recently, many complex problems were
solved by variants of the ACO algorithm with great
success; Baterina and Oppus (2010) presented an edge
detection technique by establishing a pheromone matrix
representing the edge information at each pixel based on
the routes formed by the ants dispatched on the image.
The ants movement was guided by the variation in the
intensity values. Experimental results have shown the
success of the technique in extracting edges from a digital
image. Yu et al. (2005) developed a coarse-grain parallel
ACO algorithm to develop an optimization model for bus
transit network based on road network, aiming at
achieving maximum passenger flow and minimum
transfers per unit length with non-linear rate and line
length as constraints. It used a heuristic pheromone
distribution rule, by which path searching activities are
adjusted according to the objective value. Hung et al.
(2007) reported analysis using a lower pheromone trail
bound and a dynamic updating rule for the heuristic
parameters based on entropy to improve the efficiency of
the algorithm in solving the TSP, with extremely large
problem space and claimed superior search performance
over traditional ACO algorithms. Lorpunmanee et al.
(2007) addressed the scheduling problem by developing a
general framework of grid scheduling using dynamic
information and an ACO algorithm to improve making
decisions, by comparing its performance with various
dispatching rules such as First Come First Served (FCFS),
Earliest Due Date (EDD), Earliest Release Date (ERD).
G <omez (2005) proposed the Omicron ACO (OA); a
population-based ACO alternative originally designed as
an analytical tool and proved the advantages of the OA by
experimentally comparing the behavior of the OA and the
MMAS as a function of time. The ACO algorithm
performance has been boosted by involving other
techniques in its internal workings; for example,

Zaferanieh et al. (2009) used an ACO and Simulated
Annealing (SA) algorithms to find the core of a graph,
such that the total travel cost time required for the demand
points to reach the closest vertex on this path is
minimized. Ginidi et al. (2010) developed a new fuzzy-
logic based ACO algorithm, taking into consideration the
uncertainties that can be found in both the heuristic and
the pheromone factors, by considering fuzzy levels in
calculating the involved parameters. They proposed a
stochastic-based technique to enable the artificial ant to
choose the best oncoming step based on the values of the
probabilities and their corresponding fuzzy levels. The
proposed algorithm gave the optimal solution in a form of
an optimal value and its corresponding fuzzy level, using
benchmark Quadratic Assignment Problem (QAP) and
TSP. Ho et al. (2006) proposed an algorithm that
incorporated key features of the tabu-search method in the
development of a relatively simple but robust global ACO
algorithm and used numerical results to validate and
demonstrate the feasibility and effectiveness of the
proposed algorithm in solving Electromagnetic (EM)
design problems. Shieh et al. (2003) focused on the
transmission of codebook indices in a noisy environment,
to minimize the impact of channel noise, using ACO to
find a suitable index assignment and reported that the
channel distortion was substantially reduced without
incurring extra cost such as that in error-detection code
and error-correction code. Eldos et al. (2013a) used the
ACO algorithm to solve the Printed Circuits Boards
Drilling Problem (PCBDP), by finding the best order to
drill each set of holes of the same diameter. Kanan et al.
(2013) used the ACO in solving the routing problem in ad
hoc mobile networks.

Haas and Houghten (2009) compared the performance
of many evolutionary algorithms with local search and
greedy methods, in solving the error-correcting-code
problem and concluded that the GAs were the best of all
other algorithms in general, with even more performance
advantage as the cases got harder. Bland (2007) resolved
the question of the utility of the crossover operator in earlier
studies on optimizing DNA error correcting codes, where
the crossover operator in question was found to be
substantially counterproductive and the majority of the
crossover events produced results that violated the
minimum distance constraints required for error correction.

Hwanga et al. (2005) investigated the use of
different evolutionary algorithms for improving the
lower bounds for given parameters by relating this
problem to the well known Maximum Clique
Problem. Lacan and Chatonnay (1999) presented an
algorithm for the joint design of source and channel
codes, where Channel-Optimized Vector Quantization
(COVQ) and Rate-Punctured Convolutional Coding
(RCPC) were used to design the source and channel

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

894

codes, respectively. They used a Genetic Algorithm to
allow the design of COVQ escape poor local optima
and to reduce the time required for realizing the
unequal error protection scheme best matched to the
COVQ. Test results proved that their method was an
effective alternative for cases with high rate-distortion
performance and low computational resources.

Alba and Chicano (2004) have shown some
promising results of computations as an answer to
why and how the GA was used for this problem. Cotta
(2004) tackled the error correcting codes allocation
with two related techniques, Memetic algorithms and
Scatter search and investigated the instantiation of
those techniques for error correction codes design; the
design of the local improvement strategy and the
combination method in specific. Tests showed that
these techniques could outperform previous
approaches to this problem. Ghosh et al. (2005)
proposed an approach to reduce the power
consumption in single-error correcting, double error
detecting checker circuits in memory, using the
degrees of freedom in selecting the parity check
matrix of the error correcting code. They used
Simulated Annealing and Genetic Algorithms to solve
the non-linear power optimization problem. Tests on
actual memory traces of Spec and MediaBench
benchmarks indicated that considering power along
with area and delay when selecting the parity check
matrix could result in power reductions of up to 27
and 41% for Hsiao and Hamming codes, respectively.

Lee and Kim (2008) presented the Repulsion
Algorithm, as a new local search algorithm for the
problem using a hybrid between Parallel Genetic
Algorithm and this new algorithm and compared it
against a pure Parallel Genetic Algorithm. The results
showed that an important improvement was achieved
with the inclusion of the Repulsion. The genetic
algorithm equipped with the symbiotic mechanism
was used to design a power-efficient ECC which
provided single error correction and double-error
detection. The work formulated the selection of the
parity check matrix into a collection of individual and
specialized optimization problems and proposed a
symbiotic evolution method to search for an ECC with
minimal power consumption.

Lam et al. (2010) presented an optimization
algorithm to solve the population transition problem,
to maximize the probability of universal streaming by
manipulating population transition probability matrix.
They employed a metaheuristic inspired by the
chemical reaction process and called it CRO, to solve
the problem. Simulations showed that it outperformed
many commonly used methods for controlling
population transition in many practical P2P live
streaming systems. Xu et al. (2010) proposed a CRO
algorithm for the grid scheduling problem and compared it

with four generally acknowledged methods and showed
that it performed the best. Lam et al. (2010) developed an
allocation algorithm based on the recently proposed
CRO, to study three utility functions for utilization
and fairness, with the consideration of the hardware
constraint and showed that it always outperformed the
others by a good margin. Lam and Li (2010a) tested the
performance of CRO on three nondeterministic polynomial-
time hard combinatorial optimization problems, a real-
world problem and two traditional benchmark problems.
Simulations showed that CRO was very competitive with
the existing metaheuristic and outperformed them in some
cases, like the real-world problem.

McCarney et al. (2012) examined both genetic
algorithm and genetic programming on three different
binary error correcting code problems to generate
optimal sets of codes. They devised a new chromosome
representation, claiming benefits in certain conditions.
Eldos et al. (2013b) used the CRO in allocating sets of
maximally distant codes for a certain set of parameters,
to provide for error control and reported good results in a
relatively short time.

As Wolpert and Macready (2002) stated in their no
free lunch theorems for optimization, the ACO and
CRO have equal performance as the others on
average, but could outperform all other metaheuristic
when matched to the right problem type.

Maximally Distant Codes

Maximally distant codes are of great significance in
data transmission due to their error tolerance capability.
The search spaces for these codes are so large and hence
exhaustive search strategies are ruled out, even for small
instances. The problem is to find an n-bit m-codeword
set of maximum mean mutual distance or maximum
minimum distance, or to find the largest set of n-bit
codewords with minimum hamming distance. The
problem can be viewed as a binary knapsack problem,
where the 1's indices represent the codewords that
belong to the required set. The problem is only complex
in terms of the prohibitively large solution space.
However, the evolutionary search paradigms work well
on such problems and we are going to compare the
performance of two such optimization algorithms, one is
a maximizer and the other is a minimizer.

Based on the application, the objective can be a given
number of codewords with maximum mutual distance, or
largest number of codewords with a given minimal
distance. In this study, our objective is to compare the
CRO and ACO performance in allocating a set of
codewords with minimal distance.

There are three measures to use to guide the search
process. The CRO uses a cost function to minimize, while
the ACO uses a fitness function to maximize. The cost is
related to how similar the codewords are, while the fitness

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

895

is the opposite; how distant the codewords are. For n-bit
codewords, the maximum similarity is n-1, while the
minimum distance is 1. Now, for m codewords, there exists
m (m-1)/2 values (similarities or distances) related to those
pairs and one can use the mean, the mean of maxima of all
codewords, or the maximum overall.

In the early implementation, we used the two
extremes; the maximum similarity and the mean
similarity for the CRO and the minimum distance and
mean distance for the ACO, through a balancing factor 0
≤ µ ≤ 1. The cost and fitness functions for the CRO and
ACO respectively were:

() 1 1

2
(1) (())

1

m m

ij iji j i
C S Max Max S

m m

µ
µ

= = +

= + −

−
∑ ∑ (1)

() 1 1

2
(1) (())

1

m m

ij iji j i
F D Min Min D

m m

µ
µ

= = +

= + −

−
∑ ∑ (2)

Where:
S = The Similarity matrix of m2 entries
D = The Distance matrix of m2 entries
m = The number of Codewords

The performance was less than expected in terms of
the minimum distance especially when the codeword set
size is m = 2n-3. So, we opted to use the mean of maxima
and mean of minima of all codewords as cost and fitness
functions for the CRO and ACO respectively, as shown
in Equation 3 and 4. We compared the performance of
the two algorithms using the two approaches in guiding
the search while judging the quality of the solutions
using the same metrics; the mean and minimum distance:

1 1,

1
()

m m

iji j j i
C Max S

m
= = ≠

= ∑ ∑ (3)

1 1,

1
()

m m

iji j j i
F Min D

m
= = ≠

= ∑ ∑ (4)

Chemical Reaction Optimization

The CRO algorithm starts with an initial set of
randomly selected molecules and applies predefined
actions until some stopping criteria are met. The
exploitation actions have an equal number of inputs and
outputs and hence the population size remains fixed
regardless of how often they are applied. On the
contrary, the exploration actions either decrease or
increase the population as they generate one out of two
or two out of one and unless they are equal in frequency,
the population size may reach unwanted limits.
Extremely large population is undesirable because it acts
as computational burden and extremely small population
is undesirable because it reduces the effectiveness in
exploring the solution space. The algorithm should
provide control over to keep it within reasonable limits.

CRO Elementary Actions

The elementary actions of the CRO are divided into
four types, based on the input and output cardinality. The
following sections detail the actions using an example of
finding 8 maximally distant codewords of 5-bit.

A1T1, 1-to-1 action, or deformation; one molecule is
involved to produce one molecule. In this process, the
molecule is deformed through a minor or a major
structural change. We select two random numbers in the
range 0 to 31 to index the entries to flip under the
condition that the selected entries are opposite, i.e., one
of them is 1 and the other is 0. Example:

Input

Output

A1T2, 1-to-2 action, or decomposition; one molecule
is involved to produce more than one molecule; typically
two molecules are derived from one. We make a copy of
the molecule and select a random number in the range 0
to 31 to make a cut and then we shuffle the upper part of
the first and the lower part of the second. Shuffling can
be carried out by circulating the string a certain number
of bits at random or through any other scheme. In the
example below, the isolated position represent the
shuffling process, while the continuous ones are
outcomes of the copying process:

Input

Output 1

Output 2

A2T1, 2-to-1 action, or combination; two or more
molecules are merged into one molecule; a process in
which the properties of two or more molecules are
passed to a new one. We form a molecule with
permanent 1's and 0's where the two input molecules
have 1's and 0's respectively, then fill the rest at random
by 1's to complete the set of codeword. In this example,
the gray positions represent voted 1's and 0's, 4 positions
are left to be filled at random by 3 missing 1's:

Input 1

Input 2

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

896

Output

A2T2, 2-to-2 action, or collaboration; two molecules
are involved to produce two molecules; a process in
which properties of both are passed into two new
molecules. We select two random numbers in the range 0
to 31, or use one for both and make cuts in the two
molecules, then form two molecules; one from the lower
part of the first and the upper part of the second and the
second from the lower part of the second and the upper
part of the first. This process may produce invalid
solutions, more or less 1's than the required size of
codewords set and hence the two new molecules are
scanned to randomly insert 1's instead of some 0's or 0's
instead of some 1's, all at random. In this example, a
single random cut is selected for both, the lower part of
input 1 is copied to the lower part of output 1 and the
upper part of input 2 is copied to the upper part of output
1, the upper part is then scanned to flip some 0's into 1's
or some 1's into 0's such that the total number of 1's is
equal to the size of the codeword set. In this case, the
isolated gray positions represent 0's converted to 1's:

Input 1

Input 2

Output 1

Output 2

In the context of transforming a set of solutions into a
new one, hopefully of better quality, we name the first
two actions, the ones that involve one molecule, D-type
actions; Deformation and Decomposition, while we
name the other two, the ones that involve two molecules,
C-type actions; Combination and Collaboration. Most of
the literature uses chemical reactions terminology like
synthesis instead of combination and intermolecular
collision instead of collaboration. We opted to use terms
that express the processes behavior as they take place in
the search process.

Successive application of those actions to sets of
molecules representing solutions over and over generates
better ones. It is quite important for convergence to carry
out operations that provide both exploration and
exploitation. Table 2 shows the significance of those
actions to the exploration and exploitation.

Table 2. Actions and significance
Action Exploration Exploitation
A1T1 (Deformation) minor major
A1T2 (Decomposition) major minor
A2T1 (Combination) major minor
A2T2 (Collaboration) minor major

Fig. 1. Generic CRO algorithm

Fig. 2. CRO actions provoking mechanism

The CRO algorithm starts with an initial set of
solutions (molecules) and an initial set of parameters
based on the instance to solve and goes through a
repetitive process of applying actions until a stopping
criterion is satisfied. In each iteration, one of the C-type
actions or D-type actions is carried out based on a
parameter called the C-type actions rate that determines
the percentage of the C-type actions.

In each path, whether it is C-type or D-type, a test is
carried out to see if the combination condition or
decomposition condition, respectively, is met, or else
collaboration or deformation, respectively, are carried
out instead. The pseudocode in Fig 1 outlines the CRO
algorithm behavior.

The solutions generation function performs one of the
four actions, based on a preset rate (car) which defines
the c-type actions rate. Otherwise, it performs d-type
actions. Within the c-type or d-type code, the DCS and
CCS conditions decide whether to carry out
decomposition and combination, respectively, or the

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

897

other actions. The four elementary actions are provoked
based on the pseudocode in Fig. 2.

Typically, we used the number of computations as
stopping criteria, with varying values of car, CCS and
DCS based on the objective of the test run.

Ant Colony Optimization

This algorithm is inspired by the ants’ moves
between nests and food sources. Starting with random
walk looking for food, ants place pheromone on the
route, which accumulates against evaporation, leaving
more of it on shorter routes and less on the longer
unused ones, as routes with stronger pheromone appeal
more to the ants.

The problem of maximally distant codes allocation
maps straightforwardly to the binary knapsack problem;
5-bit codes are 32 and using an array of 32 entries
representing 1 or 0 for take and leave respectively,
would make it easy for the ant, as an agent generating a
solution, to decide on which codeword to take or leave
by setting or resetting its corresponding index. The
pheromone matrix in this case is 32x32 symmetric
entries with zero diagonal. For each solution, the fitness
function decides how much pheromone is added to each
link between any two codewords in the solution. The
idea is to place pheromone on edges connecting all
codewords of a candidate solution in proportion to the
fitness of that solution. Agents start solutions by
selecting a random entry (corresponding to a codeword)
and select the next entry based on the largest entry in the
pheromone matrix. Now the two will have to decide on
the third entry based on the sum (or average) of
pheromone and the three of them decide on the fourth
and so on. With a large number of bits n, the pheromone
matrix becomes extremely large for processing, 22n
entries. Instead, we opted to change for a model that is
less complex with a little compromise, where the
pheromone is accumulated on the nodes rather than
edges, this way we need only a vector of 2n entries. In
the original model, an ant makes a random starting point
then walks stochastically to the other nodes based on the
edges pheromone and distance of the nodes. We used a
simple approach that lets an ant decide on the next node
based on group thinking; all the accumulated nodes
decide who to join them next. After evaluating the
fitness of the solutions, the pheromone of every entry is
updated in proportion to the fitness of every solution it
was taken as part of, relative to the maximum fitness so
far. An outline of the algorithm is shown in Fig 3.

A set of ants generate a set of solutions whose
fitness values are used to update the pheromone values.

Fig. 3. Generic ACO algorithm

To form a solution, an ant starts at a random codeword
then move from codeword x to codeword y based on the
following probability function:

()
.

.

(()))

(()) ()

(xy xyk

xy

xl xll Nkx

t
p t

t
α

α β

β

τ δ

τ δ
∈

=

∑
 (5)

where, α and β are influence parameters, δxy represents
the attractiveness, which is the distance between the
codewords x and y, τxy is the pheromone on the edge
between the two codewords x and y, Nkx is the set of
codewords feasible to take with codewords x by ant k. In
our implementation all ants use the same definition of
feasibility, which is being at distance δ ≥ h, where h is 3,
4, or 5. For every edge pairing x and y codewords, the
pheromone update formula is:

() 1 /
xy xy m max

F Fτ ρ τ= − + ∑ (6)

where, ρ is the pheromone evaporation rate, F is the
fitness of the solution and Fmax is the maximum fitness
so far. The second part updates only the edges of nodes
that are part of the solution. The daemon actions here
refer to some centralized housekeeping actions.

Experiments

We used the CRO ToolBox by Li and Lam (2015) as
a ready framework for minimization and wrote Java code
for the maximally distant codes allocation problem,
while the whole ACO was written in C++ to allow using
effective string manipulation of large structures. To test
the power of the algorithms in directing the search with
balanced objective, we ran several tests to locate sets of
8, 16 and 32 codewords using 8-bit strings. Varying µ
from 0.0 to 10 in steps of 0.25, The CRO outperformed
the ACO in both mean and minimum distance measure.

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

898

Table 3. CRO-distance against µ (8-bit Codewords)
 µ = 0.0 µ = 0.5 µ = 1.0
 -------------------- -------------------- -------------------
8-bit Mean Min Mean Min Mean Min
8 4.43 4 4.46 4 4.57 3
16 4.06 2 4.27 2 4.27 2
32 3.77 1 4.13 1 4.13 1

Table 4. ACO-Distance against µ (8-bit Codewords)

 µ = 0.0 µ = 0.5 µ = 1.0
 --------------------- -------------------- -------------------
Set size Mean Min Mean Min Mean Min

8 4.29 2 4.54 3 4.57 1
16 3.42 1 4.24 2 4.27 1
32 2.57 1 4.10 1 4.13 1

Table 5. Performance against set size (8-bit Codewords)

 CRO ACO
 ---------------------------- -----------------------
Set size Mean Min Mean Min

8 4.32 4 4.21 3
16 4.25 3 3.97 2
32 4.08 2 4.08 1

Table 6. Performance against codeword length/set size

 CRO ACO

 ----------------------- -----------------------

Length/set size Mean Min Mean Min

8-bit/8 4.32 4 4.21 3

10-bit/32 5.11 3 4.98 2
12-bit/128 6.04 2 5.75 1

Table 3 and 4 list those results, after discarding
µ=0.25 and µ=0.75 as the results were quite similar to
those of µ=0.5 in the two tests.

Table 5 shows the performance of both algorithms in
locating sets of 8-bit Codewords with three sizes. The
CRO outperformed the ACO marginally in the mean
distance, but have always shown superiority in the
minimal distance measure.

Table 6 shows the performance of both algorithms in
finding three sets of fixed size and codeword length. The
CRO outperformed the ACO marginally in the mean
minimal distance. The reason is possibly that the ACO
needs some parameter tuning, like the pheromone
evaporation factor and the neighborhood threshold
relation with the codeword length and set size.

Figure 4 and 5 show the progress of the CRO
algorithm; the quality of the allocated sets over time
represented by the number of evaluations or actions.

Tracing the progress of the CRO algorithms
indicated that the first few thousands evaluations get
more than 95% of the work done. To test the validity
of this statement, we picked 100,000 solutions at
random and started with the worst 100 solutions as
initial population. The outcome was almost the same.
The decomposition (A1T2) and combination (A2T1)
condition were set to limit the rates to nearly 5 to 10%
of the total evaluations for each.

Tests were run on i7 Intel dual core processor based
desktops with 16 GB DRAM. Typical runs took few
minutes for small instances. The two algorithms were
given long enough time to run and the competition was
in the ability of each to find a better solution rather than
how fast the solution is found.

Fig. 4. CRO progress in locating 8-bit Codeword sets

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

899

Fig. 5. CRO Progress in locating 12-bit codeword sets

Conclusion

Chemical Reaction Optimization and Ant Colony
Optimization algorithms worked well in finding good
solutions to the Maximally Distant Codes Allocation
problem. The CRO outperformed the ACO marginally in
the mean distance and drastically in the minimum
distance in every test, regardless of the problem instance
and time budget, even with various random initial
populations. The reason for demonstrating lower
performance is possibly due to the fact that the ACO
algorithm parameters are a bit harder to tune than those
of the CRO. To benchmark the CRO algorithm better,
we plan to change the approach to find the largest set of
codewords with preset minimum distance.

Acknowledgement

Thanks to Prince Sattam bin Abdulaziz University,
Alkharj-Saudi Arabia and Jordan University of
Science and Technology, Irbid-Jordan, for supporting
this research.

Funding Information

This work was funded by the Deanship of Scientific
Research at Prince Sattam bin Abdulaziz University,
Alkharj-Saudi Arabia, which offered financial support
under the research project No. 2014/01/1649.

Author’s Contributions

Taisir Eldos: Lead the team and assigned tasks to the
team members, reviewed literature, proposed the
mapping, analyzed the results and wrote the draft.

Waleed Nazih: Wrote code for mapping and actions
and cost evaluation and ran the tests and produced results
for the CRO algorithm, reviewed and revised the draft.

Aws Kanan: Wrote code for mapping and actions and
cost evaluation and ran the tests and produced results for
the ACO algorithm, reviewed and revised the draft.

Ethics

This research builds on previous work by the authors
in which the same team investigated the use of the
chemical reaction optimization in solving other complex
engineering problems; the printed circuit board drilling.

References

Alba, E. and F. Chicano, 2004. Solving the error
correcting code problem with parallel hybrid
heuristics. Proceedings of the ACM Symposium on
Applied Computing, Mar. 14-17, ACM, NY., USA,
pp: 985-989.

 DOI: 10.1145/967900.968101
Baterina, A.V. and C. Oppus, 2010. Image edge

detection using ant colony optimization. WSEAS
Trans. Signal Processing, 2: 58-67.

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

900

Bland, J.A., 2007. Local search optimisation applied to
the minimum distance problem. J. Adv. Eng.
Informatics Archive, 21: 391-397.

 DOI: 10.1016/j.aei.2007.01.002
Cotta, C., 2004. Scatter search and memetic approaches

to the error correcting code problem. Proceedings of
the Evolutionary Computation in Combinatorial
Optimization, 4th European Conference, Apr. 5-7,
Springer Berlin Heidelberg Coimbra, Portugal, pp:
51-61. DOI: 10.1007/978-3-540-24652-7_6

Dorigo, M. and L.M. Gambardella, 1997. Ant colonies
for the travelling salesman problem. Biosystems, 43:
73-81. DOI: 1016/S0303-2647(97)01708-5

Eldos, T., A. Kanan and A. Aljumah, 2013a. Adapting
the ant colony optimization algorithm to the printed
circuit board drilling problem. World Comput. Sci.
Inform. Technol. J., 3: 100-104.

Eldos, T., W. Nazih and H. Elsimary, 2013b. Error-
correction-code allocation using the chemical
reaction optimization algorithm. Int. J. Eng.
Comput. Sci., 13: 54-57.

G <omez, O., 2005. Omicron ACO. A new ant colony
optimization algorithm. CLEI Electr. J., 8: 1-8.

Ghosh, S., S. Basu and N.A. Touba, 2005. Selecting
error correcting codes to minimize power in
memory checker circuits. J. Low Power Electronics,
1: 63-72. DOI: 10.1166/jolpe.2005.007

Ginidi, A.R.G., M.A.M. Kamel and H.T. Dorrah, 2010.
Development of new fuzzy logic-based ant colony
optimization algorithm for combinatorial problems.
Proceedings of the 14th International Middle East
Power Systems Conference, Dec. 19-21, Cairo
University, Egypt, pp: 331-338.

Haas, W. and S. Houghten, 2007. A comparison of
evolutionary algorithms for finding optimal error-
correcting codes. Proceedings of the 3rd IASTED
International Conference on Computational
Intelligence, (CCI’07), ACM, Anaheim, CA., pp:
64-70.

Ho, S.L., S. Yang, G. Ni, J.M. Machado, 2006. A
modified ant colony optimization algorithm
modeled on tabu-search methods. IEEE Trans.
Magnet., 42: 1195-1198.

 DOI: 10.1109/TMAG.2006.871425
Hung, K.S., S.F. Su and Z.J. Lee, 2007. Improving ant

colony optimization algorithms for solving traveling
salesman problems. J. Adv. Comput. Intelligence
Intelligent Informat., 11: 433-442.

Hwanga, W., C. Ou, C. Hsu and T. Lo, 2005. Iterative
optimization for joint design of source and channel
codes using genetic algorithms. J. Chinese Institute
Eng., 28: 803-810.

 DOI: 10.1080/02533839.2005.9671050

Kanan, A., T. Eldos and M. Alkahtani, 2013. Mobile Ad
Hoc networks routing using ant colony optimization.
World Comput. Sci. Inform. Technol. J., 3: 105-109.

Lacan, J. and P. Chatonnay, 1999. Search of optimal
error correcting codes with genetic algorithms.
Proceedings of the 6th Fuzzy Days Dortmund,
Theory and Applications International Conference,
May 25-28, Springer, Germany, pp: 93-98.

 DOI: 10.1007/3-540-48774-3_12
Lam, A.Y.S. and V.O.K. Li, 2010a. Chemical reaction

optimization for cognitive radio spectrum allocation.
Proceedings of the IEEE Global
Telecommunications Conference, Dec. 6-10, IEEE
Xplore Press, Miami, FL., pp: 1-5.

 DOI: 10.1109/GLOCOM.2010.5684065
Lam, A.Y.S., J. Xu and V.O.K. Li, 2010. Chemical

reaction optimization for population transition in
peer-to-peer live streaming. Proceedings of the
IEEE Congress on Evolutionary Computation, Jul.
18-23, IEEE Xplore Press, Barcelona, pp: 1-8.

 DOI: 10.1109/CEC.2010.5585933
Lee, H. and E. Kim, 2008. A symbiotic evolutionary

design of error-correcting code with minimal power
consumption. ETRI J., 30: 799-806.

 DOI: 10.4218/etrij.08.0108.0188
Li, V. and A. Lam, 2015. Chemical reaction

optimization.
Lorpunmanee, S., M.N. Sap, A.H. Abdullah and C.

Chompoo-inwai, 2007. An ant colony optimization
for dynamic job scheduling in grid environment. Int.
J. Comput., Control, Quantum Inform. Eng., 1:
1328-1335.

McCarney, D.E., S. Houghten and B.J. Ross, 2012.
Evolutionary approaches to the generation of
optimal error correcting codes. Proceedings of the
14th Annual Conference on Genetic and
Evolutionary Computation, Jul. 07-11, ACM,
Philadelphia, pp: 1135-1142.

 DOI: 10.1145/2330163.2330320
Rais, H.M., Z.A. Othman and A.R. Hamdan, 2007.

Improved Dynamic Ant Colony System (DACS) on
symmetric traveling salesman problem. Proceedings
of the International Conference on Intelligent and
Advanced Systems, Nov. 25-28, IEEE Xplore Press,
Kuala Lumpur, pp: 43-48.

 DOI: 10.1109/ICIAS.2007.4658345
Shieh, C.S., J.S. Pan, C.J. Su and B.Y. Laio, 2003. Noise

suppression for shape-gain vector quantization by
index assignment using ant colony systems.
Proceedings of the Joint Conference of the Fourth
International Conference on Information,
Communications and Signal Processing, 2003 and
Fourth Pacific Rim Conference on Multimedia, Dec.
15-18, IEEE Xplore Press, pp: 235-238.

 DOI: 10.1109/ICICS.2003.1292450

Taisir Eldos et al. / Journal of Computer Sciences 2015, 11 (8): 892.901

DOI: 10.3844/jcssp.2015.892.901

901

Wolpert, D.H. and W.G. Macready, 2002. No free lunch
theorems for optimization. IEEE Trans.
Evolutionary Algorithms, 1: 67-82.

 DOI: 10.1109/4235.585893
Xu, J., A.Y.S. Lam and V.O.K. Li, 2010. Chemical

reaction optimization for the grid scheduling
problem. Proceedings of the IEEE International
Conference on Communications, May 23-27, IEEE
Xplore Press, Cape Town, pp: 1-5.

 DOI: 10.1109/ICC.2010.5502406

Yu, B., Z. Yang, C. Cheng and C. Liu, 2005. Optimizing
bus transient network with parallel ant colony
algorithm. Proc. Eastern Asia Society
Transportation Stud., 5: 374-389.

Zaferanieh, M., T. Moallem and T. Sabzevar, 2009. Ant
colony and simulated annealing algorithms for
finding the core of a graph. World Applied Sci. J., 7:
1335-1341.

