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Abstract: Matching thermal face images as a method of biometric 

authentication has gained increasing interest because of its advantage of 

tracking a target object at night and in total darkness. Therefore, for 

security purposes, it has become highly favourable and has extensive 

applications, for instance, in video surveillance at night. The aim of this 

study is to present a simple and efficient deep learning model, which 

accurately predicts person identification. A pre-trained Convolutional 

Neural Network (CNN) is employed to extract the features of the multiple 

convolution layers of the low resolutions’ thermal infrared images. To run 

the program and evaluate the performance, we use a sample of 1500 resized 

thermal images, each with resolution 181×161 pixels. The sample 

comprises of images that were captured within different time-lapse and 

with diverse emotions, poses and lighting conditions. The proposed 

approach is effective compared to the state-of-the-art thermal face 

recognition algorithms and achieves impressive accuracy of 99.6% with 

less processing and training times.  

 

Keywords: Deep Learning, Convolutional Neural Networks, Image 

Processing, Face Recognition, Thermal Images 

 

Introduction 

Recognitions with a thermal camera is a challenge 

that have been recently improved by adopting deep 

learning methods using Convolutional Neural Networks 

(CNNs). Thermal camera forms a picture by capturing 

various heat levels emitted from objects. One of the 

applications of visualizing and identifying objects is face 

recognition. There are many useful applications for face 

recognition; an important one is an application for security 

at night where an intruder needs to be identified in the 

absence of light. Furthermore, it can be used as an 

additional tool to normal cameras for identification. 

Ensemble method of using both thermal and normal 

cameras adds more certainty weight to the proof of 

identity. In this study, faces are identified in different 

circumstances such as full light, partial light and dim light 

as well as in different emotional status, all based on the 

heat emitted from them rather than the light intensities 

reflected from them; the technology also allows us to 

measure the accuracy of the recognition using CNNs.  
Image processing (Nixon and Aguado, 2002) is a 

technique that is used to change over a picture into an 

enhanced computerized shape. It plays out a few 

operations together with a specific end goal to get an 

improved picture or to concentrate some valuable data 

from it. It is also a sort of flag regulation which 

information is a picture similar to a video edge or photo 

and might yield a picture or attributes related with that 

picture. Typically, image-processing framework 

incorporates pictures as two-dimensional signs while 

effectively applying strategies of set flag handling to 

them. It is among quickly developing advances today 

together with its applications in different parts of a 

business. Advanced processing methods help in 

controlling the computerized pictures by utilizing 

personal computers. The three general stages that a wide 

range of information needs to experience while utilizing 

computerized system are pre-handling, improvement and 

show and data extraction.  

CNNs are a special kind of multi-layer neural 

networks trained with a back-propagation algorithm that 

extracts important features, supplemented with filters 

that prevent overfitting and eliminate noise modelling. 

While a fully connected layer has a high cost of 

parameters and high risks of overfitting, the 

convolutional layer is more suitable for 2D spatial 

information because it captures the spatial characteristics 
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and uses fewer parameters (Hadji and Wildes, 2018). 

The performance of the network is largely based on the 

value of the weights calculated between the neural 

connections in the layers (Krizhevsky et al., 2012) and 

(Krizhevsky et al., 2017). There are many convolutional 

neural architectures that evolved over previous years and 

serve as feature extractors, widely known in the literature 

are: Krizhevsky et al. (2012), (LeCun et al., 1998), 

(Szegedy et al., 2015), (Simonyan and Zisserman, 2014), 

(Szegedy et al., 2017) and (Huang et al., 2017). Some 

CNN architectures in the literatures that accumulated 

over years of experimentation and competition includes 

LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 

2012), GoogleNet (Szegedy et al., 2015), ResNet (He et al., 

2016) and DensNet (Huang et al., 2017). In this 

experiment, we use Visual Geometry Group (VGG), a 

CNN model proposed by Simonyan and Zisserman 

(2014) at the University of Oxford to calculate the 

accuracy. This architecture is implemented because of its 

simplicity and accuracy over other similar applications 

such as Modified National Institute of Standards and 

Technology (MNIST) database.  

This study discovers a CNN algorithm that is beneficial 

for the research on image recognition for various 

applications such as medical diagnosis (Lahiri et al., 2012), 

security monitoring, thermal vision for autonomous 

vehicles, agriculture and biometrics; see for instance 

(Vadivambal and Jayas, 2011) and (Khanal et al., 2017). 

Furthermore, the study might help researchers to uncover 

and explore areas of emotions and security monitoring 

that many researchers were not able to explore, using a 

state-of-the-art technology. Most significantly, the weights 

the CNN calculates for one application can be used for 

other similar applications where enough data is not 

available. The results of the proposed study demonstrate 

that CNNs can extract and recognize a person’s identity. 

Moreover, CNNs can achieve better performance and 

accuracy compared with other approaches. The proposed 

method is known in the literature as a transfer learning 

approach and has been successful in many applications 

(Hoo-Chang et al., 2016), (Ng et al., 2015), (Wang and 

Deng, 2018) and (Tajbakhsh et al., 2017). Thus, a new 

theory and discovery on recognition, vision, as well as 

emotions may be arrived at. The study duration starting 

with pre-study preparations and data acquisition until the 

end was about 2 years.  

Materials and Conventional Neural Network  

In this experiment, MATLAB (MathWorks, 2015) 

tools are used to capture the data into matrices and resize 

them into best possible resolutions that cover maximum 

facial data. We further use the sklearn.preproceeing 

package from scikit-learn library (Pedregosa et al., 2011), 

(Kramer, 2016) to standardize the data and centre the 

mean into a unit variance. Moreover, the Keras Library 

(Chollet, n.d.), (Chollet, 2015) is used as a front end to 

configure the model, compile it, then train the model on 

the data with the TensorFlow (Abadi et al., 2016) as a 

back end engine for the numerical computations that can 

be deployed with Central Processing Units (CPUs), 

Graphics Processing Units (GPUs), or Tensor Processing 

Units (TPUs). Then, we adopt the neural predictive model 

for thermal image classification.  

Conventional Neural Network Models  

A feature reduction is necessary to extract beneficial 

and informative features for classification purposes. 

Furthermore, the dimensionality of features extracted 

from input thermal images usually plays an important 

role in conventional classification accuracy and deserves 

more attention from the literature (Sayed, 2018a), 

(Sayed, 2018b). It is worth mentioning that each feature 

is masking a few pixels of the input image with a two-

dimensional array of values and matches common 

characteristics of the images. A trainable multistage 

CNN might include tens or hundreds of concealed layers 

at each of which it learns to identify different features of 

the input images called feature maps. The feature 

learning has multiple stages each having one 

convolutional layer and one pooling layer. The 

convolution layer places the input images through a set 

of convolutional operations each of which activates 

certain features from the input images. It is occasionally 

common to insert a pooling layer in between two 

successive convolutional layers. The pooling layer 

simplifies the output by performing nonlinear down 

sampling, reducing the number of needed parameters 

(and computations as well) for training the network. 

Moreover, pooling layers control the network over-

fitting. It is worth noting here that stride might be used 

instead of max pooling in order to reduce layer size in 

network architecture. Then, the connected convolutional 

layers are trailed by the 2×2 max-pooling (pooling 

images) layers that are next converted to one-

dimensional vectors. We call this conversion the 

flattening stage. Thus, after learning features in many 

layers and flattening, the architecture of the CNN shifts 

to single or multiple fully connected layers, which 

compute the categories of the images by the end of the 

process. These layers, which combine all the features 

learned by the previous layers across the images to 

identify the larger patterns, are similar to hidden layers 

in regular neural networks. More specifically, after the 

network is trained, the last hidden layer outputs are used 

as thermal image characterizations to construct the face 

classification. In Fig. 1, we demonstrate the feature 

reduction and image classification where, in the next 

section, we refine the figure with proper steps and 

analyse the design cycle of the deep convolutional 

network for thermal facial recognition algorithm.   
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Fig. 1: The proposed deep convolutional network architecture for thermal face recognition 
 

 

 

 
 

Fig. 2: Images of one participant in test data 
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Fig. 3: Images of other participant in test data 

 

Dataset  

The Arab Open University (AOU) dataset consists of 

1500 thermal pictures of 20 subjects taken in five 

positions (-90, -45, 0, 45, 90°C) with three emotions for 

each subject (angry, neutral, smiling), under five 

lightening conditions (slim light, left light on, full light 

on, right light on, full darkness). Two examples are 

illustrated in Fig. 2 and 3. Here, we should note that the 

given pictures show for different lightning conditions 

with the same subject and position, while the actual 

face temperatures matrices are not exactly the same, 

although through the pictures cannot be identified. The 

AOU dataset (Zaeri et al., 2015) includes males and 

females from a diverse ethnic background using 

Infrared Camera ETIP 7320.  

The dataset is divided into two groups, the first group 

is an 80% of the data (1200 of type thermal 

temperatures) chosen randomly and used to build the 

neural predictive model by extracting the most 

important features incorporated in the calculated 

weights. All the data in the first group are labelled, in 

other words, the subject for each single data is known 

for the model. The second group comprises 20% of the 

data (300 of type thermal temperatures), unlabelled and 

is used only to test the proposed model. 

Proposed Approach and Architecture  

The data is captured with the ETIP thermal camera. 

The data consists of faces of all the subjects in five 

different positions, four lightning conditions and three 
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emotions. Then, the data is cropped according to facial 

landmarks selected uniformly for each sitting position to 

maximize exposure of the facial area temperatures of the 

subjects. Furthermore, all cropped images are resized 

into matrices of sizes 181×161 pixels. This size is the 

best selection in our opinion because it sufficiently 

covers facial temperatures for all positions.  

After acquiring the data and transforming it into the 

best possible format, a pre-processing stage starts by 

reshaping each single thermal matrix into a 1D vector, 

rescaling its values then reshaping it again back into its 

original 2D matrix form before handing it to the 

convolution stage. We normalise (or standardize) the 

data, mentioned also earlier in the introduction section, 

to rescale the data into having a mean of 0 and standard 

deviation of 1. This will maximize the available 

distinctive features. Next, we divide the data into two 

groups: Training data and testing data using random seed 

selection. The training data was 80% of the original data 

and the testing data was 20%. The training data is 

labelled and used to build the predictive model. The 

testing data is unlabelled and used to check if the model 

can predict the labels correctly and at what accuracy rate.  

Let xi be the vector representation of a thermal 2D 

matrix for a subject, yi be a natural number representing 

the subject number and m be the number of training. The 

training set can be represented as: 
 

( ){ }, : 1,2,..., .
i i
x y i m=   (1)  

 
Now, if: 

 

{ } { }: 1,2,..., : 1,2,..., .
i i

X x i m and Y y i m= = = =   (2)  

 
then: 
 

( ) ( )_ , _ ,X train m X and Y train m Y= =   (3)  

 

are the input tensor and the labelled tenser for the model, 

respectively. Keras (Chollet, n.d.), (Chollet, 2015) model 

requires tensors as input and acts as a front end for the 

TensorFlow (Abadi et al., 2016) backend. Tensor means 

n-dimensional array and flows between layers. For 

example, a 2D tensor takes the form of samples 

(features). The input shape is the only tensor that must 

be defined for the model, because the following layers 

will perform automatic shape inference. In Keras, when 

the input shape is defined, the number of samples is 

omitted, Fig, 4, because it is declared at a later stage 

when the specific data on the model is fitted. We are 

only building the architecture. Therefore, we only define 

the input shape in terms of number of rows, number of 

columns and number of channels. In our case, the 

number of channels is 1, but for other applications such 

as coloured pictures, this can be a value of 3 because 

there are 3 channels for an RGB picture (Red, Green, 

Blue) see Fig. 4. Afterwards, all inputs to other layers in 

the model are automatically inferred and will be 

calculated based on the number of (processing) units of 

each layer and filter type used. Each type of layer works 

in a specific way. For example, Dense layers have an 

output shape based on “units”, while convolutional 

layers have an output shape based on “filters”.  

The predictive model that learns from the training 

data and extracts features consists of 12 sequential layers 

stacked together, as illustrated in Fig. 4. First, the model 

needs to know the shape of the input data as explained 

previously; hence, we pass the input shape to the first 

convolutional layer. The convolution layer acts as a filter 

with a kernel of 3×3 matrix that convolves (circulates) 

around the original input to 3×3 filters to produce a feature 

map (LeCun et al., 2010). Later, a pooling layer is used to 

reduce the spatial size and capture the most important 

features or portions. The pooling layer convolves with 

several representations to reduce the number of 

parameters and computations, as well as to prevent 

overfitting of the features. In other words, the pooling 

layer summarizes the matrix. The type of pooling 

determines how the elements of each sample are reduced 

to one element. In this model, the maximum element 

value of the chunk (the subsample) is selected. An 

example of max pooling operation with 2×2 filter and a 

stride of two is illustrated in Fig. 5, see (CNN, n.d.).  

 

 
 

Fig. 4: Keras sequential model with 12 stacked layers 

1:  model = Sequential()  
2:  model.add(Conv2D(32, (3, 3), activation = 'relu', input_shape = (img_rows, img_cols,1)))  

3:  model.add(Conv2D(32, (3, 3), activation = 'relu'))  

4:  model.add(MaxPooling2D(pool_size = (2, 2)))  

5:  model.add(Dropout(0.25))  

6:  model.add(Conv2D(64, (3, 3), activation='relu'))  

7:  model.add(Conv2D(64, (3, 3), activation='relu'))  

8:  model.add(MaxPooling2D(pool_size = (2, 2)))  

9:  model.add(Dropout(0.25))  
10:  model.add(Flatten())  

11:  model.add(Dense(256, activation = 'relu'))  

12:  model.add(Dropout(0.5))  

13:  model.add(Dense(20, activation = 'softmax'))  
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Fig. 5: Max pooling with 2×2 filter and stride = 2 

 

 
 

Fig. 6: Neural Network before and after applying dropout 

 

In other pooling layers’ architectures, the minimum 

value or average can be selected as well. After the 

pooling layer, a dropout layer is utilized specifically to 

prevent overfitting and to improve regularization, that is 

by omitting a random portion of processing units from 

the neural network during training (Hinton et al., 2012), 

(Srivastava et al., 2014). An example a network before 

and after applying the dropout is presented in Fig. 6 

(Srivastava et al., 2014). 

Subsequently, the process of convolution, pooling 

and dropout is repeated twice in the proposed model to 

acquire better features and minimise the noise before a 

flattened layer is introduced and makes it ready for two 

dense layers with a dropout in between. These two dense 

layers optimise the weights because they are fully 

connected, bearing in mind that convolutional layers and 

dense layers need the activation function to trigger the 

nodes and calculate the weights. There are several types 

of activation functions, in the model; we use Rectified 

Linear Unit (ReLU) (Krizhevsky et al., 2012) for the 

hidden layers and Softmax function (Goodfellow et al., 

2016) for output classification layer. The learning 

method used in this model is based on Stochastic 

Gradient Descent (SGD) optimiser, which updates the 

weights proportionally to the partial derivative of the 

cost function (of weights). It is worth mentioning that the 

cost function, loss function, objective function and error 

function are sometimes used in place of each other in the 

literature of a deep learning community. To minimize the 

loss function, we need to find the direction in which the 

function decreases the quickest. In each iteration of 

training, the weights are updated following the formula:  

 

,

UpdatedWeight CurrentWeight

Learning Rate Gradient

=

− ×

  (4) 

 

where, the learning rate is a scaler that specifies the size of 

the step that needs to be taken. When the gradient value 

becomes zero, this means that the minimum point has 

been reached; the weights are optimised at this point and 

the value of loss function is at a minimum. However, the 

gradient can be very close to zero but never reaches zero. 

In the latter case, the problem is named the vanishing 
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without converging to zero and consequently give poor 

predictions. The vanishing gradient problem makes it 

difficult to know which direction the parameters (weights) 

should move to improve the loss function. In order to 

rectify this problem, we use ReLU activation function to 

rectify the gradient to zero when it becomes negative and 

hence optimise the weights, see (Kandpal, 2017). 

The SGD optimizer has two hyper-parameters that 

need configurations, one is the Learning Rate and the 

other is the Momentum. They are named hyper-

parameters because they differ from parameters in the 

model. The model parameters are learned from the 

algorithm such as the weights, but the hyper-parameters 

need to be defined specifically in the model. The 

Learning Rate is the size of the step that SGD needs to 

take to minimize the loss function. If it is a low value, 

then SGD is taking a tiny step each time to reach the 

minimum and consequently, it is more time consuming 

but giving a more accurate prediction. This Learning 

Rate can also be configured adaptively and this is 

defined as the decay rate. The decay rate diminishes the 

learning rate in every few epochs according to the decay 

rate. The Momentum, on the other hand, accelerates the 

SGD towards the relevant direction in its search for 

minimum loss function (Smith and Le, 2018).  

As we mentioned earlier, weights calculations occur 

through passes (forward and backward) over the neural 

network. Each pass that covers the entire journey starting 

from the beginning of the forward direction and ending 

at the end of the backward direction is named an 

“epoch”. The number of epochs is the number of passes 

over the completely training data and not a batch of data. 

For instance, if we divide our 1200 training data into 4 

batches, then it will take 4 iterations to complete 1 

epoch. When fitting the model architecture for our 

specific training data in our example where we have 

1200 thermal pictures, we need to define the number of 

epochs that in our opinion will converge the result and 

optimize it. Consequently, at each epoch the SGD 

optimizer tries to adjust the weights so that the loss 

function is minimized. To consume less computer 

memory and to run faster on the network, nevertheless, 

we divided the training data into batches rather than pass 

the entire batch at the price of reduced accuracy.  

After building the model, we experiment it on the 

testing data to discover the labels for each unlabelled 

thermal matrix used in the testing. Therefore, we 

calculate the accuracy as metric for the model by 

comparing the predictive results with the actual results.  

Results and Discussion  

There are well known CNN architectures 

mentioned earlier in the introduction for image 

recognition, e.g., LeNet-5 (LeCun et al., 1998), 

AlexNet (Krizhevsky et al., 2012), GoogLeNet 

(Szegedy et al., 2015), VGGNet (Simonyan and 

Zisserman, 2014), Inception (Szegedy et al., 2017), 

ResNet (He et al., 2016) and DenseNet (Huang et al., 

2017). Most of them commonly consist of convolutional 

layers, pooling layers, dropouts and activation functions. 

As an experiment, we selected the model, which has 

been previously proven effective in a similar application 

in digital recognition of hand writing where the data 

poses similar characteristics, such as being two-

dimensional. In other words, it was a conceptual learning 

without transferring the weights of the application. At 

the end and from the results for the proposed thermal 

facial recognition, the model showed high accuracy.  

Neural Networks learn from data via Statistical 
Gradient Descent (SGD) optimization, which is the 

process of adjusting the weights, in order to minimize 
the loss function (the error between the predictive results 
and the actual result) (LeCun et al., 1998). The model 
starts with an input layer and an initialized weight for 
each node (processing unit), then the weights are 
adjusted through several epochs (passes) over the entire 

training data (1200 thermal pictures), in an iterative 
process. At the beginning, the number of epochs, the 
number of nodes and the activation functions for the 
nodes are all defined by the model. At the end of each 
epoch the loss function is minimized, the weight values 
are adjusted and the accuracy is maximized. This 

iterative process continues until all epochs are 
completed. For the VGG model explained in the 
previous section, we obtained the results that are 
graphically represented in Fig. 7-9. It is noticed that the 
loss function continues and enhances until the end of the 
process. Moreover, after each epoch, we determine the 

training accuracy numbers to prove that they are 
improving in the training dataset and the process is 
moving in the right direction. Additionally, the proposed 
method is efficient in terms of its time cost, which is 
another metric to evaluate the performance of the network.  

The proposed approach is mostly built on feature 

extraction and classification components. Accordingly, 

each of these two components has been separately 

evaluated. The overall evaluation is further carried out 

and the result is compared with different approaches. 

Usually, the major challenge of infrared facial 

recognition methods is to find reliable representations of 

thermal images and highly efficient feature extractors. In 

addition, most of these methods focus on the achievable 

classification accuracy using different deep machine 

learning algorithms. Computing efficiency in these 

methods are always significant issues. Although 

substantial progress on face feature extraction has 

been achieved, existing traditional methods can only 

detect thermal images with classification accuracies 

less than 99.1%. Based upon the experimental results, 

the proposed CNN model would lead to the best results 

with an average accuracy reaching up to 99.6%. In fact, 
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this achieved accuracy that confirms the superiority of 

our method is the research definitive objective. It 

should be emphasized that the proposed model is 

suitable for complex degree of variation in poses (up 

to 90°C), lighting (full darkness to full light on), 

facial expressions and head positions. By tuning the 

CNN algorithm, we can get more out of it; for 

example, an improved performance can be anticipated 

once the network is larger. Consequently, by adding 

an optional fully connected layer, the average 

recognition rate might exceed 99.9%. In addition, the 

results might show that the model has 100% accuracy 

for the moderate degree of variation in poses (up to 

20°C) and lighting (dark homogenous background). 

Table 1 shows the comparison between average accuracy 

of the proposed CNN architecture and some state-of-

the-art facial recognition approaches (Peng et al., 

2016), (Wu et al., 2016).  

 

 
 

Fig. 7: Loss function for the training dataset 

 

 
 

Fig. 8: Accuracy for the training dataset 
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Fig. 9: Time consumed for training dataset in seconds 

 
Table 1: Average accuracy of various methods with full training sets  

 LBP + LBP    GoogLeNet GoogLeNet GoogLeNet Moments   Proposed 
 PCA Histogram  ZMUDWT  ZMHK  softmax0  softmax1  softmax2  invariants  CNN  NIRFaceNet   method  

Average accuracy (%)  85.4  87.3  92.9  98.3  97.3  97.0  96.7  97.5  98.0  99.1  99.6  

 

Conclusion  

The main aspect of face tracking and image 

classification is correctly identifying the object in a given 

image. Before the image can be used, a few steps have to 

be considered. This is called image pre-processing and it 

represents an important step in facial recognitions. Many 

conditions might affect the accuracy of any facial 

recognition algorithm such as light intensity, rotation, 

resolution and tilt and aging. It is worth noting that the 

proposed technique has taken all of these into 

considerations; therefore, the results obtained after 

running the program showed outstanding image 

classification performance. Furthermore, the used deep 

learning model has given a higher level of accuracy in 

such problem when compared with other techniques such 

as Viola Jones face detection algorithms, or local binary 

patterns such as AdaBoost algorithm for face detection.  

Our experiment has been utilized only for identifying 

subjects within static thermal radiation; however, its 

application can likewise be investigated for emotion 

recognition as well as identifying subjects from thermal 

video clips inspired by similar applications in visible 

light for video classification (Karpathy et al., 2014) and 

emotion recognition (Ng et al., 2015). Furthermore, the 

results indicated that a deep learning architecture in one 

area of application could be utilized for other similar 

areas; the differences are in the values of the data for each 

application. Similarly, weights calculated in one 

comparable application that has a large number of labelled 

data can be used for another application where labelled 

data is limited. In addition, weights can be exploited to 

reduce processing time for very large dataset processing. 

This process has been experimented in the literature and 

defined as transfer learning (Oquab et al., 2014). Overall, 

however, the current thermal image method for face 

recognition still needs more enhancement in terms of pre-

processing operations before it can be employed in 

security systems and biometric identifications.  

Finally, our most recent aim is to improve the 

recognition accuracy and computational complexity by 

implementing the method on different benchmarks. We 

will also develop a novel and effective CNN model and 

utilize it in multimodal biometric systems.  
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