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Abstract: Big Data are rapidly produced from various heterogeneous data 

sources. They are of different types (text, image, video or audio) and have 

different levels of reliability and completeness. One of the most interesting 

architectures that deal with the large amount of emerging data at high 

velocity is called the lambda architecture. In fact, it combines two different 

processing layers namely batch and speed layers, each providing specific 

views of data while ensuring robustness, fast and scalable data processing. 

However, most papers dealing with the lambda architecture are focusing 

one single type of data generally produced by a single data source. Besides, 

the layers of the architecture are implemented independently, or, at best, are 

combined to perform basic processing without assessing either the data 

reliability or completeness. Therefore, inspired by the lambda architecture, 

we propose in this paper a generic multimodal architecture that combines 

both batch and streaming processing in order to build a complete, global 

and accurate insight in near-real-time based on the knowledge extracted 

from multiple heterogeneous Big Data sources. Our architecture uses batch 

processing to analyze the data structures and contents, build the learning 

models and calculate the reliability index of the involved sources, while the 

streaming processing uses the built-in models of the batch layer to 

immediately process incoming data and rapidly provide results. We validate 

our architecture in the context of urban traffic management systems in order 

to detect congestions. 

 

Keywords: Big Data Integration, Lambda Architecture, Heterogeneous 

Data, Urban Traffic Management Systems 
 

Introduction 

Big data are a set of large scale heterogeneous data that 

flew at high velocity. They are produced from a variety of 

channels including social media, crowdsourcing platforms 

and sensors. Big Data mining helps companies in various 

sectors such as smart cities, healthcare, e-learning etc. to 

analyze their activities, understand the users’ actions and 

predict their behaviors. Nevertheless, Big Data sources 

can have different levels of heterogeneity; they can 

provide data with different types (text, image, video or 

audio), formats (xml, json, csv, jpg, avi, etc.) and levels of 

accuracy and completeness. Therefore, in order to build a 

global accurate and complete view over Big Data, it is 

important to adopt a multimodal architecture that can 

extract the knowledge from all available types and formats 

of data. 

Offline Big data analysis is very useful to extract 
insight, provide models for statistical analysis and 

correct predictions. However, despite being accurate, the 
insight value is decreasing overtime and should be 
completed by the real-time analysis. In fact, in some 
cases it is crucial to make decisions based on events as 
they occur. This requires providing the right data at the 
right moment. To combine historical and streaming data 

analysis, the Lambda Architecture is a paradigm that has 
been widely adopted in both industry and academia. This 
paradigm is designed to process large volume of 
historical data, as well as rapid incoming data streams. It 
is composed by three layers; batch layer, speed layer and 
serving layer. The first two layers are complementary 

since each one has its own advantages and limitations. 
From one hand, the batch layer allows deep processing 
of the whole dataset which provides accurate views of 
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data. However, the processing time is slow and may take 
hours. From the other hand, the speed layer allows 
creating stream views by immediately processing 
incoming data. However, the results may lack of 
accuracy. The results are finally merged in the serving 
Layer that provides an interface for queries. 

In the present paper, we propose a generic 

multimodal architecture inspired by the lambda 

architecture to handle both batch and streaming data 

processing. Our architecture is not limited to a simple 

instantiation of Lambda Architecture. It also allows the 

streaming layer to reuse the updated built-in models and 

knowledge bases during the batch processing. Moreover, 

our architecture deals with multiple heterogeneous data 

sources and aims to ensure data reliability and 

completeness of the final insight. 

Our solution is generic and could be applied to many 

contexts that deal with heterogeneous data sources that 

provide large volume of data at high velocity and require 

both batch and streaming data analysis. For example, in 

health care domain, the historical patient’s data provided 

by medical sensors are useful to build models and 

predict the evolution of patient’s conditions when the 

critical heart or blood pressure alerts should be processed 

once generated in order to prevent potential immediate 

death. Another example concerns smart urban 

transportation where traffic data are produced by multiple 

heterogeneous data sources including GPS, loop detectors, 

CCTV and aerial vehicles. Historical traffic can help city 

managers identify roads states, predicting congestions and 

making good decisions about roads planning and 

development. While the incoming streams of traffic data 

can be used to provide citizens with instant insight and 

alerts about the real-time traffic state. 

We choose the second example to validate our 

architecture. In fact, we implement our solution using 

several Big Data tools and libraries mainly based on spark 

environment since it offers optimal implementation of 

architectures combining both batch and streaming 

processing modes. For the batch layer, we use spark for 

Natural Language Processing and log processing, 

OpenCV to analyze images data and Matlab for videos 

processing. Regarding the speed layer, we use apache 

Kafka for message queuing along with spark streaming 

for stream processing. 

The remainder of this paper is organized as follow; 

the first section presents the background of the lambda 

architecture and the second section summarizes the 

related works according to two main topics; 

Multimodal Architecture for Big Data Integration and 

Lambda Architecture implementations. In the third 

section, we describe our multimodal architecture for 

streaming Big Data integration. Our architecture is 

finally validated in the context of urban traffic 

management systems in the last section. 

Background: Lambda Architecture 

The Lambda architecture is a novel concept 

introduced by Marz and Warren (2015) in order to 

handle large scale data and to solve the problem of real-

time processing. The Lambda Architecture aims to meet the 

needs of a robust, fault-tolerant system, to serve a wide 

range of use cases in which low latency reads and writes are 

required. The resulting system must be linearly scalable.  

The Lambda Architecture is composed of three 

layers: the batch layer, the speed layer and the serving 

layer each, performing specific functionalities: 

 

• The batch layer stores a copy of a very large dataset 

and precomputes batch views. Batch-processing 

dataset and compute random functions on it 

 

batch view = function(all data) 

 

• The serving layer is a distributed database that 

supports batch updates and random reads. It loads in 

a batch view and enable to do random reads on it.g) 

• The speed layer aims to provide efficiently 

queried views that contain recent data. The real-

time views are updated when receiving the new 

data which are combined with the previously 

computed real-time views 
 
realtime view = function(realtime view, new data) 
 

• The final query is applied on both views: 
 
query = function(batch view. realtime view) 

 

The lambda architecture has the advantage of being 

technology independent and disregarding infrastructure. It 

provides users with the freshest possible data views along 

with a scalable historical data. Nevertheless, as shown in 

Fig. 1 the initial architecture does not consider 

communication between batch and speed layers while it 

would be interesting to use, in speed layer, the models 

previously trained in batch layer. This will avoid too much 

processing and reduce response time (Baldominos et al., 

2014). Moreover, the lambda architecture focuses on the 

processing mode and doesn’t consider the heterogeneity of 

data sources which can have a negative impact on the 

accuracy and completeness of the final views. Indeed, 

batch and streaming modes can provide inconsistent 

results. This is because the batch views can be of a high 

level of accuracy since processing large amount of data 

allows performing comparison and matching while 

requiring a long processing time. Likewise, the streaming 

mode, although faster, provides information with a low 

level of accuracy. Therefore, the user’s queries should 

contain additional processing in order to evaluate the data 

accuracy and merge the results coming from both layers. 
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Fig. 1: Lambda Architecture (Marz and Warren, 2015) 

 

Related Works 

There are two main topics for the related works. The 

first one deals with the multimodal architecture for Big 

Data Integration and the second one focuses on the 

implementation and integration of both batch and 

streaming modes of the Lambda architecture. We describe 

and discuss bellow the related works for each topic. 

Multimodal Architecture for Big Data Integration 

Klein et al. (2016) proposes a reference architecture 

for Big Data applied to the national security domain. 

The architecture decomposes the system into 13 

modules divided into Big Data Application Provider 

modules, Big Data Framework Provider modules and 

Cross-Cutting modules. Within the Big Data 

application provider module, Data Processing and 

Integration Module transforms data and transfers it to 

the other modules using the traditional Extract, 

Transform Load (ETL) method. The transformed data 

is analyzed by the Data Analysis Module in order to 

extract relevant information. In addition, Chen et al. 

(2016) proposes a multi-source and heterogeneous Big 

Data integration model. They use an improved ETL 

framework named BDETL to integrate the data form 

heterogeneous data sources in a distributed 

environment. The model has been implemented in a 

power dispatching and control system. However, the 

heterogeneous data sources consist mainly on different 

operational systems data and thus do not handle 

different data types. Costa and Santos (2016) proposed 

BASIS, a Big Data architecture applied to Smart Cities 

based on the separation of abstraction layers, namely 

the conceptual, the technological and the infrastructural 

layers. Finally, Amini et al. (2017) proposed Big Data 

Analytics architecture based on distributed computing 

platform for real-time traffic control. The architecture 

is flexible and modular as it handles multiple data 

sources. A partial prototype has been developed using 

Kafka and python for the data analysis. 

As a conclusion, the related work for this topic are 

either limited to the analysis of a single data source or 

propose a unimodal architecture dealing with multiple 

data sources but providing the same data type or at best 

suggest to analyze multiple data sources with no working 

practical validation case presenting and explaining the 

multimodality. Moreover, the considered data sources are 

not distinguished according to their reliability or the 

completeness of the data they provide. 

Implementation of Lambda Architecture 

Jambi and Anderson (2016) present an 

implementation of the lambda architecture for real-time 

crisis events exploration. The reference presents clearly 

the system components as long as the way they interact 

with each other. The authors used Apache Kafka for 

distributed data messaging and queueing, spark for batch 

and stream processing and Apache Cassandra for event 

and twitter data storage. However, the analysis is limited 

to metadata and hashtags and doesn’t deal with the 

content of the tweet. Moreover, Khazaei et al. (2016) 

present the Sipresk Big Data platform as an 

implementation of the lambda architecture using spark 

environment. The platform analyzes loop detectors data 

and is able to classify traffic events to short, medium, 

long or extended according to their duration. The results 

are displayed in interactive map with timestamp. 

In addition, Hasani et al. (2014) defend the use of the 

lambda architecture in order to perform real-time Big 

Data analysis. However, they implement only the batch 

layer using the Hadoop framework and don’t propose a 

complete and working implementation of the real-time 

layer. Twardowski and Ryzko (2014) propose a lambda-

based architecture for Big Data processing using multi-

agent systems. The reference illustrates how autonomous 

agents can be used in order to exchange data between the 

processing layers of the lambda architecture and provide 

capabilities for robust processing of data in real-time. A 

theoretical implementation for collaborative filtering 

recommender system was presented. Baldominos et al. 

(2014) propose a machine learning architecture for Big 

Data based on lambda architecture allowing batch and 

New data 

Speed 

layer 
Batch layer 

Master dataset 

RealTime 

view 

Batch view 

Serving layer 

Quey 
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stream analysis. The architecture is composed by four 

elementary modules: The batch machine-learning 

module that performs query analysis, data clustering and 

machine learning models building, the stream processing 

module that takes advantage of machine learning models 

previously built by the batch processor in order to make 

classifications and predictions and provide 

recommendation, the storage module and the dashboard 

module. Baldominos et al. (2014) developed two 

systems for validation: A recommender system for web 

advertising and a prediction system for gamers’ 

behaviors. Finally, Kiran et al. (2015) implement the 

Lambda Architecture design pattern to handle sensors 

and smart phones data in order to optimize network 

costs. It provides affordable and cost effective real-time 

Big Data processing that can be applied in any scenario 

by combining database management, query management 

and cloud computing. They applied their solution by 

processing router sensor data on the ESnet network. 

The related works for this topic are either limited to a 

single layer (batch or streaming), a single data type or 

perform basic processing on both layers without merging 

the extracted knowledge. 

Discussion 

After going through the different related works 

suggesting either an architecture for Big Data integration 

or an implementation of the lambda architecture, we can 

conclude that the proposed working architectures, 

platforms or solutions are those that reduce the 

complexity of the Big Data environment by focusing on 

a single data source, a single data type or a single 

processing type (batch or a streaming). However, the 

analysis results are likely to be incomplete (when some 

data sources are neglected), inaccurate (when the 

analyzed data sources are unreliable) or outdated (when 

data are processed a long time after being produced). 

Therefore, in this paper we propose a generic 

architecture that provides a near-real time global and 

accurate view of Big Data collected from multiple and 

heterogeneous sources. For that purpose, our architecture 

combines batch and streaming multimodal processing for 

all the available data types and formats to ensure 

maximum completeness of results and compares data 

coming from several sources to evaluate their reliability. 

Generic Multimodal Architecture for 

Streaming Big Data Integration (Streaming-

Ma4BDI) 

The Streaming-Ma4BDI architecture is inspired by 

the lambda architecture. As shown in Fig. 2 the newly 

received data streams are routed to both batch and 

streaming processing modes. The first one stores the data 

stream in a distributed storage media waiting for the next 

batch iteration to be processed. It performs offline 

processing tasks such as multimodal data analysis, 

building learning models, calculating and updating 

sources reliability index which is assigned to each source 

and indicates its reliability level. The second is the 

streaming processing mode which processes data at 

reception and provides real time or near-real time views. 

This mode uses the reliability index as well as the 

learning models already computed during batch 

processing mode. The last component of our architecture 

is the query engine which offers to users a global view 

based on both stream views and batch views. 

The implementation of the streaming mode allows 

handling data as soon as they are received. It 

complements the batch mode. We detail below the 

different modes and layers of our architecture and 

discuss the differences between them. 

Batch Processing Mode 

The batch processing creates views incrementally. 

It collects data from various Big Data sources and 

performs multimodal processing through various 

engines each one intended for a given data type: Text, 

image, video and audio. These engines use specific 

learning models to extract metadata (mi) and 

knowledge (ki) from the stored data. The knowledge 

is then merged in order to provide the most accurate 

and complete insight based on sources reliability 

index. The batch layer is intended for all periodic non-

time-critical tasks such as building and updating 

learning models, reliability index computation and 

knowledge base updating etc. 

Figure 3 presents a high level overview of the batch 

mode. We describe in detail in the following each of its 

components: 

Big Data Sources Layer 

The Big Data sources (si) provide data with different 

levels of heterogeneity including: 

 

• Data type: The data sources can generate structured, 

semi-structured and unstructured data including text, 

images and videos 

• Data format: For the same data type, several data 

formats can be used. For example textual data may 

be provided in XML, JSON, TXT, etc 

• Data accuracy: That depends on the reliability of the 

sources data are extracted from 

• Data coverage (completeness) since some collected 

data can be more complete than others 

• Extracted knowledge; the data may concern 

different events and even for those concerning the 

same event they may provide contradictory or 

complementary information 
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Fig. 2: Generic multimodal architecture for streaming big data integration 
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Fig. 3: Overview of the batch mode of the Streaming-Ma4BDI 

 

 
 

Fig. 4: Multimodal processing layer 

 

Collection and Transfer Layer: the collection and 

transfer layer collects data related to a specific context, 

detects the data type of each dataset and routes them to 

the corresponding storage space. 

Staging Layer: The staging layer stores data 

automatically in a distributed storage system and 

separates the different data according to their type (text, 

image, video and audio). 
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Multimodal Batch Processing layer: As shown in 

Fig. 4, the processing layer consists of two main 

tasks; Metadata extraction engines and data 

processing engines. Multimodality is provided in this 

layer through the implementation of a specific engine 

for each type of data: 

 

• Metadata extraction engine: Receives a pair of (di, 

si) and sends the triple (di, si, mi) where 

• di is the raw data 

• si is a set of information about the data source 

providing di, such as name of author and URL 

• mi is the available relevant metadata extracted 

from the file’s description 

• Data processing engine: It contains several processing 

engines each using a specific mode. They aim to 

clean, normalize and complete metadata before 

extracting relevant. Also, this engine can perform 

further processing in order to update or complete the 

metadata mi. It provides a triple (ki, si, mi' ) where: 

• ki is the extracted knowledge 

• mi' is the updated version of metadata mi 

The data processing engines use pre-built learning 

models such as machine learning or deep learning 

models in order to extract knowledge ki. In addition, 

these engines could be used to update the knowledge 

database and refine the learning models 

Matching and merging layer: The matching and 

merging layer discovers redundant, complementary 

and conflicting knowledge sent by the Multimodal 

Processing engines. As shown in Fig. 5, this layer 

uses the matching engine in order to compare the sets 

of (ki, si, mi') triples resulting from the processing 

layer and the global knowledge (K, M) already stored 

in the historical insight database (if exists) (1). The 

matching engine identifies records concerning the 

same event and eliminates redundancies. 

The Metadata union and Knowledge Merging 

engine performs a union of metadata mi in M’ and 

merges knowledge ki in K’ (2). In addition, it 

calculates and updates the reliability index of each 

data source (3) and decides which to trust in case of 

conflicts. Finally, it stores the global insight 

represented by the pair (K’, M’) in the historical 

insight database (4), (5). 

 

 
 

Fig. 5: Matching and merging layer 
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Fig. 6: Global Insight construction 

 

Figure 6 shows the overall process to extract 

knowledge and construct the global insight. The figure 

describes an example with three datasets d1, d2 and d3 

gathered from multiple data sources with d1 and d2 

concerning the same event. Those data provide 

respectively the triplets (k1, s1, m1'), (k2, s2, m2') and (k3, s3, 

m3') after processing. Before final storage, it is necessary 

to know if the events these triplets describe has already 

been identified and stored in the historical insight database. 

This step is carried out through a matching between each 

triplet and the old global insights represented by the set of 

(K, M) pairs. Then a fusion step is performed by the 

Metadata Union and Knowledge Merging engine. Indeed, 

this engine does double actions: (1) Union of metadata in 

M’ to best approaching data completeness and (2) fusion of 

knowledge based on the reliability index of each data 

source in K’. The pair (K’, M’) constitutes the final global 

insight. It is computed using fusing algorithms such as 

majority votes. The reliability index of each data source 

is updated according to results. In fact, it is increased for 

data sources that made the right prediction and decreased 

for those who made the wrong one. 
Exploitation layer: The exploitation layer allows 

users to access the insights stored in the final database 

through statistics, predictions, recommendations etc. 

The objective of the batch mode of our architecture is 

to analyze data gathered from multiple Big Data sources 

and integrate the corresponding knowledge in order to 

provide most complete and accurate global insight. The 

whole operation is a parallel large scale process that is 

performed iteratively. Though, depending on the data 

size, each iteration may take a long time to be executed. 

Therefore, the batch process results are always outdated 

since new data are received during batch execution. 

The batch processing mode is intended for historical 

data analysis, the high latency computation of the 

system is not considered as a limitation since these data 

will clearly be processed during the next batch. 

However, in some cases, the value of data is decreasing 

over time and extracting corresponding knowledge 

once generated is much useful. This leads to a high 

need for building views on data and computing 

knowledge at reception. In order to overcome this 

limitation we use the streaming mode is proposed. 

Stream Processing Mode 

The streaming processing mode aims to immediately 

process incoming data. This mode concerns the data 

sources providing data at high velocity. The broker 

identifies the data type and starts up the streaming 

process by routing the data to the appropriate engine 

according to their type. In order to lighten the processing 

and meet real-time and near-real-time needs, we chose to 

avoid I/O tasks at this level and transfer data without 

intermediate storage. In the streaming mode, the 

processing layer allows the extraction of the knowledge 

as well as the corresponding metadata according to the 

type of data as explained below: 
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The Metadata extraction engine input is a flow of 

data-pairs (di, si). The Data processing Layer uses one of 

the five processing engines of the Multimodal Batch 

Processing Layer in order to build a cleaned, normalized 

and completed metadata version mi' and extract the 

knowledge ki based on the learning models already 

created during the batch mode. Therefore, data 

processing engines provide the triples (ki, si, mi') which 

are stored in the stream views. Note that the built and 

refinement of each learning model is done exclusively by 

the batch layer resulting in a significant reduction of the 

processing time of the stream processing layer. 

The streaming mode continually updates ”stream 

views” with the quadruplet (ki, si, mi', ri) where ri is the 

reliability index of the knowledge ki calculated during 

the batch processing mode. This index is based on 

several parameters that identify the reputation of the data 

source such as its identity, author, the rate of correct 

information that it produced in the past etc. 

Both batch and streaming layers complement each 

other. Indeed, although the batch processing does not 

satisfy the temporal constraints, the insight it provides 

has a great value given its high level of reliability. The 

latest (insight) is obtained from knowledge comparison 

performed continually to update the Big Data sources 

reliability index. Instead, the streaming mode that 

manages each data at reception does not take advantage 

of the huge mass of input data to compare and match 

knowledge, which may impact the accuracy of results. 

Nevertheless, since the accuracy of knowledge depends 

on the reliability of the data source it comes from which 

is already calculated in batch mode, the streaming layer 

uses this index to identify the accuracy of knowledge. 

The batch and streaming modes share common 

processing steps such as metadata extraction and 

knowledge discovering. We could think about 

capitalizing these common steps in the streaming layer 

and make the batch layer using the results in order to 

avoid redundancy. However, this requires adding, in the 

streaming layer, a supplementary I/O tasks to store the 

extracted metadata and knowledge so as to be used later 

by the batch layer. This I/O task will slow down the 

streaming process and we believe that it is better to 

repeat the same process in the batch layer since no 

temporal constraints are imposed. 

Query Engine 

The query layer allows random access to the insights 

in real-time or near-real-time. Indeed, at the user request, 

the query layer will first look for relevant insight in the 

”stream views”. In case this information is not available 

the request is transmitted to the ”batch views” where 

previously built models will be used in order to find or 

predict the insight. The final result can be available to 

users through graph, dashboard etc. 

The architecture we present is generic and may be 
applied in any context that deals with heterogeneous data 
sources which provide huge volume of data at high 
velocity and require the combination of batch and 
streaming data analysis. The following section aims to 
validate our solution through a real example of urban 
traffic management systems. It also highlights some 
specific technical and functional details that belong to 
the implementation of our architecture. 

Case of Study: Urban Traffic Management 

System 

We apply our architecture to the context of smart city, 

especially the urban smart mobility to analyze traffic data 

in order to identify congestions. Our solution provides city 

managers and citizens with global accurate views about 

traffic status in near-real-time which helps analyze and 

improve the quality of urban transportation and 

recommending alternative less congested roads to citizens. 

More than 54% of the world’s population was living 

in urban areas in 2016 and has reached 66% by 2030 (?), 

(?. The cities are growing rapidly and the need for 

vehicles is increasing, the low availability and the long 

delays of public transportation led households to attempt 

to own at least one tourist car which leads to permanent 

congestion, particularly in big cities, resulting in a 

negative impact on economy, society and environment. 

To reduce the urban traffic congestion we propose a Big 

Data solution that provides cities managers with complete 

and accurate insights about the urban traffic status. Our 

solution analyzes traffic data coming from heterogeneous 

sources to detect traffic events. The later can be an accident, 

a slow traffic or a number of vehicles exceeding the 

capacity of the road, construction or maintenance work, 

sportive or social events etc. Our solution allows managers 

to analyze the causes of daily urban congestions, predict 

future congestions and therefore take the required actions 

for their debottlenecking such as the widening of the roads, 

the creation of new sections etc. 

Data Sources Layer 

The data sources involved in urban traffic context are 
sensors, CCTVs, aerial vehicles, social Medias, electronic 
newspapers and crowdsourcing applications. None of 
these data sources provides complete and accurate 
information related to one road under varied conditions 
(Weather, day/night etc.). Moreover, besides the 
heterogeneity of the data formats and types, the 
knowledge extracted from these sources is also 
heterogeneous since it could be complementary, redundant 
or contradictory. It is necessary to integrate knowledge 
gathered from these multiple data sources in order to build 
a complete, global and accurate insight about traffic state. 

For the validation purpose of our solution we are using 

real datasets that we apply for a city named “XCity”. In 
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the batch mode of the present paper we are considering all 

the data sources presented in Table 1 as follow: 

 

• Social media: Tweets concerning traffic events 

(accidents, traffic jams, etc.) 

• Online newspaper: Web pages from many electronic 

newspapers such as: CBS Chicago, Chicago tribune etc 

• Sensors: Traffic data collected from Loop detectors 

• Geo-location data: Traffic GPS data including the 

latitude, longitude, elevation, date and time 

• Unmanned Aerial vehicle: Traffic image data 

• Closed-circuit television: Traffic video data 

 

However, in the streaming mode, we are using 

Twitter only as this data source has largely been used by 

citizens and administrations for publishing traffic 

incidents. In fact, Ribeiro et al. (2012) propose a system 

to detect and locate traffic events with Twitter in Belo 

Horizonte. They found that there is a significant 

correlation between real traffic conditions and tweets 

talking about traffic conditions. Moreover, Tian et al. 

(2016) has evaluated the quality of traffic event tweets in 

Austin, Texas. The study has proved that citizens 

tweet more often in case of true and major severe 

incidents compared to false and minor incidents. 

Finally Rashidi et al. (2017) stated that social media 

can be considered as a supplementary source of data to 

extract complementary information about traffic conditions. 

Implementation of the Streaming and Multimodal 

Big Data Integration solution 

For validation purpose, we discuss in this section the 

implementation of our architecture that aims to handle 

historical and real-time coming data. We describe in this 

section the technical architecture of our solution as well 

as final results. 

Technical Architecture of Streaming-MA4BDI 

Figure 7 shows the technical architecture of our 

solution based on Apache Spark environment in order to 

ensure interoperability and code reuse. 

 

 
 

Fig. 7: Technical implementation 

 
Table 1: Traffic big data sources 

Data source Information Data type Metadata 

Sensors Number of vehicles, traffic speed Semi-structured text data Latitude, longitude, time, speed 

Social media Congested road, slow traffic, accident, Unstructured Text data Text, date, time, user.name 

 road maintaining and event. 
Online newspapers Accident, road maintaining and event. Unstructured Text data Title, date, time, writer, journal 

   name, content 
Geolocation data Traffic speed, number of vehicles Semi structured text data Vehicle, latitude, longitude, 
   speed, date, time 

Unmanned Aerial vehicles Number of vehicles Unstructured images Latitude, longitude, image 
Relational databases Official sport, music events, static Structured text data Road name, Id, latitude, 

 information about roads. This data  longitude 
 source is also used to fuse results 

Closed-circuit television Number of vehicles on a special road Video stream Latitude, longitude, time, video 
Weather web service Weather conditions (will help Structured text data Date, time, condition (raining, 

 predict data accuracy)  fog, etc.) 
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Spark helps implemente the lambda architecture since 

it handles both batch and streaming analysis: 

 

• The batch processing manages all traffic data 
sources including CCTV cameras, social media, 
GPS, loops detectors, UAV and web pages. It uses 

the Hadoop Distributed File System HDFS to ensure 
scalable distributed storage and Spark, Open Cv and 
Matlab to build and used learning models for 
metadata and knowledge extraction. Results are 
matched in order to detect data concerning the same 
event then merged considering the weight of data 

sources, in order to provide the final global 
complete and accurate insight 

• The streaming processing handles only data sources 
that provide stream text traffic data. in our case we 
are analyzing tweets. It uses Apache Kafka, for 
distributed data messaging and queuing to create 

data streams and Apache Spark Streaming for 
parallel natural language processing and model 
exploitation in order to identify traffic event 
(knowledge) and extract and complete metadata 
based on machine learning models built-in during 
batch mode. Finally, the data sources reliability 

indices calculated in the batch layer are used in 
order to identify the accuracy of the extracted 
knowledge and then provide a accurate global 
insight about the traffic event 

• The query engine uses Apache Spark in order to 
understand the user’s query, look for results in the 

stream views of Hbase. If found the results are 
displayed for the user. Otherwise, the layer uses the 
batch models in order to predict results 

Multimodal Batch Processing Mode 

The batch processing mode analyzes the extracted 

data from the different traffic sources and stores them 

separately according to their types (image, video, text) in 

Hadoop distributed file system. Then, during the first 

analysis step, the corresponding metadata is extracted 

such as the date and time of the congestion event, its 

location and the date and time of resolution (Time to 

return to normal traffic). 

The second analysis step uses multimodal processing 

engines according to the data type in order to extract the 

corresponding knowledge namely, congested or not 

congested. These engines build and exploit machine 

learning models to analyze tweets text and detect 

messages related to traffic congestion (Bayesian model), 

calculate traffic speed from GPS data and loop detectors, 

analyze the images (support vector machine model) and 

videos (Gaussian mixture model) provided by CCTVs 

and aerial vehicles to detect and calculate the number of 

vehicles on a road and thus identify the traffic state. 

Table 2 summarizes an example of the knowledge and 

metadata returned by the processing layer. 

The parallel processing engines send the knowledge 

to the merging layer that matches, compares then merges 

the extracted knowledge based on a weighting system 

that assigns to each source a reliability index in [0, 1]. In 

traffic context, the data source reliability index value is 

dynamic because it is related to many parameters 

including hardware, weather, personal and historic of 

reliability. For example the quality of images provided 

by a CCTV or an UAV depends on the hardware 

configuration and may decline under specific weather 

conditions such as rain and fog. We have associated an 

initial weight value to each data source. Table 3 presents 

an example of the used data sources and corresponding 

Reliability index. UserA represents an official twitter 

account such as police or urban management accounts. 

These accounts are supposed reliable and have higher 

reliability index value than UserB which represents a 

standard account. Table 3 shows also that the reliability 

index of some devices can change according to special 

conditions. For example, ID1 is a CCTV device it is 

reliability index decreases in case of rain, snow and fog. 

We used the triplet (road identifier, date of event, 

time of event) as a key to match processing layer results 

in order to identify the data belonging to the same event. 

Then, the Metadata union and Knowledge Merging 

engine merges the metadata and knowledge using the 

majority vote algorithm (Equation (1)). Finally it updates 

the dynamic weight of the data sources: 

 

( ) ( )
0

n

i i

i

H x q h x
=

=∑   (1) 

 

where, qi is the weight associated to each data source and 

hi(X) is the knowledge provided by the processing engines. 

The process of the dynamic reliability index update 

aims to increase the reliability index of the data sources 

that made the right prediction and decrease the data 

sources reliability index that made the wrong prediction 

while remaining within an interval between [0, 1]. For 

example; if the result (road status) of H(x) is congested, 

then the weight of all the data sources that predicted the 

status “congested” will increase by 0.05 and the one of 

the data sources that made the prediction “not 

congested” will decrease by 0.05. 

Using Table 2 and Table 3, we calculate using the 

majority vote algorithm, the probability that road 100 could 

be congested or not congested. According to Table 4, we 

conclude that the probability that a road is congested (0.6) is 

greater than the probability that a road is not congested 

(0.25). We can conclude that road 100 is congested 

(highest probability). 

Table 5 presents the final metadata stored in the 

repository as a union of the matched correct data. The 

reason of congestion, date and time of resolution have 

been merged from UserB and UserD data sources. 
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Table 2: Description processing layer results 

    Metadata 
    -------------------------------------------------------------------------------------------------- 
     Road Date of Time of Reason of Date of Time of 
Source Type Knowledge Condition Road Id Name event event congestion resolution resolution 

UserA Official twitter account Congested  100 Alpha 11/07/2017 08:10 accident null null 
UserB Standard twitter account Congested  100 Alpha 11/07/2017 08:10 accident null null 
UserC Crowd sourcing Not congested  100 Alpha 11/07/2017 08:10 null null null 
 application 
UserD Web newspapers Congested   100  Alpha  11/07/2017 08:18 null  11/07/2017 18:00 
ID1 CCTV Not congested Rain 100 Alpha 11/07/2017 08:15 null null null 

 
Table 3: Description of some traffic Big Data sources reliability index 

Data source’s ID Type Condition Reliability index 

UserA Official twitter account  0.30 

UserB Standard twitter account  0.15 

UserC Crowdsourcing platform  0.15 

UserD Web newspapers  0.15 

ID1 CCTV Rain, snow, fog 0.10 

ID1 CCTV Clear 0.15 

 
Table 4: Probability values of congestion of road 100 

Status  Probability 

Congested  0.6 

Not congested  0.25 

 
Table 5: final complete and merged metadata 

Road Id Road name Date of event Time of event Reason of congestion Date of resolution Time of resolution 

100 Alpha 01/02/2017 08:18 Accident 01/02/2017 10:00 

 
Table 6: Updated values of Big Data sources reliability index 

Data source Type Condition Reliability index 

UserA Official twitter account  0.30 

UserB Standard twitter account  0.20 

UserC Crowd sourcing platform  0.10 

UserD Web newspapers  0.20 

ID1 CCTV Rain, snow, fog 0.05 

ID1 CCTV Clear 0.15 

 

Finally, the batch processing updates the reliability 

index for each data sources in order to decrease the weight 

of the data sources that have predicted the road 100 as not 

congested (UserC and ID1) and increase the weight for data 

sources that have predicted the road 100 as congested 

(UserB and UserD). The couple (metadata, knowledge) is 

stored for further exploitation such as prediction, 

recommendation etc. Table 6 shows the results. 

We recall that, if we rely exclusively on a single data 

source such as the Crowdsourcing user (UserC) or the 

CCTV (ID1) the final information would have been 

incorrect since both haven’t detect any congestion. From 

another side, the use of all the knowledge acquired from 

all data sources and the consideration of the 

meteorological conditions helped to find a more accurate 

and complete results. 

The results of this mode are useful for performing a 

statistical and/or predictive analysis on the traffic state in 

order to suggest debottlenecking solutions. 

Streaming Mode 

To involve citizens in the debottlenecking of urban areas 

the system must be able to identify the state of traffic in a 
near-real-time. We propose a layer that analyzes streaming 
traffic data, detects congested roads in order to be used 
lately to recommend alternative route to citizens. 

The streaming processing is thus based solely on the 
sources that provide data in real time. To validate our 

approach, we consider Twitter data source. However, this 
model is applicable to all other sources that provide data in 
real time. The streaming mode performs the following 
process: First Twitter Streaming API collects tweets that 
contain the appropriate keywords. Streaming data flew to 
our Kafka cluster, which transfers data every to spark 

streaming. The latest extracts metadata and analyzes tweets 
using machine Bayesian model previously built during 
batch processing to detect congestions. Finally it calculates 
the accuracy of the results based on the reliability index 
calculated during batch processing. 
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Fig. 8: Overall execution time of the streaming process 

 

We have developed a solution to analyze twitter 

data and identify tweets talking about congestion and 

detects it location and time. Figure 8 shows the overall 

execution time of the streaming process which 

represents the time interval between the happenings of 

the event until its availability to the user. This time is 

equal to 5s which is an acceptable timeframe for this 

case study. However, considering that we did the 

evaluation in a single node machine, we believe that the 

performance of the system could be highly improved 

since all the used techniques and technologies support 

horizontal scalability. 

Querying Layer 

The Querying layer receives the departure and 

arrival coordinates of each user. Then the system 

identifies the different routes connecting these points 

using Google Map API and looks for the optimal route 

that avoids congestions. The latest are stored in the 

streaming views or could be predicted using the 

prebuilt models during the batch process. Therefore, 

the system identifies the roads sections of each route 

then looks for the states of each one in the streaming 

view. If no information found, the system predicts the 

road state. Finally the system displays the global 

insight with a percentage of reliability based on the 

reliability of the data source. 

Conclusion and Perspectives 

We have presented in this paper an implementation 

and adaptation of the lambda architecture for multimodal 

Big Data integration. In the batch processing mode we 

have presented the different engines for processing 

different types of data in order to extract the knowledge 

that is merged later in order to provide global accurate 

insight. The stream processing mode analyzes incoming 

data in real-time or near-real-time. We have implemented 

our solution in the context of urban traffic management 

systems in order to help users access near-real-time 

information about traffic states by analyzing tweet 

streams. This implementation could clearly be enlarged 

to other data sources providing different real-time data 

types such as images and videos provided by CCTVS 

and aerial vehicles which constitute our ongoing work. In 

the midterm we are thinking about replacing the sources’ 

reliability index computation by a new mechanism that 

identifies automatically the reputation of each data source. 

Another perspective aims to provide users with 

recommendations about alternative and less congested 

roads. Finally, we are thinking about evaluating our 

solution in a in a high performance cluster. 
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