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Abstract: We present a new method for capturing human motion over 360 

degrees by the fusion of multi-view RGB-D video data from Kinect 

sensors. Our method is able to reconstruct the unified human motion from 

fused RGB-D and skeletal data over 360 degrees and create a unified 

skeletal animation. We make use of all three streams: RGB, depth and 

skeleton, along with the joint tracking confidence state from Microsoft 

Kinect SDK to find the correctly oriented skeletons and merge them 

together to get a uniform measurement of human motion resulting in a 

unified skeletal animation. We quantitatively validate the goodness of the 

unified motion using two evaluation techniques. Our method is easy to 

implement and provides a simple solution of measuring and reconstructing 

a 360 degree plausible unified human motion that would not be possible to 

capture with a single Kinect due to tracking failures, self-occlusions, 

limited field of view and subject orientation.  
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Introduction 

The field of marker-less motion capture and 3D or 

free-viewpoint video has received a lot of interest in the 

past decade. It has a number of applications in the areas 

such as natural user interface design, motion analysis, 

video surveillance, virtual reality etc. Traditionally, 

multi-view RGB camera systems have been used to 

capture motion, shape and appearance of a real-world 

actor. Carranza et al. (2003) presented one of the pioneer 

works in this area by employing eight synchronized 

RGB video cameras to capture a real-world actor. Using 

the eight video streams they developed a template-based 

marker-less motion capture scheme to correctly estimate 

the motion of the actor. This work was later extend by 

Theobalt et al. (2007), who measured the surface 

reflectance properties of the actor in addition to its 

motion. Afterward, de Aguiar et al. (2008) presented 

another template-based deformation framework to 

capture high quality motion of the real-world actor. In 

contrast, Vlasic et al. (2008) used the skeletal data to 

deform a template mesh to capture the high quality 

motion. Ahmed et al. (2008) used a shape matching 

approach over dynamic visual hulls to capture the track a 

single mesh over the complete sequence. So far, the 

previously explained methods relied on the RGB data. 

Depth cameras, especially consumer-grade depth 
cameras were made popular by the introduction of 
Kinect by Microsoft (2010). The major benefit of Kinect 
is its low cost that allows it to be used a very cheap 
RGB-D sensor to acquire both the color and depth data 
at 30 frames per second (Ahmed and Khaifa, 2016). If 
only the depth data is desired then the Time-of-Flight 
(TOF) cameras can also be employed (Kim et al., 2008). 
Unlike Kinect, a TOF camera does not provide a unified 
solution to acquire both depth and RGB data, which is 
one of the major strengths of Kinect. In addition, using 
the Microsoft’s Kinect SDK, one can also acquire real-time 
pose estimation or skeletal data of a real-world actor. 

 Pose estimation from a single camera has been a 

hallmark feature of Kinect and a number of solutions 

have been proposed for human pose estimation using a 

single Kinect (Girshick et al., 2011; Ye et al., 2011; 

Baak et al., 2011). The real-time skeletal data from 

Kinect is employed in a number of applications ranging 

from controlling a robot using the skeletal data or a 

controller free gaming experience by means of body 

poses (Lun and Zhao, 2015). The Kinect SDK can 

provide the skeletal data of multiple actors in a standing 

or sitting position. 

A number of methods have been proposed that only 

use the depth data for the real-time pose estimation using 

machine learning or non-linear optimization (Chen et al., 
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2013). On the other hand, one can use the Kinect SDK 

directly to get the real-time pose data. Thus Kinect SDK 

provides a simpler solution of pose retrieval compared to 

a number of other methods that are comparatively very 

difficult to implement (Wei et al., 2012; Ye et al., 2011; 

Baak et al., 2011; Yasin et al., 2015; Shotton et al., 

2011; Dantone et al., 2013). Due to the complexity of 

these methods they are not as widely adapted as Kinect’s 

pose estimation. In practice, Kinect’s SDK has been 

widely adopted for the real-time pose estimation and has 

been employed in a number of applications in a number 

of areas (Lun and Zhao, 2015). 

Kinect has been developed to be used as a standalone 

camera in a living room, where the person is always facing 

the camera. Therefore, the Kinect SDK only captures the 

correct pose of the person as long as it is facing the camera 

with the frontal orientation (Obdrzalek et al., 2012). If the 

person is not facing the camera or in case the body parts 

of the person are occluded due to self-occlusions then the 

incorrect orientation or the missing depth information 

result in the incorrect pose estimation. Additionally, due 

to the field of view limitations of a Kinect combined 

with the orientation of the person, it is not possible to 

capture the motion of the person from all sides. Thus a 

360 capture of the motion of the person is not possible 

using a single Kinect. 

In order to resolve these shortcomings of pose 

estimation from a single Kinect, a number of methods 

have been proposed that employ more than one Kinect 

for the pose estimation. Viewing a scene from multiple 

Kinects provide a number of benefits, specifically if a 

body part is occluded in one camera view will be visible 

in some other camera. Additionally, if the placement of 

the cameras is around the person, then the person will be 

oriented towards at least one of the camera that can 

correctly estimate its pose. On the other hand using 

multiple Kinects results in the loss of depth data due to 

the interference between different depth sensors. As 

shown by Ahmed (2012), this interference does not 

result in the loss of quality for a 360 degree 3D 

animation reconstruction, because the missing 

information from one depth sensor is filled in by the 

other sensors. In their work (Ahmed, 2012), employed 

six synchronized Kinects to reconstruct a 360 degree 3D 

animation. In contrast, Berger et al. (2011) employed 

four Kinects for unsynchronized marker-less motion 

capture. Ye et al. (2013) employed three hand-held 

Kinects for marker-less performance capture. Caputo et al. 

(2012) employed multiple Kinects for hand gesture 

recognition. All of these methods did not use the real-

time pose data from Kinect. Rather, all pose estimation 

methods used an optimization process by means of 

silhouette-based minimization or template deformation 

to find the correct pose. Even though these methods 

work fine in practice, using Kinect SDK for the pose 

estimation has a number of benefits. In the first place, 

the pose data is available at 30 frames per second, 

making it suitable for a number of real-time applications. 

There is no additional post processing required before 

using the skeletal data. In addition, the reliability of the 

skeletal data is good enough to be employed in a number 

of applications as long as the person is facing the camera 

and the person’s pose does not result in the self-

occlusion of body parts (Obdrzalek et al., 2012). 

If multiple Kinects are used to acquire the real-time 

pose data, it is not straightforward to fuse these poses 

together for 360 degree unified motion reconstruction. 

As Kinect only estimates the correct pose if the person is 

facing the camera, a completely incorrect pose with 

inverted joints is estimated for the back-facing camera. 

To fuse the pose data from Kinects, it is important to 

first identify the Kinects toward which the person is 

oriented. In addition, even for those Kinects with the 

correct person orientation, the joint data should be 

selected in such a way that the self-occluded joints 

should be discarded and only be used from the pose data 

that is estimated from the non-occluded joints. Finally, 

even if the joints are no occluded, a joint which is 

oriented more towards a Kinect should be preferred because 

in general it is better tracked compared to a joint that is not 

oriented towards Kinect (Obdrzalek et al., 2012). 

In this study, we propose a new method of fusing the 

skeleton data from multiple Kinects over 360 degrees. 

Our method can automatically detect the correct 

orientation of the actor with respect to each camera and 

can fuse the joint data based on our novel confidence 

score to create a unified skeletal representation at each 

frame. Our method uses the Microsoft Kinect SDK for 

acquisition and its implementation is relatively simple. 

The result of our method is a unified human motion 

measurement in the form of a skeletal animation over 

360 degrees that is free from the artifacts due to 

occlusions or tracking failures. Our work does not 

estimate the pose from the depth data, rather it presents a 

very simple and effective method to combine the data 

acquired from multiple low-cost sensors for a reliable 

360 degrees motion capture. An algorithmic flowchart of 

our method can be seen in Fig. 1 and the algorithmic 

details can be seen in Fig. 2. 

In the following sections, we will present each of the 

algorithmic step in detail, starting from the discussion of 

data acquisition, followed by the presentation of the 

unified skeletal animation reconstruction algorithm. 

Afterward, the results are presented and validated 

followed by the conclusions. 
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Fig. 1: Flowchart of the proposed method, starting from the acquisition of depth, RGB and skeletal data to the measurement of 360-degree 

human motion measurement using the novel confidence score, resulting in the unified skeletal animation reconstruction. The 

algorithmic details from each step can be seen in Fig. 2 

 

 
 

Fig. 2: Algorithmic details of the method from the acquisition to the unified 360-degree animation reconstruction 
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Data Acquisition 

Our acquisition system is comprised of four Kinects 

placed at 90 degrees with respect to each other. Our 

system is not confined to a fixed camera setup, but can 

work effectively for a hand-held acquisition, if required. We 

use a software-based synchronization similar to Ye et al. 

(2013) for the multi-view acquisition. We use the Kinect 

SDK to acquire RGB, depth and skeleton data. RGB-D 

streams from Kinect are low resolution (640x480) at 30 

frames per second. For each frame, Kinect tracks a 

skeleton comprising of 20 joints. One frame from our 

acquisition system showing, RGB, depth and the 

skeleton data can be seen in Fig. 3a and 3b. 

One of the benefits of using the Kinect SDK is that it 

circumvents the need of any manual intrinsic camera 

calibration. The SDK provides the mapping between 

RGB, depth and skeleton data. It also maps the depth and 

skeleton data to a unified three-space coordinate system. 

Thus for every depth value the corresponding RGB value 

is available. Additionally, for every joint position we 

know its depth value and the mapping to the RGB data. 

For our work, we only need the mapping between depth 

and the skeleton data. 

The depth to world coordinate mapping allows us to 

resample the depth data in a 3D point cloud. Thus, for 

each frame we obtain four 3D point clouds along with 

their corresponding estimated skeleton data in their local 

coordinate systems. In addition, the Kinect SDK also 

provides a tracking state for the skeleton and each joint. 

For the skeleton the tracking states are: Not Tracked (did 

not track anything), Position Only (did not track any 

joint, only one skeleton position) and Tracked (did track 

joints). For the joints the tracking states are: Not Tracked 

(joint data is not available), Inferred (joint data is 

calculated from other tracked joints), Tracked (joint data 

is tracked and available). 

The joint tracking states are an important part of the 

confidence score assigned to each joint for our method, 

as discussed in the next section. Even though our 

experiments use a static camera setup, our method can 

also work without a fixed extrinsic parameterization 

between the cameras for the whole sequence, in case the 

cameras are not static. We show that the extrinsic 

parameters can also be calculated dynamically using the 

skeleton data as explained in the next section. 

 

 
 
Fig. 3: (a) shows RGB frames from three cameras. Frontal and profile faces are detected in two cameras (b) shows the depth data with the 

overlaid skeleton from Kinect (c) shows the unified skeleton from the two cameras towards which the actor's face is oriented 
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Unified Skeletal Animation Reconstruction 

The fusion of skeleton data from multiple Kinects 
poses a number of challenges. First, the skeleton data 
from Kinect is not usable if the actor is not facing the 
camera. The Kinect uses the depth data under the 
assumption that the actor is facing the camera and 
returns the incorrect pose if the actor is not facing the 
camera, as seen in Fig. 3b(right). In the first step, for 
every frame we need to identify which cameras can be 
used for reconstructing the unified skeleton.As the depth 
data, or the skeleton and joins tracking states are not 
helpful in finding the correct orientation of the human 
actor, we use one of the standard face detection methods 
(Viola and Jones, 2001) over the RGB data to determine 
the front-facing actors. We use two profiles, one for the 
frontal face and one for the profile face to find out which 
cameras can be used for the fusion (Fig. 3a). Face 
detection is a standard feature provided in nearly all 
camera systems, ranging from mobile phones to high end 
DSLRs. It is prone to failure if the actor's face is 
occluded. Sometimes it can also detect false positives. 
We used simple sanity checks to circumvent these 
issues, to be discussed in the Results and Validations 
section. Additionally, we could also use the face 
detection API provided with the Kinect SDK, which 
works robustly in practice, but since it is real-time, we 
found that it adversely affected the performance of our 
acquisition system. In principle, as the Kinect already 
provides the head position in the depth image 
coordinates, the extrinsic camera parameters can be used 
to localize the head position in the RGB space. Using the 
head position, some other image processing algorithm 
can also be used to detect the front-facing camera. 

Once the cameras to be used are identified, we start 

the fusion process by assigning a confidence score to 

each of the skeleton joint for each camera. Assuming we 

are using C cameras and there are T  frames in the 

sequence, the confidence score S for a joint c

t
j , where j = 

1,…,20, c = 1,...,C and t = 1,..., T  , is defined by: 
 

( ) ( ) ( ) ( ) ( )c c c c c

t t t t tj j j j j= + + +S R O D B  (1) 

 

( )c

t
jR  is the joint tracking state for c

t
j  from the 

Kinect SDK and its possible values are: 
 

0 if joint data is not available

( ) 0.5 if it is calculated from other joints

1 if it is tracked and available

c

tj




= 



R  

 
It is to be noted that the values 0, 0.5 and 1 are not 

provided by the Kinect SDK. We convert the joint 
tracking state to these weights based on its tracking 
status. A joint that is not tracked should not have any 
weight. Similarly, if the joint's state is tracked from the 
other joints, then its weight should be half of the weight 
of the joint that is independently tracked. 

( )c

tjO  is the occlusion score for c

t
j , it is 0 if the joint 

is occluded or 1 otherwise. We find out if the joint is 

occluded or not by back projecting its depth value to the 

depth image and comparing the z value of the three-

space joint position from Kinect and the depth image. 

We cannot completely discard a joint if it is occluded 

because in some cases Kinect can still track the pose 

even if a joint is occluded for a small number of frames. 

The term ( )c

tjO  complements ( )c

tjR  such that even if 

the joint tracking state reports a higher confidence in the 

joint, but it is occluded then it should get a lesser score. 

( )c

tjD  is the temporal smoothness term for c

t
j , 

which if a joint is moving, compares its displacement dt 

at t with the displacement dt−1 at t−1. If the joint is not 

moving, or if there is very little movement, then it is set 

to 1. If dt ⇐ σ * dt−1 then it is set to 1, if dt > σ * dt−1 and 

dt ⇐ ρ * dt−1 then it is 0.5, otherwise 0. We found this 

term to be very important because it penalizes sudden 

jerky motion of the joints in case of a tracking failure. 

Skeleton tracking from Kinect can also fail not because 

of the occlusions but also due to the limitations of the 

underlying pose estimation algorithm. By introducing 

this temporal smoothness term, we try to compensate for 

these failures. It is to be noted that ( )c

tjD  cannot 

compensate for the jerkiness if it is present for a joint in 

a particular frame, in all the cameras. The jerkiness is a 

shortcoming of the underlying pose estimation 

algorithm, whereas this term favors the best available 

joint with the least jerky motion. In this regard, this term 

compensates for this particular shortcoming of the 

underlying skeleton estimation algorithm. The 

parameters σ and ρ are found through experiment, as 

discussed in the Results and Validation section. For our 

method, we chose σ = 1.2 and ρ = 2.0 for two slow 

sequences, while for the faster motion their value was 

1.05 and 1.7 respectively. 

Finally, ( )c

tjB , is the bone length score. Similar to 

Yueng et al. (2013), we initialize all the bone-lengths 

manually for the first frame and classify them as the 

ideal lengths. As each joint is associated with one or 

more bones, let L(j) be the sum of all the bones lengths 

associated with each joint. Using the sum of ideal bone 

lengths associated with each joint Lideal(j), the 

normalized term ( )c

tjB  is calculated as follows: 

 

( )
( )
( ) ( ) ( )
( )

( ) ( ) ( )

if

if

c
t

c
ideal t

c
ideal t

c
t

j
c

ideal t
j

c

t
j

c

ideal tj

j j

j

j j

 >
=
 ≤


L

L

L

L

L L

B

L L
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 (a) (b) (c) 
 
Fig. 4: (a) shows unified two point clouds (shown in black and 

red) and (b) shows the corresponding two skeletons 

after the extrinsic calibration. (c) shows the unified 

skeleton reconstructed from our method 
 

Thus, the maximum value of ( )c

tjB  is 1.0 and any 

deviation from the ideal bone length results in a smaller 

score. We also use the bone length variation to 

quantitatively validate our method, as discussed in the 

Results and Validations section. 
For all the cameras oriented towards the face of the 

actor, we use the 3-space mapping of the joints with 
the confidence score greater than 2 and find the least 
squares solution to determine the transformation that 
maps one camera to the other. As explained earlier, 
given the static camera setup, this is not a required 
step. It is only performed to demonstrate that our 
method can also work for moving cameras. 
This dynamic extrinsic calibration is done at every frame 
and if more than two cameras are used, they are mapped 
to one reference camera. The results of extrinsic 
calibration can be seen in Fig. 4a and 4b. In practice, 
we always found 12 or more joints with the 
confidence value greater than 2. Thus, the linear 
system was never underdetermined. The confidence 
score in Equation 1 is one of the ways to perform the 
dynamic extrinsic calibration. Using the skeletal data 
is a novel approach in this regard, but one can use also 
use traditional image processing based methods, 
similar to Ahmed (2012), to achieve the similar 
results. To reconstruct the unified skeleton, dynamic 
extrinsic calibration by means of Equation 1, is the 
first step. We modify Equation 1 with an additional 
orientation term to select the best possible joints for 
the uniform skeletal reconstruction. 

Using the extrinsic calibration, we first map 3D 

point clouds and skeletons to the global world 

coordinate system. In the next step, we use the unified 

point cloud (Fig. 4a) to estimate the normal ( )c

tn j  of 

each c

t
j . The normal orientation is estimated using 

SVD-based plane fitting on the neighboring 3D points 

of c

t
j  in the unified point cloud. If we do not use the 

unified point clouds and the normal for c

t
j  is only 

estimated through its corresponding camera point 

cloud, then the normal orientation will be biased 

towards that particular camera. 

Before merging the skeleton data, we modify our 

confidence measure (Equation 1) and introduce a new 

orientation term ( )c

tjN : 

 

( ) ( ) ( )
( ) ( ) ( )( )1.0

c c c

t t t

c c c

t t t

j j j

j j j

= + +

+ + −

S R O

D B N
  (2) 

 

( )c

tjN  is the dot product of ( )c

tn j  and ( )c

tv j , where 

( )c

tv j  is the view vector from c

t
j  to the camera c. The 

maximum value of ( ( )1.0 c

tj− N  is 1 if ( )c

tn j  is 

oriented towards c  and it decreases as the actor 

rotates away from the camera. This term increases the 

confidence score for the joints of the front-facing 

camera, which is desired, as Kinect best estimates the 

skeleton if the actor is facing the camera. Finally, we 

reconstruct the unified skeleton at t by selecting each 

of the 20 joints from the camera c that has the highest 

confidence score ( )c

tjS  presented in Equation 2 for 

that particular joint. 

Results, Validations and Discussions 

We recorded three sequences of 200 frames each. 
First sequence shows a fast boxing motion, the second 
sequence is a normal walking motion, while the third 
sequence is the fast rotation motion of whole body. Our 
method was able to track all sequences successfully and 
the selected joints from multiple cameras capture the 
motion accurately. Our confidence measure ensures that 
joints with the wrong pose are replaced by the joints 
from other cameras that estimate the correct pose, as can 
be seen in Fig. 5. More results from two of the sequences 
can be seen in Fig. 3c, 4c. It can be observed in the 
results that our method can merge the skeleton data from 
multiple cameras to reconstruct the unified skeletal 
animation. Please note that the boxing sequence is 
shown with only three cameras because the actor never 
turned around to face the fourth camera. It can be seen in 
the figures that because of the faster motion, the boxing 
sequence has a number of tracking failures, even in the 
front-facing camera, but our method was able to 
reconstruct the correct motion by merging data from the 
other cameras. The walking sequence shows a complete 
360 degree reconstructed unified motion. 
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In addition to the qualitative visual evaluation, we also 
perform multiple quantitative validations. In general there is 
no ground truth data available for us to compare the 
goodness of our method. In addition, this work is not a 
direct pose estimation from the depth data (Chen et al., 
2013), rather it uses the estimated pose from each camera 
and combines them together. Therefore, we do not need 
to quantify the quality of the individual pose, but need to 
estimate if the unified skeleton is better than the individual 
poses from each camera. We use two methods that compare 
the unified skeleton with individual skeletons using the 
bone-length variation estimation and 3D point cloud 
overlap to quantify the goodness of the unified skeleton: 

Bone-length Variation Estimation 

For the first quantitative analysis, we implement the 
bone-length variation estimation system that is presented 
and employed by Yueng et al. (2013). Similar to their 
method, we initialize all the bone-lengths manually for 
the first frame and classify them as the ideal lengths. 
Ideally the bone-lengths of the reconstructed skeleton at 
each frame should be as close as possible to the ideal 
lengths. Following Yeung et al. (2013), we compared 
bone-lengths at each frame for the unified skeleton and 

the front-facing cameras at each frame. For all the 
sequences we found the unified skeleton to be closest 
to the ideal lengths compared to individual Kinects. 

 

 
 
Fig. 5: Merging of three cameras (black, red and green) is 

shown on the right. As can be seen the algorithm 

correctly selects the joints from the cameras that depict 

the most accurate motion 

 

 
 
Fig. 6: The statistics of bone-length variation at different part of skeleton in the boxing sequence. The ideal bone length is shown as 

a dotted line in the center. The bone-length from individual Kinects and from the reconstructed uniform skeleton are shown 

over the 200 frames. Kindly note that some Kinects (e.g., Kinect C), depending on the orientation of the person, are not used 

for all the frames in the reconstruction process 
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In this study, due to size constraints, we are only 

showing results of the boxing sequence, because it is the 

most challenging sequence with the very fast motion, 

with a number of tracking failures for all the cameras. 

Similar to Yeung et al. (2013), we show the statistics of 

bone-length variation for a number of bones for the 

boxing sequence in Fig. 6. Table 1 shows the absolute 

difference of the average bone length and the ideal bone-

length for individual Kinects and the unified skeleton for 

the boxing sequence. As can be seen in Fig. 6 and Table 

1, over the course of the sequence, the bone lengths of 

the unified skeleton are always closest to the ideal 

length, when compared to individual Kinects. 

Bounding-box and Skeleton Overlap Estimation 

The bounding-box-based error measure calculates the 

overlap of the skeleton and the underlying 3D point 

cloud. For each bone in the individual skeleton from 

Kinects and the unified skeleton, a bounding box Bi is 

defined at the first frame, where i = 1,...,19 is the bone 

index. The size of each bounding box Bi is initialized 

manually and remains consistent throughout the 

sequence. The orientation of each bounding box is 

automatically determined from the orientation of the 

bone. The bounding boxes are tracked over the whole 

sequence using the skeletal animation. An example 

bounding box of a bone at an arbitrary frame can be 

seen in Fig. 7. 

 For each bounding box, the number of 

overlapping 3D points are calculated for each 

skeleton. A normalized error measure ξt is calculated 

for a time frame t as follows: 

 

( )( )( )
( )

i

t

t

t

count

count
ξ =

U P B

P
 

 

where, ( )( )( )i

tcount U P B is the count of all unique points 

overlapping bounding boxes of the bones and, ( )tcount P  

is the count of all the points in the complete 3D point 

cloud. As shown in Fig. 7(c and d), the bounding box 

from the unified skeleton completely overlaps the correct 

region of the merged 3D point clouds, resulting in the 

higher value of ξt. In this particular frame, the unified 

skeleton has on average 7.73% better quality, compared to 

the individual cameras. 

For comparison, we also estimate the goodness 

criteria for each individual front facing camera ξt. For all 

three sequences, we found that on average the goodness 

of the unified skeleton ξt was better than the average 

goodness of individual front facing cameras ξt by a 

factor of 7% to 10%. 

Table 1: Table type styles (Table caption is indispensable) 

Bones A B C Unified 

Pelvis 0.0078 0.0139 0.0096 0.0006 

Spine 0.0088 0.0194 0.071 0.0008 

Head 0.1090 0.1767 0.0642 0.0035 

Left shoulder 0.0222 0.0300 0.0811 0.0071 

upper arm 0.0175 0.0047 0.0399 0.0009 

Left forearm 0.0304 0.0148 0.0684 0.0050 

Left hand 0.0303 0.0208 0.0328 0.0033 

Right shoulder 0.0105 0.0052 0.0142 0.0005 

Right upper arm 0.0161 0.0338 0.0102 0.0046 

Right forearm 0.0062 0.0044 0.0044 0.0019 

Right hand 0.0221 0.0383 0.0435 0.0032 

Left hip 0.0138 0.0073 0.0610 0.0042 

Left upper leg 0.0128 0.0113 0.0639 0.0010 

Left lower leg 0.0270 0.0012 0.0120 0.0007 

Left foot 0.0135 0.0028 0.0087 0.0015 

Right hip 0.0037 0.0134 0.0232 0.0005 

Right upper leg 0.0186 0.0813 0.0173 0.0060 

Right lower leg 0.0137 0.0324 0.0093 0.0058 

Right foot 0.0019 0.0097 0.0193 0.0012 

 

 

 (a) (b) (c) (d) 

 
Fig. 7: One example of bounding box based error calculation 

is shown. As shown in (a) and (b), the tracking failure 

causes the complete mismatch of the right arm's joints 

with respect to the underlying merged 3D point 

clouds. On the other hand, (c) and (d) show the 

reconstructed unified skeleton, where the joints are 

correctly aligned with the underlying merged 3D 

point clouds, thus a large of number of 3D points are 

within the bounding of the right forearm 
 

Discussion 

We used both evaluation methods to estimate the two 

parameters σ and ρ in the temporal smoothness term 

( )c

tjD  that was used in Equation 1. For each sequence, 

we reconstructed the unified skeletons with varying 

parameters and compared each bone-length with the 

corresponding ideal length and the goodness of the 

skeleton by calculating ξt. We observed that for the 

sequences with the slower motion the value was 

higher, whereas for the faster motion it was lower, 

because the sudden jerky motion is heavily penalized 

in case of the faster motion. 
In terms of computing speed our method runs at a 

moderate speed and can estimate 12 frames of uniform 
skeletons per second. Ignoring the I/O overhead and if 
the extrinsic calibration is pre-established, it runs in real-
time at 30 frames per second. We tested the method on a 
2.4 Ghz Quad Core i5 system with 4 GB of memory. 
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Our method can easily be parallelized on a cluster as 
each frame is processed individually. 

Our method is subject to a couple of limitations. We 

employ face detection to find out actor's orientation with 

respect to the camera. Face detection works well in more 

than 90% of the frames but it can fail if the face is 

occluded, for example, in the boxing sequence. We solve 

this issue in a pre-processing step by analyzing the 

sequence and if a couple of frames are missing the face, 

then we look at the frames before and after the missing 

frames under the assumption that the frames were 

skipped due to occlusion. Additionally, we also use the 

normal of the root joint from the previous frame to 

determine if the actor is still oriented towards the 

camera. For example, in case face detection has failed, 

but in the previous frame the actor was facing the 

camera, then it is unlikely that the actor was rotated by 

90 degrees in a single frame. Similarly, face detection 

can also detect false positives, for example, some parts in 

the surroundings can be incorrectly classified as faces. 

Again, we make use of the full sequence to determine the 

correct size and most likely position of the face. 

Incorrect face rectangles with very small or large areas 

are immediately discarded. 
One can also see some flickering in the 

reconstructing sequences, where one joint switches 
between two cameras quickly. This is due to very similar 
confidence score, which can vary according the normal 
orientation if both cameras see the joint clearly. The 
depth data from Kinect is very noisy and we do not 
compensate for this noise, thus normal orientation can 
differ slightly in each frame. Additionally, the general 
flickering in joint positions is not from our algorithm 
rather it is the raw skeleton data from Kinect, which is 
not smooth over time. In future, we want to explore 
smoothing the skeleton data by reconstructing the joint 
position from all available cameras by means of a 
weighted average, or incorporate a probabilistic model in 
the confidence measure. 

Despite the limitations, we show that our method is 

able to reconstruct the human motion over 360 degrees 

by fusing multiple RGB-D sensors and reconstruct a 

unified skeletal animation in a plausible way that would 

not be possible with a single Kinect. 

Conclusion 

We presented a method to reconstruct human motion 
over 360 degrees by using data from multiple RGB-D 
Kinect sensors and reconstruct a unified skeletal 
animation. Our method can merge the skeleton data 
directly from Kinects by assigning a confidence score to 
each joint based on its tracking state, occlusion, 
displacement, bone length and orientation. The 
confidence score is then used to select 20 best joints 
from the cameras towards which the actor's face is 
oriented. This orientation is found by means of face 

detection. Our method can reconstruct a unified 360 
degree skeletal animation from multiple Kinects that 
would not be possible from a single Kinect due to 
occlusions and tracking failures. We also quantified the 
goodness of the reconstructed unified skeleton using the 
bone-length variation calculation and bounding-box 
overlap ratio methods. In future, we would like to 
extend the unified skeletal animation reconstruction 
algorithm by incorporating a probabilistic model in the 
confidence measure. In addition, we would also like to 
work on new methods to quantify the goodness of the 
reconstructed unified skeleton. 
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